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Abstract We consider a semilinear elliptic equation with an indefinite unbounded potential
and a Carathéodory reaction term that exhibits superlinear growth near ±∞ without satisfy-
ing the AR-condition. Also, at the origin, the primitive of the reaction satisfies a nonuniform
nonresonance condition with respect to the first eigenvalue of

(−�, H1
0 (Ω)

)
. Using critical

point theory and Morse theory, we show that the problem has at least three nontrivial smooth
solutions. Our result extends that of Wang (Anal Nonlineaire 8:43–58, 1991).
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1 Introduction

The starting point of this paper is the work of Wang [21], in which the author studies super-
linear elliptic equations. More precisely, let Ω ⊆ R

N be a bounded domain with a regular
boundary ∂Ω . Wang [21] considers the following Dirichlet problem:

− �u(z) = f
(
u(z)

)
in Ω, u

∣∣
∂Ω

= 0. (1)

Wang [21] assumes that f ∈ C1(R), f (0) = f ′(0) = 0, | f ′(x)| ≤ c(1 + |x |r−2) for all

x ∈ R with c>0 and 1< r <2∗ =
{ 2N

N−2 if N ≥ 3
+∞ if N ≤ 2

, there exist μ>2 and M>0 such that
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0<μF(x) ≤ f (x)x for all |x | ≥ M where F(x) = ∫ x
0 f (s)ds (the Ambrosetti–Rabinowitz

condition). Using critical point theory and Morse theory, Wang [21] proved the existence of
at least three nontrivial solutions.

The aim of our work here is to extend the aforementioned result of Wang [21] in many
different ways. So, letΩ ⊆ R

N be a bounded domain with a C2-boundary ∂Ω . We consider
the following Dirichlet problem:

− �u(z)+ β(z)u(z) = f
(
z, u(z)

)
in Ω, u

∣
∣
∂Ω

= 0. (2)

Here, β ∈ Lq(Ω)with q>N/2 and f : Ω×R → R is a Carathéodory function (i.e., for all,
x ∈R, z −→ f (z, x) is measurable and for almost all, z ∈ Ω, x −→ f (z, x) is continuous),
which exhibits a superlinear growth near ±∞, but without necessarily satisfying the Ambro-
setti–Rabinowitz condition (AR-condition for short). Note that the potential β is in general
sign changing. So, in our formulation (see (2)), the linear part of the equation is indefinite
and the reaction term f is z-dependent with only measurable dependence in the z-variable
and f (z, ·) need not be C1. Hence, the energy functional of the problem is not C2 and this
makes the use of Morse theory problematic. Finally, as we already indicated, we do not use
the AR-condition to express the superlinearity of f (z, ·) and instead we use an alternative
condition involving the function ξ(z, x) = f (z, x)x − 2F(z, x)(F(z, x) = ∫ x

0 f (z, s)ds),
which incorporates in our framework superlinear reactions with slower growth near ±∞.
Recall that the AR-condition says that there exist μ>2 and M>0 such that

0<μF(z, x) ≤ f (z, x)x for a.a. z ∈ Ω, all |x | ≥ M (see [2]). (3)

Integrating (3), we obtain the following weaker condition

c1|x |μ ≤ F(z, x) for a.a. z ∈ Ω, all |x | ≥ M, and with c1>0. (4)

It is clear from (3) and (4) that the AR-condition excludes superlinear functions that exhibit
“slow” growth near ±∞. For this reason, there have been efforts to replace (3). An over-
view of the relevant literature in this direction can be found in the recent works of Miyagaki
and Souto [13] and Li and Yang [11]. Motivated by these works, in this paper, we replace
the AR-condition (3) by a quasi-monotonicity condition on the function x −→ ξ(z, x) =
f (z, x)x − 2F(z, x) (see hypothesis H(iii)).

Additional multiplicity results were obtained by Chen and Shen [6], Geng [8], Wang and
Tang [22], and Zou [23]. Zou [23] deals with semilinear problems, and Geng [8] and Wang
and Tang [22] consider equations driven by the p-Laplacian, and Chen and Shen [6] examine
a problem involving the p-mean curvature differential operator. In Geng [8] and Zou [23],
the reaction f (z, x) belongs in C(Ω × R), while in Chen and Shen [6] and Wang and Tang
[22], the reaction is a Carathéodory function. With the exception of Wang and Tang [22], all
the other works impose a symmetry condition of f (z, ·), (namely that f (z,−x) = − f (z, x)
(oddness)), and using the symmetric mountain pass theorem or the fountain theorem, they
establish the existence of a sequence of nontrivial solutions for the equation. In Wang and
Tang [22], the authors using variational methods prove the existence of one or two solutions.
In all the aforementioned works, the authors avoid the AR-conditions and introduce alter-
native weaker conditions to express the superlinearity of the reaction. So, Zou [23] assumes
monotonicity of x −→ f (z, x)

/
x . Geng [8] and Wang and Tang [22] employ a condition

first introduced in the literature by Jeanjean [10] (for semilinear problems). Wang and Tang
[22] use the more restrictive global version of the Jeanjean condition, while Geng [8] uses
the local version. Chen and Shen [6] use a different condition involving the function ξ(z, x).
All these conditions are more restrictive than H(iii) used in this paper.
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Superlinear Dirichlet problems with an indefinite potential 299

In the next section, for the convenience of the reader, we briefly review the main mathe-
matical tools that we will use in this work and introduce the hypotheses on f (z, x).

2 Mathematical background-hypotheses

We start with critical point theory. So, let X be a Banach space, X∗ its topological dual, and
let 〈·, ·〉 denote the duality brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say that ϕ
satisfies the Cerami condition (the C-condition for short), if the following holds:

Every sequence {xn}n≥1 ⊆ X such that {ϕ(xn)}n≥1 ⊆ R is bounded and (1 +
‖xn‖)ϕ′(xn) −→ 0 in X∗ as n →∞, admits a strongly convergent subsequence.

This condition is in general weaker than the Palais-Smale condition (the PS-condition for
short), which is usually used in critical point theory. It was shown by Bartolo et al. [3] that
the Deformation Theorem and consequently the minimax theory of critical values remains
valid if the PS-condition is replaced by the C-condition.

Using this compactness-type condition, we can state the following Theorem, which is
known in the literature as the mountain pass theorem, and which is slightly more general
than the original result of Ambrosetti and Rabinowitz [2].

Theorem 1 If X is a Banach space, ϕ ∈ C1(X) and satisfies the C-condition, x0, x1 ∈
X, ‖x1 − x0‖>r>0,

max{ϕ(x0), ϕ(x1)} ≤ inf[ϕ(x) : ‖x − x0‖ = r ] = ηr

c = inf
γ∈	 max

0≤t≤1
ϕ
(
γ (t)

)
where 	 = {

γ ∈ C([0, 1], X) : γ (0) = x0, γ (1) = x1
}
,

then c ≥ ηr and c is a critical value of ϕ; moreover, if c = ηr , then there exists a critical
point x ∈ X of ϕ such that ‖x − x0‖ = r and ϕ(x) = c.

For ϕ ∈ C1(X) and c ∈ R, we introduce the following sets:

ϕc={x ∈ X :ϕ(x) ≤ c}, ϕ̇c={x ∈ X :ϕ(x)<c}, Kϕ={x ∈ X :ϕ′(x)=0}
and K c

ϕ={x∈Kϕ :ϕ(x)=c}.
Let (Y1, Y2) be a topological pair with Y2 ⊆ Y1 ⊆ X . For every integer k ≥ 0, by

Hk(Y1, Y2), we denote the k
th= relative singular homology group with integer coefficients

for the pair (Y1, Y2). Recall that for k < 0, Hk(Y1, Y2) = 0. The critical groups of ϕ at an
isolated critical point x ∈ X with ϕ(x) = c (i.e., x ∈ K c

ϕ), are defined by

Ck(ϕ, x) = Hk
(
ϕc ∩ U, ϕc ∩ U \ {x}) for all k ≥ 0,

with U a neighborhood of x such that Kϕ ∩ ϕc ∩ U = {x} (see, for example, Chang [5]
and Mawhin and Willem [12]). The excision property of singular homology theory implies
that the above definition of critical groups is independent of the particular choice of the
neighborhood U of x .

Next, suppose that ϕ ∈ C1(X) satisfies the C-condition and −∞< inf ϕ(Kϕ). Let c<
inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X, ϕ
c) for all k ≥ 0.
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(see Bartsch and Li [4]). The second deformation theorem, (see, for example, Papageorgiou
and Kyritsi [15, p. 349]), implies that this definition of critical groups at infinity is inde-
pendent of the particular choice of the level c < inf ϕ(Kϕ). Suppose that Kϕ is finite. We
set

M(t, x) =
∑

k≥0

rank Ck(ϕ, x)tk for all t ∈ R, and all x ∈ Kϕ

and P(t,∞) =
∑

k≥0

rank Ck(ϕ,∞)tk for all t ∈ R.

The Morse relation says that
∑

x∈Kϕ

M(t, x) = P(t,∞)+ (1 + t)Q(t), (5)

where Q(t)=∑
k≥0 βk tk is a formal series in t ∈ R with nonnegative integer coefficients

(see Chang [5, p. 337] and Mawhin and Willem [12, p. 184]).
In the analysis of problem (2) in addition to the Sobolev space H1

0 (
), we will also use
the Banach space C1

0(Ω) = {
u ∈ C1(Ω) : u

∣∣
∂Ω

= 0
}
. This is an ordered Banach space

with positive cone C+ = {
u ∈ C1

0 (Ω) : u(z) ≥ 0 for all z ∈ Ω}
. This cone has a nonempty

interior given by

int C+ =
{

u ∈ C+ : u(z)>0 for all z ∈ Ω, ∂u

∂n

∣∣∣
∂Ω
<0

}

where by n(·), we denote the outward unit normal on ∂Ω .
We consider the following linear eigenvalue problem

− �u(z)+ β(z)u(z) = λ̂u(z) in Ω, u
∣∣
∂Ω

= 0. (6)

The following condition will be valid for the potential β(·) throughout this work.

H0: β ∈ Lq(Ω), q>N/2.

For any r ∈ (1,∞) by r ′, we denote the conjugate exponent defined by 1/r + 1/r ′ = 1.
We have

2q ′ = 2
q

q − 1
<2∗ = 2N

N − 2
. (7)

Then, the Sobolev embedding theorem implies that H1
0 (
) is embedded (compactly) in

L2q ′
(
). From this fact and Hölder’s inequality, we have

∣∣∣∣∣∣

∫

Ω

βu2dz

∣∣∣∣∣∣
≤ ‖β‖q‖u‖2

2q ′ . (8)

We know that 2<2q ′<2∗ (see (7)) and we have H1
0 (
)

c
↪→ L2q ′

(
) ↪→ L2(
), where
c
↪→ denotes compact embedding. Invoking Ehrling’s inequality (see, for example, Papageor-
giou and Kyritsi [15, p. 698]), given ε>0, we can find c(ε)>0 such that

‖u‖2
2q ′ ≤ ε‖u‖2 + c(ε)‖u‖2

2 for all u ∈ H1
0 (
), (9)
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where ‖ · ‖ stands for the norm of H1
0 (
) defined by ‖u‖ = ‖Du‖2 for all u ∈ H1

0 (
) (by
Poincaré’s inequality). From (8) and (9), we have

‖Du‖2
2 −

∫

Ω

βu2dz ≤ ‖Du‖2
2 + ε‖β‖q‖u‖2 + c(ε)‖β‖q‖u‖2

2,

⇒ (
1 − ε‖β‖q

)‖u‖2 ≤ σ(u)+ c(ε)‖β‖q‖u‖2
2,

where σ(u) = ‖Du‖2
2 + ∫

Ω
βu2dz for all u ∈ H1

0 (
). Let ε ∈ (
0, 1

‖β‖q

)
. Then,

‖u‖2 ≤ c1
(
σ(u)+ ĉ ‖u‖2

2

)
for some c1, ĉ>0, all u ∈ H1

0 (
). (10)

Consider the continuous bilinear form α : H1
0 (
)× H1

0 (
) −→ R defined by

α(u, y) = c1

⎡

⎣
∫

Ω

(Du, Dy)
RN dz +

∫

Ω

βuydz

⎤

⎦ for all u, y ∈ H1
0 (
).

Then, from (10), it follows that

α(u, u)+ c1ĉ ‖u‖2
2 ≥ ‖u‖2 for all u ∈ H1

0 (
). (11)

Then, (11) and Corollary 7.D, p. 78 of Showalter [18], imply that problem (6) admits a
sequence {̂λk}k≥1 of distinct eigenvalues such that

−c1ĉ<λ̂1<λ̂2< · · ·<λ̂n −→ +∞ as n →∞
and a corresponding sequence {̂un}n≥1 ⊆ H1

0 (
) of eigenfunctions that form an orthonor-
mal basis of L2(
) and an orthogonal basis of H1

0 (
). Moreover, hypothesis H0 and the
regularity theory for semilinear Dirichlet problems (see Struwe [19, pp. 218–219]) imply
that {̂un}n≥1 ⊆ C1,α

0 (Ω) for some α ∈ (0, 1). The eigenvalue λ̂1 is simple and admits the
following variational characterization

λ̂1 = inf

[
σ(u)

‖u‖2
2

: u ∈ H1
0 (
), u �= 0

]

. (12)

In (12), the infimum is realized on the one-dimensional eigenspace E (̂λ1). It is clear from
(12) that every eigenfunction corresponding to λ̂1 has constant sign. Let û1 ∈ C1,α

0 (Ω) be
the L2-normalized (i.e., ‖û1‖2 = 1) eigenfunction for λ̂1 such that û1(z) ≥ 0 for all z ∈ Ω .
In fact, from Harnack’s inequality (see Serrin [17] and Pucci and Serrin [16, p. 163]), we
have û1(z)>0 for all z ∈ Ω .

Lemma 1 If ϑ ∈ L∞(
), ϑ(z) ≤ λ̂1 a.e. in Ω,ϑ �= λ̂1, then there exists c2>0 such that
ψ(u) = σ(u)− ∫

Ω
ϑu2dz ≥ c2‖u‖2 for all u ∈ H1

0 (Ω).

Proof From (12) and the hypothesis on ϑ , we see that ψ ≥ 0. Proceeding by contradic-
tion, suppose that the Lemma is not true. Exploiting the 2-homogeneity of ψ , we can find
{un}n≥1 ⊆ H1

0 (
) such that

‖un‖ = 1 for all n ≥1 and ψ(un) −→ 0+ as n →∞. (13)

So, we may assume that

un
w−→ u in H1

0 (
) and un −→ u in L2q ′
(
). (14)

123



302 S. Th. Kyritsi, N. S. Papageorgiou

From (13) and (14), it follows that

σ(u) ≤
∫

Ω

ϑu2dz ≤ λ̂1‖u‖2
2, (15)

⇒ σ(u) = λ̂1‖u‖2
2 (see (12)),

⇒ u ∈ E (̂λ1).

If u = 0, then Dun −→ 0 in L2(Ω,RN ) and so un −→ 0 in H1
0 (
) (see (14)), which

contradicts the fact that ‖un‖ = 1 for all n ≥1. Therefore, u ∈ E (̂λ1) \ {0} and so |u(z)|>0
for all z ∈ Ω . Then, from the first inequality in (15) and the hypothesis on ϑ , we have
σ(u) ≤ λ̂1‖u‖2

2, which contradicts (12). This proves the Lemma. ��
As we already mentioned, throughout this work for every u ∈ H1

0 (
), we set ‖u‖ =
‖Du‖2 and u± = max{±u, 0}. We know that |u| = u+ + −u−, u = u+ − u−, and u± ∈
H1

0 (
). Also, by | · |
RN , we denote the Lebesgue measure on R

N .
The hypotheses on the reaction f (z, x) are the following:

H: f :Ω×R −→ R is a Carathédory function such that for a.a. z ∈ Ω, f (z, 0) = 0 and

(i) | f (z, x)| ≤ α(z) + c|x |r−1 for a.a z ∈ Ω, all x ∈ R, with α ∈ L∞(
)+, c> 0,
and 2<r<2∗;

(ii) lim|x |→∞
F(z,x)

x2 = +∞ uniformly for a.a. z ∈ Ω;

(iii) if ξ(z, x) = f (z, x)x − 2F(z, x), then there exists β∗ ∈ L1(
)+ such that

ξ(z, x) ≤ ξ(z, y)+ β∗(z) for a.a. z ∈ Ω, all 0 ≤ x ≤ y or y ≤ x ≤ 0;
(iv) there exist ϑ ∈ L∞(
), ϑ(z) ≤ λ̂1 a.e. in Ω,ϑ �= λ̂1 and γ >0 such that

lim sup
x→0

2F(z, x)

x2 ≤ ϑ(z) and lim inf
x→0

2F(z, x)

x
≥ −γ.

Remark 1 Hypothesis H(iii) implies that for a.a. z ∈ Ω, F(z, ·) is superquadratic near ±∞.
Moreover, hypotheses H(ii), (iii) imply that lim|x |→∞

F(z,x)
x2 = +∞ uniformly for a.a. z ∈ Ω

(see Li and Yang [11, Lemma 2.4]). Hence, for a.a. z ∈ Ω, f (z, ·) is superlinear near ±∞.
Hypothesis H(iii) is a quasi-monotonicity condition on ξ(z, ·). It is satisfied if there exists
M > 0 such that for a.a. z ∈ Ω, x −→ f (z,x)

x is increasing on x ≥ M and decreasing on
x ≤ −M (see, for example, Li and Yang [11]).

Example 1 The following function f (x) satisfies hypotheses H (for the sake of simplicity,
we drop the z-dependence):

f (x) =
{
ϑx − ϑ

2 |x |τ−2x if |x | ≤ 1
x
(
ln |x | + 1

2

)
if |x |>1,

with ϑ<λ̂1 and 2<τ <∞. Note that this function does not satisfy the AR-condition.

Our method of proof employs also truncation techniques. For this purpose, we introduce
the following functions:

f̂+(z, x)=
{

0 if x ≤ 0
f (z, x)+ ĉx if x>0

and f̂−(z, x)=
{

f (z, x)+ ĉx if x<0
0 if x ≥ 0.

(16)
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Both are Carathéodory functions. We consider the C1-functionals ϕ̂± : H1
0 (
) −→ R

defined by

ϕ̂±(u) = 1

2
σ(u)+ ĉ

2
‖u‖2

2 −
∫

Ω

F̂±
(
z, u(z)

)
dz for all u ∈ H1

0 (
).

Also, let ϕ : H1
0 (
) −→ R be the energy functional for problem (2) defined by

ϕ̂(u) = 1

2
σ(u)−

∫

Ω

F
(
z, u(z)

)
dz for all u ∈ H1

0 (
).

Evidently ϕ ∈ C1
(
H1

0 (
)
)
.

3 Solutions of constant sign

In this section, we produce two constant sign smooth solutions (one positive and the other
negative).

Proposition 1 If hypotheses H0 and H(i), (ii), (iii) hold, then ϕ̂± satisfy the C-condition.

Proof We do the proof for ϕ̂+, the proof for ϕ̂− being similar.
So, let {un}n≥1 ⊆ H1

0 (
) be a sequence such that

|ϕ̂+(un)| ≤ M1 for some M1>0, all n ≥1 (17)

and (1 + ‖un‖)ϕ̂′+(un) −→ 0 in H−1(
) = H1
0 (
)

∗ as n →∞. (18)

From (18), we have

∣∣ 〈A(un), h〉 +
∫

Ω

(β + ĉ)unhdz −
∫

Ω

f̂+(z, un)hdz
∣∣ ≤ εn‖h‖

1 + ‖un‖ (19)

for all h ∈ H1
0 (
)with εn → 0+, where A ∈ L(H1

0 (
), H−1(
)
)

is defined by 〈A(u), y〉 =∫
Ω
(Du, Dy)

RN dz for all u, y ∈ H1
0 (
).

In (19), we choose h = −u−
n ∈ H1

0 (
) and obtain

σ(u−
n )+ ĉ ‖u−

n ‖2
2 ≤ εn for all n ≥1,

⇒ u−
n −→ 0 in H1

0 (
) as n →∞ (see (10)). (20)

Next, in (19), we choose h = u+
n ∈ H1

0 (
). Then,

− σ(u+
n )+

∫

Ω

f (z, u+
n )u

+
n dz ≤ εn for all n ≥1 (see (16)). (21)

On the other hand from (17), (20), and (16), we have

σ(u+
n )− 2

∫

Ω

F(z, u+
n )dz ≤ M2 for some M2>0, all n ≥1. (22)
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Adding (21) and (22), we obtain

∫

Ω

[
f (z, u+

n )u
+
n − 2F(z, u+

n )
]
dz ≤ M3 for some M2>0, all n ≥1,

⇒
∫

Ω

ξ(z, u+
n )dz ≤ M3 for all n ≥1. (23)

Claim: {un}n≥1 ⊆ H1
0 (
) is bounded.

Suppose that the Claim is not true. We may assume that ‖u+
n ‖ → ∞. We set

yn = u+
n

‖u+
n ‖ , n ≥1. Then, ‖yn‖ = 1 for all n ≥1, and so we may assume that

yn
w−→ y in H1

0 (
) and yn −→ y in L2q ′
(
), y ≥ 0. (24)

First, suppose y �= 0 and let Z(y) = {z ∈ 
 : y(z) = 0}. Then, |Ω \ Z(y)|N > 0 and
u+

n (z) −→ +∞ for a.a. z ∈ 
 \ Z(y). Hypothesis H(ii) implies that

F
(
z, u+

n (z)
)

‖u+
n ‖2

= F
(
z, u+

n (z)
)

u+
n (z)2

yn(z)
2 −→ +∞ for a.a. z ∈ 
 \ Z(y),

⇒
∫

Ω

F
(
z, u+

n

)

‖u+
n ‖2

dz −→ +∞ (by Fatou’s lemma). (25)

From (17) and (20), we have

−σ(u+
n )+

∫

Ω

F(z, u+
n )dz ≤ M4 for some M4>0, all n ≥1,

⇒ −σ(yn)+
∫

Ω

F
(
z, u+

n

)

‖u+
n ‖2

dz ≤ M4

‖u+
n ‖2

for all n ≥1,

⇒
∫

Ω

F
(
z, u+

n

)

‖u+
n ‖2

dz ≤ M5 for some M5>0, all n ≥1 (see (24)). (26)

Comparing (25) and (26), we reach a contradiction.
Now, suppose y = 0. We can find λ>0 such that

‖Dyn‖2
2 ≥ λ>0 for all n ≥1. (27)

Otherwise, for a subsequence {nk}k≥1, we have Dynk −→ 0 in L2(Ω,RN ) and so ynk −→
0 in H1

0 (
) (see (24)), contradicting the fact that ‖yn‖ = 1 for all n ≥1.
We consider the function ζn : [0, 1] −→ R defined by

ζn(t) = ϕ(tu+
n ) for all t ∈ [0, 1].

This is a continuous function and so we can find tn ∈ [0, 1] such that

ζn(tn) = max
[
ζn(t) : t ∈ [0, 1]] n ≥1. (28)
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For μ>0, we set vn =
(

2μ
λ

)1/2
yn ∈ H1

0 (
). Evidently, vn −→ 0 in Lr (
) (recall that

we assume y = 0). So, using hypothesis H(i), we have

∫

Ω

F(z, vn)dz −→ 0 as n →∞. (29)

Since ‖u+
n ‖ → +∞, we have

(
2μ
λ

)1/2
1

‖u+
n ‖ ∈ (0, 1) for all n ≥ n0. Hence,

ζn(tn) ≥ ζn

((2μ

λ

)1/2 1

‖u+
n ‖

)
for all n ≥ n0,

⇒ ϕ(tnu+
n ) ≥ ϕ

((2μ

λ

)1/2
yn

)
= ϕ(vn)

= μ

λ
σ(yn)−

∫

Ω

F(z, vn)dz

≥ μ+ μ

λ

∫

Ω

βy2
n dz −

∫

Ω

F(z, vn)dz for all n ≥ n0 (see (27)).

But note that
∫
Ω
βy2

n dz −→ 0. This fact together with (29) imply that

ϕ(tnu+
n ) ≥ 1

2
μ for all n ≥ n1 ≥ n0. (30)

Since μ>0 is arbitrary from (30), it follows that

ϕ(tnu+
n ) −→ +∞ as n →∞. (31)

Note that 0 ≤ tnu+
n ≤ u+

n for all n ≥1. So, by virtue of hypothesis H(iii), we have

∫

Ω

ξ(z, tnu+
n )dz ≤

∫

Ω

ξ(z, u+
n )dz + ‖β∗‖1 for all n ≥1. (32)

Note ϕ(0) = 0 and by virtue of (17) and (20) we have ϕ̂+(u+
n ) = ϕ(u+

n ) ≤ M6 for some
M6>0, all n ≥1. Therefore, from (31), it follows that tn ∈ (0, 1) for all n ≥ n2 ≥ 1. Then,
from (28), we have

0 = tn
d

dt
ϕ(tu+

n )

∣∣∣
t=tn

= 〈
ϕ′(tnu+

n ), tnu+
n

〉

= σ(tnu+
n )−

∫

Ω

f (z, tnu+
n )(tnu+

n )dz for all n ≥ n2,

⇒ σ(tnu+
n ) =

∫

Ω

f (z, tnu+
n )(tnu+

n )dz for all n ≥ n2. (33)
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Returning to (32) and using (33), we obtain

σ(tnu+
n )−

∫

Ω

2F(z, tu+
n )dz ≤

∫

Ω

ξ(z, u+
n )dz + ‖β∗‖1 for all n ≥ n2,

⇒ 2ϕ(tnu+
n ) ≤

∫

Ω

ξ(z, u+
n )dz + ‖β∗‖1 for all n ≥ n2,

⇒
∫

Ω

ξ(z, u+
n )dz −→ +∞ as n →∞ (see (31)). (34)

Comparing (23) and (34), we reach a contradiction. This proves the Claim.
By virtue of the Claim and (20), we have that {un}n≥1 ⊆ H1

0 (
) is bounded. So, we may
assume that

un
w−→ u in H1

0 (
) and un −→ u in L2q ′
(
) and in Lr (
) as n →∞. (35)

In (19), we choose h = un − u ∈ H1
0 (
), pass to the limit as n → ∞ and use (35). We

obtain

lim
n→∞ 〈A(un), un − u〉 = 0,

⇒ ‖Dun‖2
2 −→ ‖Du‖2

2. (36)

From (35), (36), and the Kadec–Klee property of Hilbert spaces, we have

Dun −→ Du in L2(Ω,RN ),

⇒ un −→ u in H1
0 (
).

This proves that ϕ̂+ satisfies the C-condition. Similarly for ϕ̂−. ��

With minor modifications in the above proof (we omit the details), we obtain

Proposition 2 If hypotheses H0 and H(i), (ii), (iii) hold, then ϕ satisfies the C-condition.

Proposition 3 If hypotheses H0 and H(i), (iv) hold, then u = 0 is a local minimizer of the
functionals ϕ̂± and ϕ.

Proof We do the proof for ϕ̂+, the proofs for ϕ̂− and ϕ being similar.
Hypotheses H(i), (iv) imply that given ε>0, we can find cε >0 such that

F(z, x) ≤ 1

2

(
ϑ(z)+ ε

)
x2 + cε|x |r for a.a. z ∈ 
, all x ∈R. (37)
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Then, for every u ∈ H1
0 (
), we have

ϕ̂+(u) = 1

2
σ(u)+ ĉ

2
‖u‖2

2 −
∫

Ω

F̂+(z, u)dz

= 1

2
σ(u+)+ ĉ

2
σ(−u−)+ ĉ

2
‖u−‖2

2 −
∫

Ω

F(z, u+)dz (see (16))

≥ 1

2
σ(u+)− 1

2

∫

Ω

ϑ(u+)2dz − ε

2
‖u‖2 − c3‖u‖r

+1

2

[
σ(−u−)+ ĉ ‖u−‖2

2

]
for some c3>0 (see (37))

≥ c2

2
‖u+‖2 + 1

2c1
‖u−‖2 − ε

2
‖u‖2 − c3‖u‖r

(see Lemma 1 and (10))

≥ 1

2
(c4 − ε)‖u‖2 − c3‖u‖r for some c4>0.

Choosing ε ∈ (0, c4), we infer that

ϕ̂+(u) ≥ c5‖u‖2 − c3‖u‖r for some c5>0, all u ∈ H1
0 (
). (38)

Since r>2, we can find � ∈ (0, 1) small such that

ϕ̂+(u) ≥ 0 for all u ∈ H1
0 (
), ‖u‖ ≤ � (see (38)),

⇒ u = 0 is a local minimizer of ϕ̂+.

Similarly for ϕ̂− and ϕ. ��
We are ready to produce two nontrivial constant sign smooth solutions for problem (2).

Proposition 4 If hypotheses H0 and H hold, then problem (2) has two nontrivial constant
sign smooth solutions u0, v0 ∈ C1,α

0 (Ω)(0<α<1) with v0(z)<0<u0(z) for all z ∈ 
.

Proof From Proposition 3, we know that u = 0 is a local minimizer of ϕ̂+. We may assume
that u = 0 is an isolated critical point of ϕ̂+. Otherwise, we can find a sequence {un}n≥1 ⊆
Kϕ̂+ such that un → 0 in H1

0 (
). Then, A(un)+ (β + ĉ)un = N f̂+(un) where N f̂+(u)(·) =
f̂+
(·, u(·)) for all u ∈ H1

0 (
). Acting with −u−
n ∈ H1

0 (
), we obtain un ≥ 0. Regularity the-

ory (see [7]) and the Harnack’s inequality (see [16,17]) imply that un ∈ C1,α
0 (Ω)(0<α<1)

and un(z)>0 for all z ∈ 
, all n ≥1. Therefore, we are done. Assuming that u = 0 is an iso-
lated critical point of ϕ̂+ and reasoning as in Aizicovici et al. [1, see the proof of Proposition
29]), we can find � ∈ (0, 1) small such that

0 = ϕ̂+(0)< inf
[
ϕ̂+(u) : ‖u‖ = �

] = η̂+. (39)

Hypothesis H(ii) implies that

ϕ̂+(t û1) −→ −∞ as t → +∞. (40)

Proposition 1 together with (39) and (40) permits the use of Theorem 1 (the mountain
pass theorem). So, we obtain u0 ∈ H1

0 (
) such that

ϕ̂+(0) = 0<η̂+ ≤ ϕ̂+(u0) (41)

and ϕ̂′+(u0) = 0. (42)
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From (41), we have u0 �= 0. From (42), it follows that

A(u0)+ (β + ĉ)u0 = N f̂+(u0),

from which as above we infer that u0 ≥ 0 and so

A(u0)+ βu0 = N f (u0)

where N f (u)(·) = f
(·, u(·)) for all u ∈ H1

0 (
) (see (16)). Hence, u0 solves problem (2)) and

the regularity theory (see Struwe [19, pp. 218–219]) implies that u0 ∈ C1,α
0 (Ω)(0<α<1).

Moreover, Harnack’s inequality (see Serrin [17]; Pucci and Serrin [16, p. 163]) implies that
u0(z)>0 for all z ∈ 
.

Similarly, working this time with ϕ̂−, we obtain one more constant sign smooth solution
v0 ∈ C1,α

0 (Ω)(0<α<1) with v0(z)<0 for all z ∈ 
. ��

We can improve the conclusion of the above proposition, if we place an additional restric-
tion on the potential β(·).
Proposition 5 If hypotheses H0 and H(i), (iv) hold, and β+ ∈ L∞(
), then problem (2)
has two nontrivial constant sign smooth solutions u0, v0 ∈ C1,α

0 (Ω) with u0 ∈ intC+, v0 ∈
−intC+.

Proof From Proposition 4, we know that problem (2) has two solutions

u0, v0 ∈ C1,α
0 (Ω) (0<α<1) with v0(z)<0<u0(z) for all z ∈ 
.

Hypotheses H(i), (iv) imply that there exists γ0>0 such that

f (z, x) ≥ −γ0x for a.a. z ∈ 
, all x ∈ [0, ‖u0‖∞]. (43)

We have

−�u0(z)+ (
β(z)+ γ0

)
u0(z) = f

(
z, u0(z)

) + γ0u0(z) ≥ 0

a.e. in Ω (see (43)),

⇒ �u0(z) ≤ (
β+(z)+ γ0

)
u0(z) ≤ (‖β+‖∞ + γ0

)
u0(z) a.e. in Ω,

⇒ u0 ∈ int C+ (see Vazquez [20] and Pucci and Serrin [16, p. 120]).

Similarly, we show that v0 ∈ −int C+. ��

4 Three-solutions theorem

In this section, using Morse theory, we produce a third nontrivial smooth solution and so we
have the full multiplicity theorem for problem (2) (three-solutions theorem).

First, we compute the critical groups of ϕ at infinity.

Proposition 6 If hypotheses H0 and H hold, then Ck(ϕ,∞) = 0 for all k ≥ 0.

Proof Hypothesis H(ii) implies that for every u ∈ H1
0 (
), u �= 0, we have

ϕ(tu) −→ −∞ as t → +∞. (44)
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Hypothesis H(iii) implies that for all u ∈ H1
0 (
), we have

0 = ξ(z, 0) = ξ
(
z, u+(z)

) + β∗(z) and 0 = ξ(z, 0) ≤ ξ
(
z,−u−(z)

) + β∗(z)
a.e. in Ω,

⇒ 0 ≤ ξ(z, 0) ≤ ξ
(
z, u(z)

) + β∗(z) a.e. in Ω,

⇒ −ξ(z, u(z)
) = 2F

(
z, u(z)

) − f
(
z, u(z)

)
u(z) ≤ β∗(z) a.e. in Ω. (45)

Then, for every u ∈ H1
0 (
) and every t>0, we have

d

dt
ϕ(tu) = 〈

ϕ′(tu), u
〉

= 1

t

〈
ϕ′(tu), tu

〉

= 1

t

[
σ(tu)−

∫

Ω

f (z, tu)tudz
]

≤ 1

t

[
σ(tu)−

∫

Ω

2F(z, tu)dz + ‖β∗‖1

]
(see (45))

= 1

t

[
2ϕ(tu)+ ‖β∗‖1

]
. (46)

By virtue of (44) for t>0 large, we have ϕ(tu)<γ̂ <−‖β∗‖1
2 and so from (46) it follows

that

d

dt
ϕ(tu)<0. (47)

Let ∂B1 = {
u ∈ H1

0 (
) : ‖u‖ = 1
}
. For u ∈ ∂B1, we can find a unique λ(u)> 0 such

that ϕ
(
λ(u)u

) = γ̂ and the implicit function theorem (see (47)) implies that λ ∈ C(∂B1).
We extend λ on H1

0 (
) \ {0} by setting

λ0(u) = 1

‖u‖ λ
( u

‖u‖
)

for all u ∈ H1
0 (
) \ {0}.

Evidently, λ0 ∈ C
(
H1

0 (
) \ {0}) and ϕ
(
λ0(u)u

) = γ̂ . Moreover, ϕ(u) = γ̂ implies that
λ0(u) = 1. We set

λ̂0(u) =
{

1 if ϕ(u)<γ̂
λ0(u) if ϕ(u) ≥ γ̂ .

(48)

Then, λ̂0 ∈ C1
(
H1

0 (
) \ {0}). We consider the homotopy h : [0, 1] × (
H1

0 (
) \ {0}) −→
H1

0 (
) \ {0} defined by

h(t, u) = (1 − t)u + t λ̂0(u)u.

Then,

h(0, u), h(1, u) = λ̂0(u)u ∈ ϕγ̂ for all u ∈ H1
0 (
) \ {0}

h(t, ·)
∣∣∣
ϕγ̂

= id
∣∣∣
ϕγ̂

for all t ∈ [0, 1] (see (48)).

These properties imply that ϕγ̂ is a strong deformation retract of H1
0 (
) \ {0}. Using the

radial retraction, we see that ∂B1 is a deformation retract of H1
0 (
) \ {0} (see Dugundji [7,

Theorem 6.5, p. 325]). So, it follows that
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ϕγ̂ and ∂B1 are homotopy equivalent,

⇒ Hk
(
H1

0 (
), ϕ
γ̂
) = Hk

(
H1

0 (
), ∂B1
)

for all k ≥ 0. (49)

Since H1
0 (
) is infinite dimensional, ∂B1 is contractible in itself. Hence,

Hk
(
H1

0 (
), ∂B1
) = 0 for all k ≥ 0 (see Granas and Dugundji [9, p. 389]),

⇒ Hk
(
H1

0 (
), ϕ
γ̂
) = 0 for all k ≥ 0 (see (49)),

⇒ Ck(ϕ,∞) = 0 for all k ≥ 0 (choose γ̂ <0 with |γ̂ |>0 big).

��

Next, we compute the critical groups at infinity for the functionals ϕ̂+ and ϕ̂−.

Proposition 7 If hypotheses H0 and H hold, then Ck(ϕ̂+,∞) = Ck(ϕ̂−,∞) = 0 for all
k ≥ 0.

Proof Let ψ̂+ = ϕ̂+
∣
∣
∣
C1

0 (Ω)
. The regularity theory for Dirichlet problems (see Struwe [19, p.

219]) implies that Kϕ̂+ ⊆ C1
0 (Ω) and in fact Kϕ̂+ ⊆ C+. So, Kψ̂+ = Kϕ̂+ = K .

Because C1
0(Ω) is dense in H1

0 (
), we can apply Theorem 16 of Palais [14] and have

Hk
(
H1

0 (
),
˙̂ϕ α+
) = Hk

(
C1

0 (Ω),
˙̂ψα+
)

for all k ≥ 0. (50)

Choosing α< inf
K
ψ̂+ = inf

K
ϕ̂+, from (50) we have

Ck(ϕ̂+,∞) = Ck(ψ̂+,∞) for all k ≥ 0. (51)

So, from (51), we see that in order to prove the proposition, it suffices to show that

Ck(ψ̂+,∞) = Hk
(
C1

0(Ω), ψ̂
α+
) = 0 for all k ≥ 0.

To this end, we introduce the following sets

∂BC
1 = {

u ∈ C1
0(Ω) : ‖u‖C1

0 (Ω)
= 1

}
and ∂BC

1,+ = {
u ∈ ∂BC

1 : u+ �= 0
}
.

Let h+ : [0, 1] × ∂BC
1,+ −→ ∂BC

1,+ be the homotopy defined by

h+(t, u) = (1 − t)u + t û1

‖(1 − t)u + t û1‖C1
0 (Ω)

for all (t, u) ∈ [0, 1] × ∂BC
1,+.

Note that h+(1, u) = u
‖u‖

C1
0 (Ω)

∈ ∂BC
1,+. Hence ∂BC

1,+ is contractible in itself.

Hypothesis H(ii) implies that for all u ∈ ∂BC
1,+, we have

ψ̂+(tu) −→ −∞ as t → +∞. (52)

From (45), we have

− f
(
z, u(z)

)
u(z) ≤ β∗(z)− 2F

(
z, u(z)

)
a.e. in Ω. (53)
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Let 〈·, ·〉C denote the duality brackets for the pair
(
C1

0(Ω)
∗,C1

0 (Ω)
)
. We fix u ∈ ∂BC

1,+.
For all t>0, we have

d

dt
ψ̂+(tu) = 〈

ψ̂ ′+(tu), u
〉
C

= 1

t

〈
ϕ̂′+(tu), tu

〉

= 1

t

⎡

⎣σ(tu)+ ĉ ‖tu‖2
2 −

∫

Ω

f̂+(z, tu)tudz

⎤

⎦

≤ 1

t

⎡

⎣σ(tu)+ ĉ ‖tu‖2
2 −

∫

Ω

2F̂+(z, tu)dz + ‖β∗‖1

⎤

⎦

(see (16) and (53))

= 1

t

[
2ψ̂+(tu)+ ‖β∗‖1

]
. (54)

By virtue of (52) for t>0 big, we have ψ̂+(tu)<−‖β∗‖1
2 and so from (54), it follows that

d

dt
ψ̂+(tu)<0. (55)

Let B
C
1 = {

u ∈ C1
0 (Ω) : ‖u‖C1

0 (Ω)
≤ 1

}
and choose α ∈ R such that

α<min
{
−‖β∗‖1

2
, inf

B
C
1

ψ̂+
}
. (56)

From the above, it follows that for every u ∈ ∂BC
1,+, we can find a unique τ(u) ≥ 1 such

that

ψ̂+(tu) =
⎧
⎨

⎩

>α if t ∈ [0, τ (u))
= α if t = τ(u)
<α if t>τ(u).

(57)

Moreover, the implicit function theorem (see (55)) implies that the function τ : ∂BC
1,+ −→

[1,∞) is continuous. Note that

ψ̂α+ = {
tu : u ∈ ∂BC

1,+, t ≥ τ(u)
}
(see (56) and (57)). (58)

Let E+ = {
tu : u ∈ ∂BC

1,+, t ≥ 1
}
. Then, ψ̂α+ ⊆ E+ (see (58)). We consider the

deformation ĥ+ : [0, 1] × E+ −→ E+ defined by

ĥ+(s, tu) =
{
(1 − s)tu + sτ(u)u if t ∈ [0, τ (u)]

tu if t>τ(u),

for all s ∈ [0, 1], all t ≥ 1, all u ∈ ∂BC
1,+. We have

ĥ+(0, tu) = tu, ĥ+(1, tu) ∈ ψ̂α+ and ĥ+(s, ·)
∣∣∣
ψ̂α+

= id
∣∣∣
ψ̂α+

for all s ∈ [0, 1] (see (57))

⇒ ψ̂α+ is a strong deformation retract of E+ and so

Hk
(
C1

0 (Ω), E+
) = Hk

(
C1

0(Ω), ψ̂
α+
)

for all k ≥ 0. (59)
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On the other hand, the deformation h̃+ : [0, 1] × E+ −→ E+ defined by

h̃+(s, tu) = (1 − s)tu + s
tu

‖tu‖C1
0 (Ω)

for all s ∈ [0, 1], all t ≥ 1, all u ∈ ∂BC
1,+,

shows that ∂BC
1,+ is a deformation retract of E+ (see Dugundji [7, p. 325]). Hence,

Hk
(
C1

0 (Ω), E+
) = Hk

(
C1

0 (Ω), ∂BC
1,+

)
for all k ≥ 0. (60)

From (59) and (60), it follows that

Hk
(
C1

0(Ω), ψ̂
α+
) = Hk

(
C1

0(Ω), ∂BC
1,+

)
for all k ≥ 0. (61)

But recall that ∂BC
1,+ is contractible in itself. Hence,

Hk
(
C1

0 (Ω), ∂BC
1,+

) = 0 for all k ≥ 0 (see Granas and Dugundji [9, p.389]),

⇒ Hk
(
C1

0 (Ω), ψ̂
α+
) = 0 for all k ≥ 0 (see (61)),

⇒ Ck(ϕ̂+,∞) = 0 for all k ≥ 0.

Similarly, we show that Ck(ϕ̂−,∞) = 0 for all k ≥ 0. ��
Using this proposition and the stronger condition on the potential β (see Proposition 5),

we can compute the critical groups of ϕ at the two constant sign smooth solutions u0 ∈ int C+
and v0 ∈ −int C+ (see Proposition 5).

Proposition 8 If hypotheses H0 and H hold and β+ ∈ L∞(
), then Ck(ϕ, u0) =
Ck(ϕ, v0) = δk,1Z for all k ≥ 0.

Proof First, we compute the critical groups of ϕ̂+ at u0 ∈ intC+. So, suppose that Kϕ̂+ =
{0, u0} (otherwise, recalling that Kϕ̂+ ⊆ C+ and since ϕ̂+

∣∣∣
C+

= ϕ

∣∣∣
C+

, we see that we

already have a third nontrivial (in fact positive) smooth solution of (2) and so we are done).
Let μ<0<ν<η̂+ (see (39)) and consider the following triple of sets

ϕ̂
μ
+ ⊆ ϕ̂ν+ ⊆ H1

0 (
).

For this triple of sets, we consider the corresponding long exact sequence of singular
homology groups

. . . Hk
(
H1

0 (
), ϕ̂
μ
+
) i∗−→ Hk

(
H1

0 (
), ϕ̂
ν+
) ∂∗−→ Hk−1

(
ϕ̂ν+, ϕ̂

μ
+
) −→ . . . (62)

for all k ≥ 1. Here, i∗ is the group homomorphism induced by the inclusion i :(
H1

0 (
), ϕ̂
μ
+
) −→ (

H1
0 (
), ϕ̂

ν+
)

and ∂∗ is the boundary homomorphism. From (62) and
the rank theorem, we have

rank Hk
(
H1

0 (
), ϕ̂
ν+
) = rank ker ∂∗ + rank im ∂∗

= rank im i∗ + rank im ∂∗ (by the exactness of (62)).

(63)

Since μ<0 and Kϕ̂+ = {0, u0} (recall ϕ̂+(0) = 0<η̂+ ≤ ϕ̂+(u0), see (41)), we have

Hk
(
H1

0 (
), ϕ̂
μ
+
) = Ck(ϕ̂+,∞) = 0 for all k ≥ 0 (see Proposition 7),

⇒ im i∗ = {0} (see (62)). (64)
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Also, since ν<η̂+ ≤ ϕ̂+(u0), we have

Hk
(
H1

0 (
), ϕ̂
ν+
) = Ck(ϕ̂+, u0) (see, for example, Chang [5]). (65)

Finally, since μ< 0 = ϕ̂+(0)<ν < η̂+ ≤ ϕ̂+(u0) and u = 0 is a local minimizer of ϕ̂+
(see Proposition 3), it follows that

Hk−1
(
ϕ̂ν+, ϕ̂

μ
+
) = Ck−1(ϕ̂+, 0) = δk−1,0Z = δk,1Z for all k ≥ 0. (66)

Returning to (63) and using (64) through (66), we obtain

rank C1(ϕ̂+, u0) ≤ 1. (67)

Recall that u0 is a critical point of ϕ̂+ of mountain pass type (see the proof of Proposition
4). Hence,

rank C1(ϕ̂+, u0) ≥ 1. (68)

From (67) and (68) and since Ck(ϕ̂+, u0) = 0 for all k ∈ {0, 2, 3, . . .} (see (63) and (66)),
we conclude that

Ck(ϕ̂+, u0) = δk,1Z for all k ≥ 0. (69)

We consider the homotopy h1 : [0, 1] × H1
0 (
) −→ H1

0 (
) defined by

h1(t, u) = (1 − t)ϕ(u)+ t ϕ̂+(u) for all (t, u) ∈ [0, 1] × H1
0 (
).

Claim: We may assume that there exists �>0 small such that u0 is the only critical point
of
{
h1(t, ·)

}
t∈[0,1] in B�(u0) = {u ∈ H1

0 (
) : ‖u − u0‖ ≤ �‖}.
Suppose that we can find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ H1

0 (
) such that

tn −→ t ∈ [0, 1], un −→ u0 in H1
0 (
) and (h1)

′
u(tn, un) = 0 for all n ≥1. (70)

From the equality in (70), we have

A(un)+ βun + tnun = (1 − tn)N f (un)+ tn N f̂+(un)

⇒ −�un(z)+β(z)un(z)= f
(
z, u+

n (z)
)+(1−tn) f

(
z,−u−

n (z)
)+tnu−

n (z)

a.e. in Ω , (see (16)). From regularity theory, we can find α ∈ (0, 1) and M6>0 such that

un ∈ C1,α
0 (Ω) and ‖un‖C1,α

0 (Ω)
≤ M6 for all n ≥1 (71)

(see Struwe [19, pp. 217, 219]). From the compact embedding of C1,α
0 (Ω) into C1

0 (Ω)

and (71), we infer that by passing to a suitable subsequence if necessary, we may assume
that

un −→ u0 in C1
0 (Ω) (see (70)),

⇒ un ∈ int C+ for all n ≥ n0 (recall that u0 ∈ int C+, see Proposition 5).

Since ϕ̂+
∣∣∣
C+

= ϕ

∣∣∣
C+

, it follows that {un}n≥1 ⊆ C1,α
0 (Ω) are all distinct positive smooth

solutions of (2) and so we are done.
Propositions 1 and 2 imply that h1(0, ·) = ϕ and h1(1, ·) = ϕ̂+ satisfy the C-condition.

So, by virtue of the homotopy invariance property of critical groups (see Chang [5, p. 334]),
we have

Ck
(
h1(0, ·), u0

) = Ck
(
h1(1, ·), u0

)
for all k ≥ 0,

⇒ Ck(ϕ, u0) = Ck(ϕ̂+, u0) = δk,1Z for all k ≥ 0 (see (69)).
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Similarly, using this time ϕ̂− and v0 ∈ −int C+, we show that Ck(ϕ, v0) = δk,1Z for all
k ≥ 0. ��

Now, we are ready for the multiplicity theorem (three-solutions theorem) that extends the
result of Wang [21].

Theorem 2 If hypotheses H0 and H hold and β+ ∈ L∞(
), then problem (2) has at least
three nontrivial smooth solutions u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ C1,α

0 (Ω) \ {0}(0<
α<1).

Proof From Proposition 5, we already have two constant sign smooth solutions u0 ∈ int C+
and v0 ∈ −int C+. Moreover, from Proposition 8, we have

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ≥ 0. (72)

From Proposition 3, we know that u = 0 is a local minimizer of ϕ. Hence

Ck(ϕ, 0) = δk,0Z for all k ≥ 0. (73)

Finally, from Proposition 6, we have

Ck(ϕ,∞) = 0 for all k ≥ 0. (74)

Suppose that {0, u0, v0} are the only critical points of ϕ. Then, from (72) through (74) and
the Morse relation (5) with t = −1, we have 2(−1)1+(−1)0 = 0, a contradiction. This means
that we can find y0 ∈ Kϕ such that y0 /∈ {0, u0, v0}. Then, y0 is a solution of problem (2) and
the regularity theory (see Struwe [19, p. 219]) implies that y0 ∈ C1,α

0 (Ω) \ {0}(0<α<1). ��
Remark 2 It is an interesting open question, whether we can drop the extra condition β+ ∈
L∞(
). This condition was used to apply the maximum principle (see [16,20]), which in turn
implied that u0 ∈ int C+, v0 ∈ −int C+, and these properties were crucial in the calculation
of the critical groups ofϕ at u0 andv0. If f (z, ·) ∈ C1 for a.a. z ∈ 
, thenϕ ∈ C2

(
H1

0 (
)
)

and
since u0, v0 are critical points of mountain pass type, we have Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z

for all k ≥ 0 (see Mawhin and Willem [12, p.195]). So, in that case, the extra restriction
β+ ∈ L∞(
) can be dropped. In our general setting, we do not know whether this is possible.

Acknowledgments The authors wish to thank the referee for bringing to their attention some additional
references.
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