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Abstract We prove a C1,α partial regularity result for minimizers of variational integrals
of the type

J [u] :=
∫

�

f (∇u)dx, u : � ⊂ R
n → R

N ,

where the integrand f is strictly quasiconvex and satisfies suitable growth conditions in terms
of Young functions.
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1 Introduction

Let n, N ∈ N with n ≥ 2 and� ⊂ R
n be an open bounded set. In this paper we will consider

variational integrals of the type

J [u] :=
∫

�

f (∇u) dx, (1.1)

where u : � → R
N and f : R

nN → [0,∞) is a C2-function. In order to describe the special
growth conditions of the density function f , let us consider two Young functions (see [2])
ϕ,ψ of class C2([0,∞), [0,∞)) s.t. for h ∈ {ϕ,ψ} it holds
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256 D. Breit, A. Verde

λ
h′(t)

t
≤ h′′(t) ≤ �

h′(t)
t

for all t ≥ 0, (1.2)

where λ,� > 0 as well as

h(t) ≥ bt2 − c for all t ≥ 0, (1.3)

with b > 0 and c ≥ 0. We will assume

c1ϕ(|Z |) ≤ f (Z) ≤ c2(1 + ψ(|Z |)) for all Z ∈ R
nN , (1.4)

with c1, c2 > 0, combined with the strict W 1,ϕ-quasiconvexity, i.e., for each M > 0 there is
a constant γM > 0 such that

−
∫

B1

f (A + ∇φ) dx ≥ f (A)+ γM−
∫

B1

(
1 + ϕ′(|∇φ|)

|∇φ|
)

|∇φ|2 dx (1.5)

for all A ∈ R
nN with |A| ≤ M + 1 and all φ ∈ W 1,ϕ

0 (B1,R
N ). Furthermore, we need

a condition between the functions ϕ and ψ limiting the range of the anisotropy; hence if
N := ϕ ◦ (ψ ′)−1 we will assume

N ∗(t) ≤ cϕα(t) for all t � 1, α <
n

n − 1
. (1.6)

Here h∗ denotes the complementary function of h. Note that from (1.6) we can immediately
deduce the following inequality

ψ(t) ≤ cϕα(t) for all t � 1. (1.7)

In the special case ϕ(t) = t p and ψ(t) = tq (1.6) is equivalent to q < p + 1
n .

Let us recall the definition of a local minimizer of J .

Definition 1.1 A map u ∈ W 1,ϕ
loc (�,R

N ) is called a W 1,ϕ local minimizer of J in � if one
has J [u] < ∞ and

J [u] ≤ J [u + φ]
for every φ ∈ W 1,ϕ

0 (�,RN ).

In this paper we are interested in proving partial C1,α-regularity of a local minimizer of
J , i.e., regularity outside a closed set of Lebesgue measure zero. More precisely:

Theorem 1.1 Let u ∈ W 1,ϕ
loc (�,R

N ) be a local minimizer of (1.1) under the assumptions
(1.2)–(1.6). Then there is an open subset �0 ⊂ � s.t. u ∈ C1,α(�0,R

N ) for all α < 1 and
Ln(�\�0) = 0.

Let us observe that the existence of minima can be proved by using the direct methods in
the Calculus of Variations. In fact, compactness theorems in W 1,ϕ(�,RN ) combined with
lower semicontinuity results guarantee the existence of such minima. In particular in [19]
the authors studied the lower semicontinuity of the functional (1.1) with respect to weak
W 1,p-convergence of W 1,q -functions under the condition q < np

n−1 . In [18] it is also consid-
ered the case of general growth like (1.4) (see also [24]). Thus, starting from this existence
result, the aim of this paper is to show a regularity theory for minimizers of quasiconvex
variational integrals with (1.4)-growth. In this direction, it is worth to mention that in the
power case when p = q partial regularity results are originally developed by Evans [12] and
next extended in [1] when p ≥ 2 and in [3] and [4] when 1 < p < 2 (see [20] for a good
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Quasiconvex variational functionals 257

survey on this subject). In case of different growth p − q , we can refer to [21] and [22], but
no corresponding regularity results were known if (1.4)-growth is supposed.

Let us observe that if this strong notion of W 1,ϕ-quasiconvexity is not available, one
can think to a relaxation procedure to show that a similar result still holds following the
ideas suggested in the papers [13] and [23], where an analysis with respect to the Lavrentiev
phenomenon (non-occurring when the functional is convex and autonomous) is performed.

In the same way, very recently, there has been interest in functionals with non-standard
growth depending also on (x, u); for this, a similar Lavrentiev phenomenon occurs. It is
likely that the regularity analysis made in this paper extends to those as well. In particular,
it could be interesting if bounds as q

p < 1 + α
n found in [13] admit a reformulation in the

setting of Orlicz spaces too.
Now let us explain the main ideas of the proof.
The crucial points are essentially two: a Caccioppoli inequality and A-harmonic approx-

imation lemma. The main idea in proving Caccioppoli estimate is to construct suitable test
functions by using smoothing operators from [15] revised in the Orlicz setting. Thus, by using
these modified test functions, we gain the estimate desired with some perturbation terms on
the right hand side.

Proceeding with the proof, we will use the A-harmonic approximation method developed
more recently in [11] (see also [7–9] and [10]). This method gives us a closeness in the
norm L2 of the minimizer u with respect to an A-harmonic function w for which we have
at our disposal an excess decay estimate. Next, by using an interpolation argument, we will
be able to prove that this closeness holds also in the norm Lϕ . Finally, the combination of
these two arguments leads us to show an excess decay estimate also for ∇u. Next, by using
Campanato’s integral characterization of Hölder continuous functions, we obtain the desired
result.

2 Auxiliary results

The following definitions and results are standard in the context of Young functions (see
for instance [2]). A real function ϕ : [0,∞) → [0,∞) is said to be a Young function if
it satisfies the following conditions: ϕ(0) = 0 and there exists the derivative ϕ′ of ϕ. This
derivative is right continuous, non-decreasing and satisfies ϕ′(0) = 0, ϕ′(t) > 0 for t > 0,
and limt→∞ ϕ′(t) = ∞. Especially, ϕ is convex.

We say that ϕ satisfies the 
2–condition, if there exists c1 > 0 such that for all t ≥ 0
holds ϕ(2t) ≤ c1 ϕ(t). By
2(ϕ)we denote the smallest constant c1. Since ϕ(t) ≤ φ(2t) the

2 condition is equivalent to ϕ(2t) ∼ ϕ(t). By Lϕ and W 1,ϕ we denote the classical Orlicz
and Orlicz–Sobolev spaces, i. e. f ∈ Lϕ iff

∫
ϕ(| f |) dx < ∞ and f ∈ W 1,ϕ iff f,∇ f ∈ Lϕ .

By W 1,ϕ
0 (�) we denote the closure of C∞

0 (�) in W 1,ϕ(�).
By (ϕ′)−1 : [0,∞) → [0,∞) we denote the function

(ϕ′)−1(t) := sup{s ∈ [0,∞) : ϕ′(s) ≤ t}.
If ϕ′ is strictly increasing, then (ϕ′)−1 is the inverse function of ϕ′. Then ϕ∗ : [0,∞) →
[0,∞) defined by

ϕ∗(t) :=
t∫

0

(ϕ′)−1(s) ds

123



258 D. Breit, A. Verde

is again a Young function and (ϕ∗)′(t) = (ϕ′)−1(t) for t > 0. It is the complementary
function of ϕ. Note that ϕ∗(t) = sups≥0(st −ϕ(s)) and (ϕ∗)∗ = ϕ. For all δ > 0 there exists
cδ (only depending on 
2(ϕ),
2(ϕ

∗)) such that for all t, s ≥ 0 holds

t s ≤ δ ϕ(t)+ cδ ϕ
∗(s). (2.1)

This inequality is called Young’s inequality.
For f ∈ L1

loc(R
n), we define the non-centered maximal function of f by

M f (x) := sup
B�x

−
∫

B

| f (y)| dy, (2.2)

where the supremum is taken over all balls B ⊂ R
n which contain x . The following Lemma

can be found in [17].

Lemma 2.1 Let ϕ be a Young function with 
2(ϕ
∗) < ∞, then there exists c > 0 which

only depends on 
2(ϕ
∗) such that

∫

Rn

ϕ(M f ) dx ≤ c
∫

Rn

ϕ(| f |) dx and ‖M f ‖ϕ ≤ c‖ f ‖ϕ (2.3)

for all f ∈ Lϕ(Rn).

Now let us collect some basic properties of Young functions and their corresponding
tensor-functions appearing in the growth condition of f .

Lemma 2.2 Let h be a Young function satisfying (1.2) and (1.3). Then we have

(a) h fulfills 
2(h) < ∞ and 
2(h∗) < ∞;
(b) for all t > 0 it holds

h(1)(t p − 1) ≤ h(t) ≤ h(1)(tq + 1),

where p = λ+ 1 and q = �+ 1;
(c) for all t > 0 it holds h′(t)t ∼ h(t).

For the proof see Lemma 3.1 in [14].
We define for h ∈ {ϕ,ψ}

V h(ξ) :=
√(

1 + h′(|ξ |)
|ξ |

)
ξ, ξ ∈ R

nN .

Some basic properties of V h are collected in the following lemma.

Lemma 2.3 Let h ∈ C2([0,∞), [0,∞)) be a Young function with property (1.2) then we
have

|V h(A + B)|2 ≤ c
(
|V h(A)|2 + |V h(B)|2

)

|V h(A + B)|2
|A + B| ≤ c′

( |V h(A)|2
|A| + |V h(B)|2

|B|
)

for all A, B with constants c, c′ only depending on the (
2)-constant of h resp. h′.
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Quasiconvex variational functionals 259

Proof From the monotonicity of h and its (
2)-condition, one can deduce

|V h(A + B)|2 = |A + B|2 + h′(|A + B|)|A + B|
≤ c

(|A|2 + |B|2 + h(|A + B|))
≤ c

(|A|2 + |B|2 + h(2|A|)+ h(2|B|))
≤ c

(|A|2 + |B|2 + h(|A|)+ h(|B|))

≤ c

(
|A|2 + |B|2 + h′(|A|)

|A| |A|2 + h′(|B|)
|B| |B|2

)

= c
(
|V h(A)|2 + |V h(B)|2

)
.

The proof of the second inequality follows in a similar fashion.
The following Lemma will be useful in the sequel.

Lemma 2.4 For a function f , satisfying our assumptions, we have

| f (A + B)− f (A)− D f (A)B| ≤ c|Vψ(B)|2,

|D f (A + B)− D f (A)| ≤ c
|Vψ(B)|2

|B|
for all A, B ∈ R

nN with |A| ≤ M + 1. Here c depends only on the constants in (1.4) and
(1.5).

Proof we have

| f (A + B)− f (A)− D f (A)B| =
∣∣∣∣∣∣

1∫

0

1∫

0

D2 f (A + τσ B) dτ dσ(B, B)

∣∣∣∣∣∣

≤ c

⎛
⎝1 +

1∫

0

1∫

0

ψ ′(|A + τσ B|)
|A + τσ B| dτ dσ

⎞
⎠ |B|2.

From [6] (Appendix, Lemma 20) we quote

1∫

0

ψ ′(|A + τσ B|)
|A + τσ B| dτ ≤ ψ ′(|A| + |σ B|)

|A| + |σ B| ≤ ψ ′(2|A|)
|A| + ψ ′(2|σ B|)

|σ B|

≤ c(M)

(
1 + ψ ′(|σ B|)

|σ B|
)
,

where we used convexity of ψ and (
2)-condition of ψ ′. This shows

| f (A + B)− f (A)− D f (A)B| ≤ c

⎛
⎝1 +

1∫

0

ψ ′(|σ B|)
|σ B| dσ

⎞
⎠ |B|2

≤ c

(
1 + ψ ′(|B|)

|B|
)

|B|2 = c|Vψ(B)|2,

where we used again [6] (Appendix, Lemma 20). The arguments leading to the second
inequality are quite similar. ��
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260 D. Breit, A. Verde

The main tool in our regularity approach is the generalization of the extension operator
from Fonseca-Maly [15] to Orlicz spaces (see also [18]).

Lemma 2.5 Let 0 ≤ r < s, u ∈ W 1,ϕ(�,RN ), Bs � � and α < n
n−1 . Then there is

Tr,su ∈ W 1,ϕ(Bs,R
N ) with the following properties:

(a) Tr,su = u on Bs\Br ;
(b) Tr,su ∈ u + W̊ 1,ϕ(Bs\Br ,R

N );
(c) |∇Tr,su| ≤ cTr,s |∇u|;
(d) the following estimates hold:∫

Bs\Br

ϕ(|Tr,su|) dx ≤c
∫

Bs\Br

ϕ(|u|) dx,

∫

Bs\Br

ϕ(|∇Tr,su|) dx ≤c
∫

Bs\Br

ϕ(|∇u|) dx,

∫

Bs\Br

ϕα(|Tr,su|) dx ≤c(s − r)−nα+n+α
[

sup
t∈(r,s)

θ(t)− θ(r)

t − r
+ sup

t∈(r,s)
θ(s)− θ(t)

s − t

]
,

∫

Bs\Br

ϕα(|∇Tr,su|) dx ≤c(s−r)−nα+n+α
[

sup
t∈(r,s)

�(t)−�(r)
t − r

+ sup
t∈(r,s)

�(s)−�(t)
s − t

]
.

where

θ(t) :=
∫

Bt

ϕ(|u|) dx, �(t) :=
∫

Bt

ϕ(|∇u|) dx .

Proof We follow the main ideas of [15]. Let η ∈ C∞
0 (�) and [t1, t2] ⊂ (0, ‖η‖∞) with

0 < |∇η| < A on {t1 ≤ η ≤ t2}. If (a, b) ⊂ [t1, t2] write Zb
a = {a < η < b}. We define

Tr,su(x) :=
∫

B1(0)

− u(x + ξ(x)y) dy

where

ξ(x) := 1

2A
max {0,min {η(x)− r, s − η(x)}} .

We can quote (a)–(c) from [15]. Note that Tr,su = u if x /∈ Zs
r and

Tr,su(x) =
∫

Bξ(x)(x)

− u(z) dz, x ∈ Zs
r .

We denote by ũ the extension of u|Zs
r

by zero to R
n and taking into account Lemma 2.1 we get∫

Bs\Br

ϕ(|Tr,su|) dx =
∫

Bs\Br

ϕ(|Tr,s ũ|) dx ≤
∫

Bs\Br

ϕ(M(|ũ|)) dx

≤
∫

Rn

ϕ(M(|ũ|)) dx ≤ c
∫

Rn

ϕ(|ũ|) dx = c
∫

Bs\Br

ϕ(|u|) dx,

which is the first inequality in d).

123



Quasiconvex variational functionals 261

Let c := a+b
2 and abbreviate

M0 := sup
t∈(r,s)

(t − r)−1
∫

Zt
r

ϕ(|u|) dx .

W.l.o.g. we can assume that u is smooth, since the general case is a consequence of a standard
approximation argument. If ρ ∈ (0, 1

4 (b − a)) and z ∈ {η = a + 2ρ} then ξ(z) = ρ
A and

Bξ(z)(z) ⊂ Za+3ρ
a+ρ . Thus, Jensen’s inequality implies for α ≥ 1

ϕα(|Tr,su|) ≤ cρ−nα

⎡
⎢⎣

∫

Bξ(z)(z)

ϕ(|u|) dy

⎤
⎥⎦
α

≤ ρ−nα

⎡
⎢⎢⎣

∫

Za+3ρ
a+ρ

ϕ(|u|) dy

⎤
⎥⎥⎦
α−1 ⎡

⎢⎣
∫

Bξ(z)(z)

ϕ(|u|) dy

⎤
⎥⎦ .

Lemma 2.1 in [15] applied to the last integral implies

∫

η=a+2ρ

ϕα(|Tr,su|) dHn−1 ≤ ρ−nα+n−1

⎡
⎢⎢⎣

∫

Za+3ρ
a+ρ

ϕ(|u|) dy

⎤
⎥⎥⎦
α

.

This finally leads us to

∫

Zc
a

ϕα(|Tr,su|) dx ≤ c

1
4 (s−r)∫

0

ρ−nα+n−1

⎡
⎢⎢⎣

∫

Za+3ρ
a+ρ

ϕ(|u|) dy

⎤
⎥⎥⎦
α

dρ

≤ cMα
0 (s − r)−nα+n+α.

This shows the third inequality in d). The estimations for ∇Tr,su are consequences of c). ��

Another important tool in our proof will be the following generalization of the Sobolev–
Poincaré inequality due to Diening and Ettwein [6] (see also [5]).

Lemma 2.6 (Theorem 7, [6]) Let B ⊂ R
n be some ball with diameter R. Further, let ϕ be a

Young function with 
2(ϕ),
2(ϕ
∗) < ∞. Then for all 1 < r < n

n−1 there is K > 0, which

only depend on 
2(ϕ),
2(ϕ
∗), R and r, such that for all v ∈ W 1,ϕ(B) holds

⎛
⎝ −

∫

B

ϕr
( |v − vB |

R

)
dx

⎞
⎠

1
r

≤ K −
∫

B

ϕ(|∇v|)dx . (2.4)

Note that this Lemma is actually a slight modification of Theorem 7 in [6].
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262 D. Breit, A. Verde

3 Caccioppoli inequality

In this section we prove a Caccioppoli inequality, which will be the main tool in the proof of
the partial regularity in the next section.

Lemma 3.1 Let the assumptions of Theorem 1.1 be true and v = u − ζ − A(x − x0) where
ζ ∈ R

N and A ∈ R
nN with |A| ≤ M + 1. Then we have for all Bρ � �

∫

Bρ/2

− |V ϕ(∇v)|2 dx ≤c −
∫

Bρ

∣∣∣∣V ϕ

(
v

s − r

)∣∣∣∣
2

dx

+ c

⎧⎪⎨
⎪⎩ −
∫

Bρ

[
|V ϕ(∇v)|2 +

∣∣∣∣V ϕ

(
v

s − r

)∣∣∣∣
2
]

dx

⎫⎪⎬
⎪⎭

α

.

Proof We follow the lines of Schmidt [21] and consider ρ2 ≤ r < s ≤ ρ as well as

�(t) :=
∫

Bt

[
ϕ(|∇u|)+ ϕ

( |u|
s − r

)]
dx .

In accordance with [15], Lemma 2.3, there are r̃ and s̃ with r ≤ r̃ ≤ s̃ ≤ s such that

�(t)−�(r̃)

t − r̃
≤3
�(s)−�(r)

s − r
,

�(s̃)−�(t)

s̃ − t
≤3
�(s)−�(r)

s − r

(3.1)

for every t ∈ (r̃ , s̃) as well as

s − r

3
≤ s̃ − r̃ ≤ s − r. (3.2)

Now we choose a cutoff function η ∈ C∞
0 (Bs̃) with η ≡ 1 on Br̃ , 0 ≤ η ≤ 1 and |∇η| ≤

c/(s̃ − r̃). For the function (1 − η)v, where v(x) = u(x)− ζ − A(x − x0) with ζ ∈ R
N and

A ∈ RnN , |A| ≤ M , we define, using the operator from Lemma 2.5,

� := Tr̃ ,s̃((1 − η)v), φ := v −�.

Hence we have φ ∈ W̊ 1,ϕ(Bs̃,R
N ) and φ = v on Br̃ . As a consequence of (1.5), we get

γM

∫

Br̃

|V ϕ(∇v)|2 dx ≤
∫

Bs̃

[ f (A + ∇φ)− f (A)] dx

=
∫

Bs̃

[ f (∇u − ∇�)− f (∇u)] dx +
∫

Bs̃

[ f (∇u)− f (∇u − ∇φ)] dx

+
∫

Bs̃

[ f (A + ∇�)− f (A)] dx,

where we also used φ = v on Br̃ and

∇u − A = ∇v = ∇φ + ∇� on Bs̃ .
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Quasiconvex variational functionals 263

By the minimality of u and Lemma 2.4, we obtain

γM

∫

Bs̃

|V ϕ(∇v)|2 dx ≤
∫

Bs̃

1∫

0

[D f (A)− D f (A − τ∇�)] dτ : ∇� dx

+
∫

Bs̃

[ f (A + ∇�)− f (A)− D f (A) : ∇�] dx

≤c
∫

Bs̃

1∫

0

|Vψ(∇v − τ∇�)|2
|∇v − τ∇ψ | dτ |∇�| dx

+ c
∫

Bs̃

|Vψ(∇�)|2 dx .

As a consequence of Lemma 2.3, we have

∫

Bs̃

1∫

0

|Vψ(∇v − τ∇�)|2
|∇v − τ∇�| dτ |∇�| dx ≤

∫

Bs̃

|Vψ(∇v)|2
|∇v| |∇�| dx

+
∫

Bs̃

1∫

0

|Vψ(τ∇�)|2
|τ∇�| dτ |∇�| dx .

Since the last integral is bounded by

∫

Bs̃

(|∇�|2 + ψ ′(|∇�|)|∇�|) dx,

we arrive at

∫

Br̃

|V ϕ(∇v)|2 dx ≤ c
∫

Bs̃

|Vψ(∇�)|2 dx + c
∫

Bs̃

|Vψ(∇v)|2
|∇v| |∇�| dx =: J1 + J2.

In order to handle J1, we decompose as follows: from (1.7) we deduce for K � 1

J1 = c
∫

[|∇�|≤K ]
. . .dx + c

∫

[|∇�|>K ]
. . .dx

≤ c
∫

Bs̃

|∇�|2 dx + c
∫

Bs̃

ϕα(|∇�|) dx

=: J 1
1 + J 2

1 .
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264 D. Breit, A. Verde

Using Lemma 2.5 we obtain by definition of �, (3.1) and (3.2)

J 2
1 ≤c(s̃ − r̃)−nα+n+α

⎧⎪⎨
⎪⎩ sup

t∈(r̃ ,s̃)
(t − r̃)−1

∫

Bt \Br̃

ϕ(|∇[(1 − η)v]|) dx

⎫⎪⎬
⎪⎭

α

+ c(s̃ − r̃)−nα+n+α

⎧⎪⎨
⎪⎩ sup

t∈(r̃ ,s̃)
(s̃ − t)−1

∫

Bs̃\Bt

ϕ(|∇[(1 − η)v]|) dx

⎫⎪⎬
⎪⎭

α

=c(s̃−r̃)−nα+n+α
{

sup
t∈(r̃ ,s̃)

�(t)−�(r̃)

t − r̃

}α
+c(s̃−r̃)−nα+n+α

{
sup

t∈(r̃ ,s̃)
�(s̃)−�(t)

s̃ − t

}α

≤c(s − r)−nα+n {�(s)−�(r)}α . (3.3)

Due to the superquadratic growth of ϕ (see (1.3)) and Lemma 2.5, we have

J 1
1 ≤ c

∫

Bs\Br

|V ϕ(∇v)|2 dx + c
∫

Bρ

∣∣∣∣V ϕ

(
v

s − r

)∣∣∣∣
2

dx . (3.4)

The term J2 is bounded by

J2 ≤ c
∫

Bs̃\Br̃

|∇v||∇�| dx + c
∫

Bs̃\Br̃ ∩[|∇v|≥1]
ψ ′(|∇v|)|∇�| dx

=: J 1
2 + J 2

2 .

The first term can be estimated as J 1
1 by Lemma 2.5. For the second one we get

J 2
2 ≤ c

∫

Bs̃\Br̃

ϕ(|∇v|) dx + c
∫

Bs̃\Br̃ ∩[|∇v|≥1]
N ∗ (|∇�|) dx

≤ c
∫

Bs̃\Br̃

ϕ(|∇v|) dx + c
∫

Bs̃\Br̃

ϕα(|∇�|) dx

≤ c(s − r)−nα+n {�(s)−�(r)}α ,

where we took into account (1.6), (3.3), (3.4), Young’s inequality and again Lemma 2.5.
Plugging all together we get

∫

Br

|V ϕ(∇v)|2 dx ≤c
∫

Bs\Br

|V ϕ(∇v)|2 dx + c
∫

Bρ

∣∣∣∣V ϕ

(
v

s − r

)∣∣∣∣
2

dx

+ c(s − r)n

⎧⎪⎨
⎪⎩(s − r)−n

∫

Bρ

[
|V ϕ(∇v)|2 +

∣∣∣∣V ϕ

(
v

s − r

)∣∣∣∣
2
]

dx

⎫⎪⎬
⎪⎭

α

.
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Hence the hole-filling method implies for some χ < 1
∫

Br

|V ϕ(∇v)|2 dx ≤χ
∫

Bs

|V ϕ(∇v)|2 dx + c
∫

Bρ

∣∣∣∣V ϕ

(
v

s − r

)∣∣∣∣
2

dx

+ c(s − r)n

⎧⎪⎨
⎪⎩(s − r)−n

∫

Bρ

[
|V ϕ(∇v)|2 +

∣∣∣∣V ϕ

(
v

s − r

)∣∣∣∣
2
]

dx

⎫⎪⎬
⎪⎭

α

.

Thus we may deduce by a well-known lemma of Giaquinta (see [16], Chapter V, Lemma 3.1)
∫

Bρ/2

− |V ϕ(∇v)|2 dx ≤c −
∫

Bρ

∣∣∣∣V ϕ

(
v

s − r

)∣∣∣∣
2

dx

+ c

⎧⎪⎨
⎪⎩ −
∫

Bρ

[
|V ϕ(∇v)|2 +

∣∣∣∣V ϕ

(
v

s − r

)∣∣∣∣
2
]

dx

⎫⎪⎬
⎪⎭

α

.

��

4 Partial regularity

Before coming to the proof of the decay estimate, we present the concept of the A-harmonic
approximation (see for instance [11]). We consider a bilinear form A defined on R

nN , which
is bounded i.e. there is L > 0 s.t.

|A| ≤ L

and fulfills the Legendre-Hadamard condition i.e. for all a ∈ R
n, b ∈ R

N

Aαβ
i j ai bαa j bβ ≥ kA|a|2|b|2

for some kA > 0. Let us observe that the biggest possible constant kA is called the ellipticity
constant of A.

We call a function w ∈ W 1,1
loc (�,R

N )A-harmonic if
∫

�

A(∇w,∇φ) dx = 0

for all φ ∈ C∞
0 (�,R

d). Here we have the following standard result.

Lemma 4.1 Every A-harmonic function w belongs to the space C∞(�,Rd) and for all
Bρ � � we have

sup
Bρ/2

|∇w| + ρ sup
Bρ/2

|∇2w| ≤ c −
∫

Bρ

|∇w| dx,

where c depends only on n, N , kA, L.

The crucial tool for our approach is the following lemma that corresponds to Lemma 6.8
in [21].
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Lemma 4.2 Fix ε > 0. Then there is δ = δ(ε) such that the following assertion holds:
∀s ∈ (0, 1] and ∀u ∈ W 1,ϕ(Bρ,RN ) such that

−
∫

Bρ

|V ϕ(∇u)|2 dx ≤ s2

as well as ∣∣∣∣∣∣∣
−
∫

Bρ

A(∇u,∇φ) dx

∣∣∣∣∣∣∣
≤ sδ sup

Bρ
|∇φ|

for all φ ∈ C∞
0 (Bρ,R

d), there is an A-harmonic function w ∈ C∞(Bρ,RN ) with

sup
Bρ/2

|∇w| + ρ sup
Bρ/2

|∇2w| ≤c

∫

Bρ/2

−
∣∣∣∣V ϕ

(
u − sw

ρ

)∣∣∣∣
2

dx ≤s2ε.

Proof Without loss of generality we assume Bρ(x0) = B1(0) =: B1, otherwise we can argue
by a scaling argument. If we define v := u

s we have −
∫

B1
|∇v|2 dx ≤ 1 and

∣∣∣∣∣∣∣
−
∫

Bρ

A(∇v,∇φ) dx

∣∣∣∣∣∣∣
≤ δ sup

Bρ
|∇φ|

for all φ ∈ C∞
0 (Bρ,R

d). From [11] it follows the existence of an A-harmonic function
w ∈ W 1,2(B1,R

N ) with

−
∫

B1

|∇w|2 dx ≤ 1, −
∫

B1

|v − w|2 dx ≤ ε. (4.1)

Note that we may assume −
∫

B1/2
(v − w) dx = 0. Hence we get by Lemma 4.1 w ∈

C∞(B1,R
N ) and

sup
B1/2

|∇w| + ρ sup
B1/2

|∇2w| ≤ c.

Now we use an interpolation argument. Since from (4.1) we can deduce∫

B1/2∩[|u−sw|≤1]
− ∣∣V ϕ (u − sw)

∣∣2 dx ≤ cs2ε,

we only consider integrals over B := B1/2 ∩ [|u − sw| > 1]. For t ∈ (0, 1) we get∫

B
|V ϕ(|u − sw|)|2dx ≤ c

∫

B
ϕ(|u − sw|)dx = c

∫

B
ϕ(|u − sw|)tϕ(|u − sw|)1−t dx

≤ c

⎛
⎜⎝
∫

B1/2

ϕ(|u − sw|)r dx

⎞
⎟⎠

t
r

·
⎛
⎝
∫

B
ϕ(|u − sw|) (1−t)r

r−t dx

⎞
⎠

r−t
r
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where r > 1. Next, let us observe that Lemma 2.2 implies ϕ
(1−t)r

r−t (z) ≤ cz2 on (1,∞) for t
such that (1−t)r

r−t = 2
q . Thus, applying Sobolev–Poincaré inequality (2.4) we get

≤ c

⎛
⎜⎝
∫

B1

ϕ(|∇(u − sw)|)dx

⎞
⎟⎠

t ⎛
⎝
∫

B
|u − sw|2dx

⎞
⎠

r−t
r

.

Now we use (4.1) in order to get

≤ c

⎛
⎜⎝
∫

B1

ϕ(|∇(u − sw)|)dx

⎞
⎟⎠

t

(s2ε)
r−t

r

≤ c

⎛
⎜⎝
∫

B1

ϕ(|∇u|)+ ϕ(s|∇w|)dx

⎞
⎟⎠

t

s2(1−t)ε1−t

≤ cs2t s2(1−t)ε1−t

where we used s · ε 1
2 ≤ 1 and

r−t
r > 1 − t .

Replacing ε by a smaller quantity conveniently, we obtain the claim. ��

For u ∈ W 1,ϕ(B�(x0),R
N ) and A ∈ R

nN , let us define the excess

�ϕ(x0, �, A) :=
∫

B�(x0)

− |V ϕ(∇u − A)|2dx . (4.2)

Since D2 f is uniformly continuous on bounded sets we get for each M > 0 the existence of
a modulus of continuity νM : [0,∞) → [0,∞) with the following properties

(i) |D2 f (A) − D2 f (B)| ≤ νM (|A − B|2) for all A, B ∈ R
nN with |A| ≤ M and

|B| ≤ M + 1;
(ii) νM is non-decreasing;

(iii) ν2
M is concave;

(iv) ν2
M (t) ≥ t for all t ≥ 0.

This observation leads to the following lemma.

Lemma 4.3 Under the assumptions of Theorem 1.1, if u ∈ W 1,ϕ(B�(x0),R
N ) is a W 1,ϕ-

minimizer of J on B�(x0), we have for all A ∈ R
nN with |A| ≤ M and all φ ∈ C∞

0 (Bρ)

∣∣∣∣∣∣∣
−
∫

Bρ

D2 f (A)(∇w,∇φ) dx

∣∣∣∣∣∣∣
≤ cM

√
�ϕ(x0, ρ) νM (�ϕ(x0, ρ))‖∇φ‖∞.

Here we have abbreviated �ϕ(x0, �, A) by �ϕ(x0, �) and setted w := u − Ax.
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Proof The Euler equation of J gives∣∣∣∣∣∣∣
−
∫

Bρ

D2 f (A)(∇w,∇φ) dx

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
−
∫

Bρ

[
D2 f (A)(∇w,∇φ)+ D f (A) : ∇φ − D f (∇u) : ∇φ] dx

∣∣∣∣∣∣∣
. (4.3)

If |∇w| ≤ 1 we have

|D2 f (A)(∇w,∇φ)+ D f (A) : ∇φ − D f (∇u) : ∇φ|

≤
1∫

0

|D2 f (A)− D2 f (A + t∇w)| dt |∇w|‖∇φ‖∞

≤ νM (|∇w|2)|∇w|‖∇φ‖∞
≤ νM (|V ϕ(∇w)|2)|V ϕ(∇w)|‖∇φ‖∞. (4.4)

Otherwise we get, as a consequence of Lemma 2.4 and (1.7),

|D2 f (A)(∇w,∇φ)+ D f (A) : ∇φ − D f (∇u) : ∇φ|

≤ cM

(
|∇w| + |Vψ(∇w)|2

|∇w|
)

‖∇φ‖∞ ≤ cMψ
′(|∇w|)‖∇φ‖∞

≤ cMϕ(|∇w|)‖∇φ‖∞ ≤ cM |V ϕ(∇w)|2‖∇φ‖∞. (4.5)

Combining (4.3)–(4.5) with property (iv) of νM we arrive at∣∣∣∣∣∣∣
−
∫

Bρ

D2 f (A)(∇w,∇φ) dx

∣∣∣∣∣∣∣
≤ cM‖∇φ‖∞ −

∫

Bρ

νM (|V ϕ(∇w)|2)|V ϕ(∇w)| dx

From (ii) by using Cauchy-Schwarz and Jensen inequalities we get∣∣∣∣∣∣∣
−
∫

Bρ

D2 f (A)(∇w,∇φ) dx

∣∣∣∣∣∣∣
≤ cM

√
�ϕ(x0, ρ) νM (�ϕ(x0, ρ))‖∇φ‖∞

which is the claim. ��
Let us observe that quasiconvexity of f implies the Legendre–Hadamard condition for

D2 f .
Now we are ready to formulate the main lemma of this section from which the claim of

Theorem 1.1 follows by standard iteration arguments.

Proposition 4.4 Let the assumptions of Theorem 1.1 hold. Let us consider M > 0 and
β ∈ (0, 1/2). Then there is ε = ε(M, β) and θ ∈ (0, 1) such that

�ϕ(x0, ρ) := �ϕ(x0, ρ, (∇u)x0,�) ≤ ε, |(∇u)x0,ρ | ≤ M (4.6)

for a local W 1,ϕ-minimizer u ∈ W 1,ϕ(Bρ(x0),R
N ) imply

�ϕ(x0, θρ) ≤ θ2β�ϕ(x0, ρ).
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Proof We define A := (∇u)x0,ρ so that |A| ≤ M, v = u − Ax and s := √
�ϕ(x0, ρ). Since

the case �ϕ(x0, ρ) = 0 is trivial, we can assume �ϕ(x0, ρ) �= 0. We have

−
∫

Bρ

|V ϕ(∇v)|2 dx = s2.

We will use the A-harmonic approximation, where A := D2 f (A). On account of Lemma 4.2
we get ∣∣∣∣∣∣∣

−
∫

Bρ

A(∇v,∇φ) dx

∣∣∣∣∣∣∣
≤ csνM (�ϕ(x0, ρ)) sup

Bρ
|∇φ|

for all φ ∈ C∞
0 (Bρ,R

N ). For a given ε, which we will fix later, we can find, by Lemma 4.2,
a δ > 0 s.t.

cνM (�ϕ(x0, ρ)) ≤δ, (4.7)

s = √
�ϕ(x0, ρ) ≤1. (4.8)

As a consequence of Lemma 4.2, we obtain an A-harmonic functionw ∈ C∞(Bρ,RN )with

sup
Bρ/2

|∇w| + ρ sup
Bρ/2

|∇2w| ≤C∗

∫

Bρ/2

−
∣∣∣∣V ϕ

(
v − sw

ρ

)∣∣∣∣
2

dx ≤s2ε.
(4.9)

For θ ∈ (0, 1
4 ] we deduce by Taylor expansion

sup
B2θρ (x0)

|w(x)− w(x0)− ∇w(x0)(x − x0)| ≤ cθ2ρ. (4.10)

Hence by Lemma 2.3, the last inequality, (4.9) and the 
2-property of ϕ
∫

B2θρ

−
∣∣∣∣V ϕ

(
v − sw(x0)− s∇w(x0)(x − x0)

2θρ

)∣∣∣∣
2

dx

≤ c
∫

B2θρ

−
∣∣∣∣V ϕ

(
v − sw

2θρ

)∣∣∣∣
2

dx

+ c
∫

B2θρ

−
∣∣∣∣V ϕ

(
s
w(x)− w(x0)− ∇w(x0)(x − x0)

2θρ

)∣∣∣∣
2

dx

≤ cK (θ)
∫

Bρ/2

−
∣∣∣∣V ϕ

(
v − sw

ρ

)∣∣∣∣
2

dx

+ c
∫

B2θρ

−
∣∣∣∣V ϕ

(
s
w(x)− w(x0)− ∇w(x0)(x − x0)

2θρ

)∣∣∣∣
2

dx

≤ cK (θ)s2ε + cθ2s2
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We also used (4.10) in the last inequality. If we define ε := θ2

K (θ) we get

∫

B2θρ

−
∣∣∣∣V ϕ

(
u − Ax − sw(x0)− s∇w(x0)(x − x0)

2θρ

)∣∣∣∣
2

dx ≤ cθ2�ϕ(x0, ρ). (4.11)

From (4.9) we deduce s2|∇w(x0)|2 ≤ C�ϕ(x0, ρ) thus

�ϕ(x0, 2θρ, A + s∇w(x0)) (4.12)

≤ c

⎛
⎜⎝(2θ)−n

∫

Bρ/2

− |V ϕ (∇u − A) |2 dx + |V ϕ(s∇w(x0))|2
⎞
⎟⎠ ≤ cθ−n�ϕ(x0, ρ, A).

Taking into account (4.11), (4.12) and the Caccioppoli inequality (with ζ := sw(x0) and
A + s∇w(x0) instead of A), we get

�ϕ(x0, θρ, A + s∇w(x0))

≤ c
(
θ2�ϕ(x0, ρ)+ θ2α�ϕ(x0, ρ)

α + θ−n n
n−1�ϕ(x0, ρ)

α
)
. (4.13)

Let us observe that

C∗�ϕ(x0, ρ) ≤ 1. (4.14)

implies |A + s∇w(x0)| ≤ M + 1. In addition, if �ϕ(x0, ρ) is small enough (depending on
θ ), we have

θ−nα�ϕ(x0, ρ)
α ≤ θ2�ϕ(x0, ρ). (4.15)

Since θ ≤ 1 we finally arrive at

�ϕ(x0,θρ, A + s∇w(x0)) ≤ θ2c�ϕ(x0, ρ).

The mean value is minimizing (up to a constant depending on ϕ), hence by the choice of A,

�ϕ(x0, θρ) = �ϕ(x0, θρ, A) ≤ cθ2�ϕ(x0, ρ)

as well as

�ϕ(x0, θρ) ≤ θ2β�ϕ(x0, ρ)

if θ is small enough. ��
Proposition 4.5 Let the assumptions of Theorem 1.1 hold. Let us consider M > 0 and
β ∈ (0, 1/2). Then there is ε = ε(M, β) such that

�ϕ(x0, ρ) := �ϕ(x0, ρ, (∇u)x0,�) ≤ ε, |(∇u)x0,ρ | ≤ M

2
(4.16)

for a local W 1,ϕ-minimizer u ∈ W 1,ϕ(Bρ(x0),R
N ) imply

�ϕ(x0, r) ≤ c

(
r

ρ

)2β

�ϕ(x0, ρ) ∀r ∈ (0, ρ].

Here c depends on n, N , ϕ,M, β, c2, λ,�, γM .

The proof can be obtained by using a standard iteration argument applied to the previous
Proposition.
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Proof of Theorem 1.1 From Campanato’s characterization of Hölder continuous functions,
see chapter III of [16], we immediately get the result. ��
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