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Abstract We are concerned with the best exponent in Concentration-Compactness princi-
ples for the borderline case of the Sobolev inequality. We present a new approach, which both
yields a rigorous proof of the relevant principle in the standard case when functions vanish-
ing on the boundary are considered, and enables us to deal with functions with unrestricted
boundary values.
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1 Introduction

The Concentration-Compactness Principle, as developed by P.-L.Lions in [9–12], is a pow-
erful tool in proving existence of extremals in functional inequalities, typically of Sobolev
type, and existence of solutions to boundary value problems for elliptic PDE’s, in limiting
situations when standard compactness arguments do not apply.
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226 R. Černý et al.

A version of the Concentration-Compactness Principle corresponding to the borderline
case of the Sobolev embedding theorem is related to the Moser inequality. The latter is a sharp
form of an embedding for the Sobolev space W 1,n

0 (�) into an Orlicz space of exponential
type due to Yudovich [21], Pohozaev [17], and Trudinger [20]. Here, and in what follows,
n ≥ 2,� denotes an open bounded subset of R

n , and W 1,n
0 (�) stands for the standard Sobo-

lev space of those functions in�whose weak derivatives belong to Ln(�), and which vanish
in a suitable sense on ∂�. On calling Ln the Lebesgue measure in R

n , and denoting by ωn−1

the (n − 1)-dimensional measure of the unit sphere in R
n , the Moser inequality [15] asserts

that a constant C = C(n), i.e. depending only on n, exists such that
∫

�

exp
(

nω
1

n−1
n−1|u| n

n−1

)
dx ≤ CLn(�) (1.1)

for every u ∈ W 1,n
0 (�) such that ‖∇u‖Ln(�) ≤ 1. Moreover, (1.1) does not hold if nω

1
n−1
n−1 is

replaced with any larger number, whatever C is. A crucial point in (1.1) is that C does not
depend on the trial function u. In fact, for each single function u ∈ W 1,n

0 (�), the left-hand

side of (1.1) turns out to be finite even if nω
1

n−1
n−1 is replaced with any arbitrarily large constant.

Roughly speaking, the Concentration-Compactness Principle associated with (1.1), con-
tained in [11, Theorem I.6], tells us that, if a sequence {uk} ⊂ W 1,n

0 (�) converges pointwise

and weakly to some function u ∈ W 1,n
0 (�), and does not concentrate at one point in�, then

an inequality like (1.1) holds along the sequence {uk}, with a constant larger than nω
1

n−1
n−1,

depending on ‖∇u‖Ln(�). A precise statement of this principle can be detailed as follows.
Hereafter, M(�) denotes the space of Radon measures on �.

Theorem (P-L.Lions) Let n ≥ 2 and let � be a bounded open subset of R
n. Let {uk} be a

sequence in W 1,n
0 (�) such that

∫
�

|∇uk |n dx ≤ 1, let u ∈ W 1,n
0 (�) andμ ∈ M(�). Assume

that

uk ⇀ u in W 1,n
0 (�), uk → u a.e. in � and |∇uk |n ∗

⇀ μ in M(�). (1.2)

(i) If u = 0, μ = δx0 for some x0 ∈ �, and
∫

�

exp

(
nω

1
n−1
n−1|uk | n

n−1

)
dx → c + Ln(�)

for some c ∈ [0,∞), then

exp

(
nω

1
n−1
n−1|uk | n

n−1

)
∗
⇀ cδx0 + Ln |� in M(�).

(ii) If u = 0 and μ is not a Dirac mass concentrated at one point, then there exists p > 1
such that

exp

(
nω

1
n−1
n−1 p |uk | n

n−1

)
is bounded in L1(�).

(iii) If u �= 0, then there exists p > 1 such that

exp

(
nω

1
n−1
n−1 p |uk | n

n−1

)
is bounded in L1(�). (1.3)
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Concentration-compactness principle 227

Moreover, in both cases (ii) and (iii),

exp

(
nω

1
n−1
n−1|uk | n

n−1

)
→ exp

(
nω

1
n−1
n−1|u| n

n−1

)
in L1(�). (1.4)

Our first result is a refinement of Lions’s Theorem, which yields a sharp upper bound for the
value of p in (1.3).

Theorem 1.1 Under the same assumptions as in case (iii) of Lions’ Theorem, define

P =

⎧⎪⎨
⎪⎩

(
1 − ∫

�
|∇u|ndx

)− 1
n−1 if

∫
�

|∇u|ndx < 1,

∞ if
∫
�

|∇u|ndx = 1.
(1.5)

Then Eq. (1.3) holds for every p < P. Moreover, such upper bound for p is sharp.

Let us notice that Theorem 1.1 was claimed in [11, Theorem I.6 and Remark I.18], and
subsequently applied to derive various results in the theory of elliptic PDE’s—see e.g. [1,8,
16,19]. The proof given in [11] for n ≥ 3 involves the radially decreasing symmetral u� of
u, and ��, the ball centered at 0 such that Ln(�

�) = Ln(�). However, that proof leads to
(1.3) only for p < P , where P is defined as

P =

⎧⎪⎪⎨
⎪⎪⎩

(
1 − ∫

�� |∇u�|ndx
)− 1

n−1 if
∫
��

|∇u�|ndx < 1,

∞ if
∫
��

|∇u�|ndx = 1.
(1.6)

One has that P < P , in general, since, by the Pólya–Szegö inequality,∫

��

|∇u�|ndx ≤
∫

�

|∇u|ndx (1.7)

for u ∈ W 1,n
0 (�) ([2,18]), and the inequality is strict, unless u has a very special form (see

[2] and [7]). Recall that the radially decreasing symmetral u� : �� → [0,∞) of u is given
by

u�(x) = u∗ (ωn−1

n
|x |n

)
for x ∈ ��,

where u∗ : [0,Ln(�)] → [0,∞], the decreasing rearrangement of u, obeys

u∗(s) = sup{t ≥ 0 : Ln({x ∈ � : |u(x)| > t}) > s} for s ≥ 0.

A flaw in the symmetrization argument of [11] is illustrated by a counterexample in Sect. 2
below. Instead, the proof of Theorem 1.1 given in [11] for n = 2 makes use of different ideas,
resting upon the Hilbert space structure of W 1,2

0 (�), and has no drawback.
Theorem 1.1 substantiates the various applications of the Concentration-Compactness

Principle in W 1,n
0 (�), where the validity of (1.3) for the full range of those values of p

smaller than P is actually exploited. The proof of Theorem 1.1 to be presented here, even
though based on (1.7), relies upon a different argument. Loosely speaking, we show that the
symmetrized sequence {u�

k } of any critical sequence {uk} has a a very special behavior. We
then turn this piece of information to the original sequence {uk} without making use of the
symmetral of u, and we eventually obtain the desired conclusion.
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228 R. Černý et al.

Such an approach also applies to derive a Concentration-Compactness Principle for
sequences of functions which need not vanish on ∂�, namely sequences in the whole Sobolev
space W 1,n(�). This version of the Concentration-Compactness Principle is the main result
of the present paper, and is connected with a counterpart of the Moser inequality (1.1) in
W 1,n(�). The relevant inequality tells us that if � is a bounded connected domain in R

n of
class C1,α for some α ∈ (0, 1], then there exists a constant C = C(�) such that∫

�

exp
(

n( 1
2ωn−1)

1
n−1 |u − m(u)| n

n−1

)
dx ≤ C (1.8)

for every u ∈ W 1,n(�) satisfying ‖∇u‖Ln(�) ≤ 1. Here m(u) denotes either the mean value
of u over �, or its median on �, or some other analog normalizing operator applied to u.

The constant n
( 1

2ωn−1
) 1

n−1 is sharp in (1.8), since the integral on the left-hand side is not

uniformly bounded with respect to u if n
( 1

2ωn−1
) 1

n−1 is replaced with any larger constant,
although it is finite for each fixed u. Inequality (1.8), with m(u) equal to the mean value of
u, was proved for n = 2 in domains with piecewise C2 boundary in [3], and for any n ≥ 2
and domains with C1,α boundary in [5]. The latter paper also contains a version of (1.8) for
domains with conical singularities. The case when m is a more general operator follows from
[6].

Inequality (1.8) entails that, in particular, for every k < n( 1
2ωn−1)

1
n−1 , there exists a

constant C = C(�,m(u), k) such that∫

�

exp
(
k|u| n

n−1
)

dx ≤ C (1.9)

for every u ∈ W 1,n(�) satisfying ‖∇u‖Ln(�) ≤ 1. This easily follows on making use of

(1.8) to estimate the integral over the set where k
n−1

n |u| ≤ n
n−1

n

(
1
2ωn−1

) 1
n |u − m(u)| , and

on exploiting the fact that |u| is bounded by a constant multiple of m(u) on its complement.
The Concentration-Compactness Principle in W 1,n(�) is the content of the next theorem.

Theorem 1.2 Let n ≥ 2 and let � be a bounded connected open set in R
n of class C1,α

for some α ∈ (0, 1]. Let {uk} be a sequence in W 1,n(�) such that
∫
�

|∇uk |n dx ≤ 1, let
u ∈ W 1,n(�) and let μ ∈ M(�). Assume that

uk ⇀ u in W 1,n(�), uk → u a.e. in � and |∇uk |n ∗
⇀ μ in M(�). (1.10)

(i) If u = a for some a ∈ R, μ = δx0 for some x0 ∈ �, and∫

�

exp

(
n

( 1
2ωn−1

) 1
n−1 |uk − a| n

n−1

)
dx → c + Ln(�) (1.11)

for some c ∈ [0,∞), then

exp

(
n

( 1
2ωn−1

) 1
n−1 |uk − a| n

n−1

)
∗
⇀ cδx0 + Ln |� in M(�). (1.12)

(ii) If u = a for some a ∈ R, and μ is not a Dirac mass concentrated at one point, then
there exists p > 1 such that

exp

(
n

( 1
2ωn−1

) 1
n−1 p |uk | n

n−1

)
is bounded in L1(�). (1.13)
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Concentration-compactness principle 229

(iii) If u is not constant, then

exp

(
n

( 1
2ωn−1

) 1
n−1 p|uk | n

n−1

)
is bounded in L1(�) (1.14)

for every p < P, where P is defined as in (1.5). Such upper bound for p is sharp.
Moreover, in both cases (ii) and (iii),

exp

(
n

( 1
2ωn−1

) 1
n−1 |uk | n

n−1

)
→ exp

(
n

( 1
2ωn−1

) 1
n−1 |u| n

n−1

)
in L1(�). (1.15)

Our proof of Theorem 1.2 requires a substitute for the Pólya–Szegö inequality (1.7), which
holds for any function u ∈ W 1,n(�) (that need not vanish on ∂�) and involves both the signed
decreasing rearrangement of u and the isoperimetric function λ� : (0,Ln(�)) → [0,∞) of
�. The signed decreasing rearrangement u◦ : [0,Ln(�)] → [−∞,∞] of any u ∈ W 1,n(�)

is given by

u◦(s) = sup {t ∈ R : Ln({x ∈ � : u(x) > t}) > s} for s ∈ [0,Ln(�)].
The isoperimetric function of an open set � of finite measure was introduced in [13], and is
defined as

λ�(s) = inf {P(E;�) : E ⊂ �,Ln(�) = s} for s ∈ [0,Ln(�)], (1.16)

where P(E;�) is the perimeter of E ⊂ R
n in �, which agrees with Hn−1(∂M E ∩�), and

∂M E denotes the essential boundary of E . The relevant inequality tells us that u◦ is locally
absolutely continuous, and

Ln(�)∫

0

(
λ�(s)

(
−du◦

ds

))n

ds ≤
∫

�

|∇u|n dx (1.17)

for every u ∈ W 1,n(�) (see e.g. [4, Lemma 1]).
Note that, unlike (1.7), inequality (1.17) is not associated with any n-dimensional symme-

trization of u. In fact, no special symmetry of both � and u entails equality in (1.17). Let us
also point out that the explicit form of the isoperimetric function is known only for few very
special domains�. However, the asymptotic behavior of λ� can be precisely described under
the assumptions of Theorem 1.2 [5, Theorem 1.3], and this piece of information suffices for
(1.17) to be used in the proof of Theorem 1.2. In a sense, this is possible since the sharp
exponential constants in inequality (1.8) and in the corresponding Concentration-Compact-
ness Principle turn out to depend on the behavior of trial functions only for large values of
their absolute value. Inasmuch as λ� comes into play in estimating the measure of the level
sets of u in terms of their perimeter in �, only the behavior of λ�(s) as s tends to 0 is really
relevant.

2 Concentration-compactness in W1,n
0 (�)

The same argument as in the original proof of [11, Theorem I.6] will lead to Theorem 1.1,
once the following proposition is established. We thus limit ourselves to the proof of this prop-
osition. Further details can be provided along the same lines as in the proof of Theorem 1.2,
Sect. 3.
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230 R. Černý et al.

Proposition 2.1 Let n ≥ 2 and let� be a bounded open set in R
n. Let u ∈ W 1,n

0 (�), u �= 0,

and let {uk} ⊂ W 1,n
0 (�) be a sequence such that∫

�

|∇uk |n dx ≤ 1 , uk ⇀ u in W 1,n
0 (�) and uk → u a.e. in �. (2.1)

Let P be defined as in (1.5). Then, for every p < P, there exists a constant C = C(n, p)
such that ∫

�

exp(nω
1

n−1
n−1 p |uk | n

n−1 ) dx ≤ C. (2.2)

Moreover, this conclusion fails if p ≥ P.

Proof We begin by assuming that 0 <
∫
�

|∇u|n < 1, and proceed by contradiction. Suppose

that there exists a sequence {uk} ⊂ W 1,n
0 (�)which satisfies (2.1), and causes (2.2) to fail for

some p1 < P . Thus, ∫

��

exp

(
nω

1
n−1
n−1 p1|u�

k | n
n−1

)
dx → ∞, (2.3)

since ∫

��

exp

(
nω

1
n−1
n−1 p1|u�

k | n
n−1

)
dx =

∫

�

exp

(
nω

1
n−1
n−1 p1|uk | n

n−1

)
dx,

inasmuch as u�
k is equimeasurable with uk for k ∈ N. The Pólya–Szegö inequality (1.7),

with u replaced with uk , gives

⎛
⎝

Ln(�)∫

0

(
n

n−1
n ω

1
n
n−1

(
−du∗

k

dr

))n

rn−1 dr

⎞
⎠

1
n

= ‖∇u�
k ‖Ln(��) ≤ ‖∇uk‖Ln(�) ≤ 1 for k ∈ N. (2.4)

Since u∗
k(Ln(�)) = 0, and u∗

k is locally absolutely continuous,

u∗
k(s) =

Ln(�)∫

s

−du∗
k

dr
dr for s ∈ (0,Ln(�)). (2.5)

Hölder’s inequality and Eq. (2.4) yield

u∗
k(s) ≤

⎛
⎝

Ln(�)∫

s

(
n

n−1
n ω

1
n
n−1

(
−du∗

k

dr

))n

rn−1 dr

⎞
⎠

1
n ⎛

⎝
Ln(�)∫

s

1

nω
1

n−1
n−1

dr

r

⎞
⎠

n−1
n

≤ ‖∇uk‖Ln(�)

⎛
⎝ 1

nω
1

n−1
n−1

log

(Ln(�)

s

)⎞
⎠

n−1
n

≤
⎛
⎝ 1

nω
1

n−1
n−1

log

(Ln(�)

s

)⎞
⎠

n−1
n

for s ∈ (0,Ln(�)). (2.6)

123



Concentration-compactness principle 231

Observe that (2.6) yields inequality (1.1) with nω
1

n−1
n−1 replaced with any smaller constant.

We now make use of an analogous observation to show, by contradiction, that, given any
p2 ∈ (p1, P), for every k0 ∈ N and every s0 ∈ (0,Ln(�)) there exist k ∈ N, k > k0, and
s ∈ (0, s0) such that

u∗
k(s) ≥

⎛
⎝ 1

p2nω
1

n−1
n−1

⎞
⎠

n−1
n

log
n−1

n

(Ln(�)

s

)
. (2.7)

Indeed, suppose that there exist k0 ∈ N and s0 ∈ (0,Ln(�)) such that

u∗
k(s) <

⎛
⎝ 1

p2nω
1

n−1
n−1

⎞
⎠

n−1
n

log
n−1

n

(Ln(�)

s

)
for every s ∈ (0, s0), k ≥ k0.

By the latter estimate and inequality (2.6), one has that, if p1 < p2 and k ≥ k0, then

Ln(�)∫

0

exp

(
nω

1
n−1
n−1 p1|u∗

k |
n

n−1

)
ds ≤

s0∫

0

(Ln(�)

s

)− p1
p2

ds +
Ln(�)∫

s0

(Ln(�)

s0

)p1

ds < ∞ ,

contradicting (2.3). Our claim is proved.
Thus, possibly passing to a subsequence, there exists a sequence {sk}, such that

u∗
k(sk) ≥

⎛
⎝ 1

p2nω
1

n−1
n−1

⎞
⎠

n−1
n

log
n−1

n

(Ln(�)

sk

)
and sk ≤ 1

k
for every k ∈ N. (2.8)

Now, given L > 0, define the truncation operators T L and TL acting on any function v :
� → R as

T L(v) = min{|v|, L} sign(v) and TL(v) = v − T L(v).

It is not difficult to verify that
∫

�

|∇uk |n dx =
∫

�

|∇(T L(uk))|n dx +
∫

�

|∇(TL(uk))|n dx,

T L(uk) → T L(u) a.e. in �, and TL(uk) → TL(u) a.e. in �. (2.9)

Moreover, {T L(uk)} is a bounded sequence in W 1,n(�), and hence there exists a weakly
convergent subsequence. Since it converges almost everywhere to T L(u), one also has that

T L(uk) ⇀ T L(u) in W 1,n(�) and TL(uk) ⇀ TL(u) in W 1,n(�).

Next, fix any p3 ∈ (p2, P), and choose L so large that

1 − ∫
�

|∇u|n
1 − ∫

�
|∇(T L(u))|n >

( p3

P

)n−1
. (2.10)

By (2.8), on passing to a subsequence if necessary, we have that u∗
k(sk) > L for every k ∈ N.

Consequently, there exists rk ∈ (sk,Ln(�)) such that u∗
k(rk) = L for every k ∈ N. Owing to
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232 R. Černý et al.

(2.8) and to Hölder’s inequality, via the same argument as in the proof of (2.6) we obtain

⎛
⎝ 1

p2nω
1

n−1
n−1

⎞
⎠

n−1
n

log
n−1

n

(Ln(�)

sk

)
− L ≤ u∗

k(sk)− u∗
k(rk) =

rk∫

sk

−du∗
k

ds
ds

≤
∣∣∣∣
∣∣∣∣−du∗

k

ds

(
n

n−1
n ω

1
n
n−1

)
s

n−1
n

∣∣∣∣
∣∣∣∣
Ln(sk ,rk )

1

n
n−1

n ω
1
n
n−1

log
n−1

n

(Ln(�)

sk

)
for k ∈ N.

Hence, if k is sufficiently large,

(
1

p3

) n−1
n ≤

∣∣∣∣
∣∣∣∣−du∗

k

ds

(
n

n−1
n ω

1
n
n−1

)
s

n−1
n

∣∣∣∣
∣∣∣∣
Ln(sk ,rk )

≤
∣∣∣∣
∣∣∣∣−du∗

k

ds

(
n

n−1
n ω

1
n
n−1

)
s

n−1
n

∣∣∣∣
∣∣∣∣
Ln(0,rk )

.

(2.11)

By (2.4) and the definition of TL , one has that
∫

�

|∇(TL(uk))|n dx ≥
∫

��

|∇(
(TL(uk))

�)|n dx =
∫

��

|∇(
TL(u

�
k )

)|n dx

=
∣∣∣∣
∣∣∣∣−du∗

k

ds

(
n

n−1
n ω

1
n
n−1

)
s

n−1
n

∣∣∣∣
∣∣∣∣
n

Ln(0,rk )

. (2.12)

Owing to (2.12), inequality (2.11) yields

(
1

p3

)n−1

≤
∫

�

|∇(TL(uk))|n dx . (2.13)

Therefore, (2.9) implies that

∫

�

|∇(T L(uk))|n dx ≤ 1 −
(

1

p3

)n−1

.

The latter inequality, the weak lower semicontinuity of the Ln-norm of the gradient, and
(2.10) yield

p3 ≥ 1

(1 − lim infk→∞
∫
�

|∇(T L(uk))|n dx)
1

n−1

≥ 1

(1 − ∫
�

|∇(T L(u))|n dx)
1

n−1

>
p3

P

1

(1 − ∫
�

|∇u|n dx)
1

n−1

= p3 ,

a contradiction.
In the case when

∫
�

|∇u|n dx = 1, the proof proceeds along the same lines, and we limit
ourselves to sketching a few differences. Given any p1 > 0, we fix any p2 > p1. In the final
part of the argument, we fix an arbitrary p3 > p2, and choose L > 0 in such a way that

∫

�

|∇(T L(u))|n dx > 1 − 1

2

(
1

p3

)n−1

.
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Concentration-compactness principle 233

Hence, if k is so large that (2.11) is satisfied we obtain similarly as above
∫

�

|∇(T L(uk))|n dx ≤ 1 −
(

1

p3

)n−1

.

Therefore, since T L(uk) ⇀ T L(u) in W 1,n
0 (�), the lower semicontinuity produces a con-

tradiction.
We conclude by showing that the assumption p < P cannot be relaxed. For every α ∈

(0, 1), we exhibit a sequence {uk} ⊂ W 1,n
0 (�) and a function u ∈ W 1,n

0 (�) such that

‖∇uk‖Ln(�) = 1 , uk ⇀ u in W 1,n
0 (�) , uk → u a.e. in �,

‖∇u‖Ln(�) = α and
∫

�

exp

(
nω

1
n−1
n−1

1

(1 − αn)
1

n−1

|uk | n
n−1

)
dx → ∞.

Assume, without loss of generality, that 0 ∈ �. Let R > 0 be such that B(0, R) ⊂ �. Here,
and in what follows, B(x0, R) denotes the ball, centered at x0 ∈ R

n , and having radius R.
Set 	 = R

3 , and consider the sequence vk ∈ W 1,n
0 (�) introduced in [15], and defined, for

k ∈ N, as

vk(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |x | ∈ [	,∞),

n
1
n ω

− 1
n

n−1 log
(
	
|x |

)
k− 1

n if |x | ∈ [	e− k
n , 	)

n
1−n

n ω
− 1

n
n−1k

n−1
n if |x | ∈ [0, 	e− k

n ].
We have that

∫

B(0,	)

|∇vk |n dx =
	∫

	e− k
n

(
n

1
n ω

− 1
n

n−1
1

r
k− 1

n

)n

ωn−1rn−1 dr = n

k

[
log(r)

]	
	e− k

n
= 1.

Next, define u ∈ W 1,n
0 (�) by

u(x) =

⎧⎪⎨
⎪⎩

0 if |x | ∈ [R,∞)

3A − 3A
R |x | if |x | ∈ [ 2R

3 , R)

A if |x | ∈ [0, 2R
3 ] ,

where A > 0 is chosen in such a way that ‖∇u‖Ln(�) = α. Finally, set

uk = u + (1 − αn)
1
n vk for k ∈ N.

Consequently,

∫

�

exp

(
nω

1
n−1
n−1

|uk | n
n−1

(1 − αn)
1

n−1

)
dx ≥

∫

B(0,	e− k
n )

exp

(
nω

1
n−1
n−1

|A + (1 − αn)
1
n vk | n

n−1

(1 − αn)
1

n−1

)
dx

=
∫

B(0,	e− k
n )

exp

(
nω

1
n−1
n−1|C + vk | n

n−1

)
dx

= C ′e−k exp((C ′′ + k
n−1

n )
n

n−1 ) → ∞
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Fig. 1 Functions uk , u and their symmetrals

for some positive constants C,C ′ and C ′′. Since ∇u and ∇vk have disjoint supports,

‖∇uk‖n
Ln(�) =

∫

B(0,R)

|∇u|n dx + (1 − αn)

∫

B(0,R)

|∇vk |n dx = 1.

The remaining properties of the sequence {uk} are easily verified. ��

We conclude this section with a few comments on a proof of Proposition 2.1 given in [11].
The proof in the case when n ≥ 3 rests upon the claim that, owing to (1.7), it suffices to
establish the result for radially decreasing functions. However, as already observed in Sect. 1,
such a proof only yields (1.3) for p < P , where P is given by (1.6). The technical reason
which prevents that proof from giving (1.3) for every p < P is that, for a sequence {uk}
fulfilling (1.2), one may have

∫

�

|∇uk |n dx =
∫

��

|∇u�
k |n dx for every k ∈ N, (2.14)

but ∫

�

|∇u|n dx >
∫

��

|∇u�|n dx . (2.15)

Sequences {uk} fulfilling (1.2), (2.14) and (2.15), with u �= 0, are constructed in Example 2.2
(n = 1), and Example 2.3 (n ≥ 2) below.

Example 2.2 Let p > 1. Define u ∈ W 1,∞
0 (−3, 1) as

u(x) =
{

1 + x
3 if x ∈ (−3, 0)

1 − x if x ∈ [0, 1).

Furthermore, for each k ∈ N let uk ∈ W 1,∞
0 (−3, 1) is given by

uk(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 − m
k for x ∈ (− 3m

k ,− 3(m−1)
k − 1

k ], m ∈ {1, . . . , k}
1 − m−1

k +
(

x + 3(m−1)
k

)
for x ∈ (− 3(m−1)

k − 1
k ,− 3(m−1)

k ], m ∈ {1, . . . , k}
1 − x for x ∈ (0, 1)

(Fig. 1). It is not difficult to see that

uk → u a.e. in (−3, 1) and uk ⇀ u in W 1,p
0 (−3, 1).
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Since |(uk)
′| and |(u�

k )
′| equal 1 on a set of measure 2, and vanish elsewhere,

2∫

−2

|(u�
k )

′|p dx =
1∫

−3

|u′
k |p dx = 2.

On the other hand, since u �= u�, and L1({(u�)′ = 0}) = 0, the characterization of the
cases of equality in the Pólya–Szegö inequality given in [2] tells us that

2∫

−2

|(u�)′|p dx <

1∫

−3

|u′|p dx .

Example 2.3 We outline here how to adapt Example 2.2 for n ≥ 2. We proceed in steps. Let
u and uk : (−3, 1) → [0,∞) be the functions constructed in Example 2.2. Recall, in particu-
lar, that |u′

k | equals either 1 or 0 for k ∈ N. Define the functions ṽ and ṽk : B(0, 2) → [0,∞)

as

ṽ(x) = u�(|x |) and ṽk(x) = u�
k (|x |) , k ∈ N , for x ∈ B(0, 2).

The functions ṽ and ṽk are radially symmetric.
Finally, define v and vk : B(0, 3) → [0,∞) by shifting the level-sets of ṽ and ṽk along

the direction of the x1-axis in such a way that the restrictions of the functions v and vk to the
x1-axis agree with u and uk , respectively (up to translations).
Now, let p > 1. By construction, one has that

∫

B(0,2)

|∇v�
k |p dx =

∫

B(0,3)

|∇vk |p dx ≤ Ln(B(0, 3)) for every k ∈ N.

Thus, there exists a subsequence of {vk} satisfying (1.2). Moreover, [2] gives
∫

B(0,2)

|∇v�|p dx <
∫

B(0,3)

|∇v|p dx,

since v �= v�, and Ln({∇v� = 0}) = 0.

3 Concentration-compactness in W1,n(�)

Information on the isoperimetric function λ� of a bounded open set � in R
n , defined as in

(1.16), is crucial in our proof of Theorem 1.2. The function λ� satisfies

λ�(s) = λ�(Ln(�)− s) for s ∈ [0,Ln(�)]. (3.1)

λ� is strictly positive in (0,Ln(�)) whenever � is connected [14, Lemma 5.2.4]. If ∂� is
smooth enough, then half-balls centered on ∂� are approximate minimizers for the right-hand
side of (1.16) when s is close to 0; this is heuristically the sense of the following estimate
from [5, Theorem 1.3 and Corollary 2.4].

Proposition [5] Let n ≥ 2, and let � be a bounded connected open set in R
n of class C1,α

for some α ∈ (0, 1]. Then there exist constants C0 > 0, β > 0 and s1 ∈ (0, 1
2 Ln(�)] such
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that the function λ : (0,Ln(�)) → R defined as

λ(s) =

⎧⎪⎨
⎪⎩

n
n−1

n (
ωn−1

2 )
1
n s

n−1
n (1 − C0sβ) for s ∈ (0, s1],

λ(s1) for s ∈ [s1,
1
2 Ln(�)],

λ(Ln(�)− s) for s ∈ ( 1
2 Ln(�),Ln(�)

)
,

(3.2)

obeys

λ�(s) ≥ λ(s) for s ∈ (0,Ln(�)), (3.3)

and λ(s) and s
λ(s) are nonnegative and non-decreasing in (0, 1

2 Ln(�)].
The main new ingredient in the proof of Theorem 1.2 is Proposition 3.1 below. In what

follows, we define the median of a measurable function u : � → R as

med(u) = sup
{
t ∈ R : Ln({x ∈ � : u(x) > t}) > 1

2 Ln(�)
}
. (3.4)

Proposition 3.1 Let n ≥ 2 and let � be a bounded connected open set in R
n of class C1,α

for some α ∈ (0, 1]. Let u ∈ W 1,n(�), u �= 0, and let {uk} ∈ W 1,n(�) be a sequence such
that∫

�

|∇uk |ndx ≤ 1, med(uk) = 0, uk ⇀ u in W 1,n(�) and uk → u a.e. in �.

Let P be defined as in (1.5). Then, for every p < P, there exists a constant C = C(�, p)
such that ∫

�

exp
(

n( 1
2ωn−1)

1
n−1 p |uk | n

n−1

)
dx ≤ C for k ∈ N. (3.5)

Moreover, this conclusion fails if p ≥ P.

Proof The outline of the proof is the same as in that of Proposition 2.1. We provide the
details, since some complications arise, owing to the use of (1.17) instead of (1.7), and to
the lack of zero boundary conditions.
Let us first assume that 0 <

∫
�

|∇u|n < 1, and proceed by contradiction. Suppose that there
exists a sequence {uk} satisfying the assumptions, and such that∫

�

exp
(

n( 1
2ωn−1)

1
n−1 p1|uk | n

n−1

)
dx → ∞ for some p1 < P.

On passing to a subsequence, and changing the sign of the entire subsequence if necessary,
we have that

Ln (�)
2∫

0

exp
(

n( 1
2ωn−1)

1
n−1 p1(u

◦
k)

n
n−1

)
ds → ∞, (3.6)

since u◦
k is equimeasurable with uk for k ∈ N. Let λ� be the isoperimetric function of �,

and let λ : (0,Ln(�)) → [0,∞) be the function defined in (3.2). Since λ ≤ λ�, inequality
(1.17), with u replaced with uk , gives

Ln (�)
2∫

0

(
λ(s)

(
−du◦

k

ds

))n

ds ≤
∫

�

|∇uk |n dx , (3.7)
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for k ∈ N. Furthermore, since u◦
k(

1
2 Ln(�)) = med(uk) = 0,

0 ≤ u◦
k(s) =

Ln (�)
2∫

s

−du◦
k

dr
dr for s ∈ (0, 1

2 Ln(�)), (3.8)

for k ∈ N. From (3.2), (3.7), (3.8), and Hölder’s inequality, we obtain that for any ε > 0,
there exists Cε > 0 such that

u◦
k(s) =

Ln (�)
2∫

s

−du◦
k

dr
dr

≤

⎛
⎜⎜⎝

Ln (�)
2∫

s

(
λ(r)

(
−du◦

k
dr

))n

dr

⎞
⎟⎟⎠

1
n

⎛
⎜⎜⎝

Ln (�)
2∫

s

λ(r)−
n

n−1 dr

⎞
⎟⎟⎠

n−1
n

≤ ‖∇uk‖Ln(�)

⎛
⎜⎜⎝

Ln (�)
2∫

sε

λ(sε)
− n

n−1 dr +
sε∫

s

n−1(
ωn−1

2 )
− 1

n−1 r−1(1 − C0rβ)−
n

n−1 dr

⎞
⎟⎟⎠

n−1
n

≤ Cε + (1 + ε)n− n−1
n

(ωn−1

2

)− 1
n log

n−1
n

(Ln(�)

s

)
for s ∈ (0, 1

2 Ln(�)). (3.9)

Here, sε ∈ (0,min{s, s1}), where s1 is the number appearing in (3.2), and sε is so small that
(1 − C0rβ)−1 ≤ 1 + ε if r ∈ (0, sε). Let us fix p2 ∈ (p1, P). We claim that for every k0 ∈ N

and every s0 ∈ (0, 1
2 Ln(�)) there exist k ∈ N, k > k0, and s ∈ (0, s0) such that

u◦
k(s) ≥

(
1

p2n(ωn−1
2 )

1
n−1

) n−1
n

log
n−1

n

(Ln(�)

s

)
.

We prove this claim again by contradiction. Suppose that there exist k0 ∈ N and s0 ∈
(0, 1

2 Ln(�)) satisfying

u◦
k(s) <

(
1

p2n(ωn−1
2 )

1
n−1

) n−1
n

log
n−1

n

(Ln(�)

s

)
for every s ∈ (0, s0) and k ≥ k0.

The latter estimate and inequality (3.9) give that

Ln (�)
2∫

0

exp
(

n( 1
2ωn−1)

1
n−1 p1(u

◦
k)

n
n−1

)
ds

≤
s0∫

0

(Ln(�)

s

) p1
p2

ds +
Ln (�)

2∫

s0

exp

(
C + C log

(Ln(�)

s0

))
ds < ∞ , (3.10)

for some constant C , if p1 < p2 and k ≥ k0. Since inequality (3.10) contradicts (3.6), our
claim is proved.
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Thus, there exists a sequence {sk} such that

u◦
k(sk) ≥

(
1

p2n(ωn−1
2 )

1
n−1

)n−1
n

log
n−1

n

(Ln(�)

sk

)
and sk ≤ 1

k
for every k ∈ N.

(3.11)

Given L > 0, we define the truncation operators SL and SL acting on any function v : � → R

as

SL(v) = min{v, L} and SL(v) = v − SL(v).

Observe that, since med(uk) = 0,

med(SL(uk)) = 0 (3.12)

as well. It is easily seen that
∫

�

|∇uk |n dx =
∫

�

|∇(
SL(uk)

)|n dx +
∫

�

|∇(
SL(uk)

)|n dx,

SL(uk) → SL(u) a.e. in � and SL(uk) → SL(uk) a.e. in �. (3.13)

Moreover, {SL(uk)} is a bounded sequence in W 1,n(�), since
∫
�

|∇(SL(uk))|n dx ≤ 1 and
(3.12) holds. Thus, there exists a weakly convergent subsequence of {SL(uk)} in W 1,n(�).
Inasmuch as {SL(uk)} converges almost everywhere to SL(u), it is easy to verify that

SL(uk) ⇀ SL(u) in W 1,n(�) and SL(uk) ⇀ SL(uk) in W 1,n(�).

Now fix p3 ∈ (p2, P), and let L be so large that

1 − ∫
�

|∇u|ndx

1 − ∫
�

|∇(
SL(u)

)|ndx
>

( p3

P

)n−1
. (3.14)

Thanks to (3.11), we may suppose that u◦
k(sk) > L for k ∈ N (up to subsequences). Conse-

quently, there exists rk ∈ (sk,
1
2 Ln(�)) such that u◦

k(rk) = L for every k ∈ N.
Owing to (3.11), Hölder’s inequality, and an analogous chain as in (3.9) we obtain that

⎛
⎝ 1

p2n
(ωn−1

2

) 1
n−1

⎞
⎠

n−1
n

log
n−1

n

(Ln(�)

sk

)
− L ≤ u◦

k(sk)− u◦
k(rk) =

rk∫

sk

−du◦
k

ds
ds

≤
∣∣∣∣
∣∣∣∣−du◦

k

ds
λ(s)

∣∣∣∣
∣∣∣∣
Ln(sk ,rk )

∣∣∣∣
∣∣∣∣ 1

λ(s)

∣∣∣∣
∣∣∣∣
L

n
n−1 (sk ,rk )

≤
∣∣∣∣
∣∣∣∣−du◦

k

ds
λ(s)

∣∣∣∣
∣∣∣∣
Ln(sk ,rk )

(
Cε + (1 + ε)n− n−1

n

(ωn−1

2

)− 1
n

log
n−1

n

(Ln(�)

sk

))
for k ∈N.

(3.15)

If ε > 0 is sufficiently small, we deduce from (3.15) that

(
1

p3

) n−1
n ≤

∣∣∣∣
∣∣∣∣−du◦

k

ds
λ(s)

∣∣∣∣
∣∣∣∣
Ln(sk ,rk )

≤
∣∣∣∣
∣∣∣∣−du◦

k

ds
λ(s)

∣∣∣∣
∣∣∣∣
Ln(0,rk )

(3.16)
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when k is large enough. By inequality (1.17), with u replaced with SL(u),

∫

�

|∇(SL(u))|n dx ≥
rk∫

0

(
− du◦

k

ds
λ(s)

)
ds. (3.17)

Coupling (3.16) with (3.17) tells us that

(
1

p3

)n−1

≤
∫

�

|∇(
SL(uk)

)|n dx . (3.18)

Hence, by (3.13),

∫

�

|∇(
SL(uk)

)|n dx ≤ 1 −
(

1

p3

)n−1

.

The latter inequality, the weak lower semicontinuity of the Ln-norm of the gradient, and
(3.14) yield

p3 ≥ 1

(1 − lim infk→∞
∫
�

|∇(
SL(uk)

)|n dx)
1

n−1

≥ 1

(1 − ∫
�

|∇(
SL(u)

)|n dx)
1

n−1

>
p3

P

1

(1 − ∫
�

|∇u|n dx)
1

n−1

= p3 ,

a contradiction.
In the case when

∫
�

|∇u|n dx = 1, the argument is analogous. Given any p1 > 0, one can
just fix any p3 > p2 > p1, and chose L > 0 in such a way that

∫

�

|∇(
SL(u)

)|n dx > 1 − 1

2

(
1

p3

)n−1

.

Hence, if k is so large that (3.16) is satisfied, we obtain that

∫

�

|∇(
SL(uk)

)|n dx ≤ 1 −
(

1

p3

)n−1

,

and conclude as above.
The optimality of the upper bound for p given by P can be shown by considering any

bounded smooth set � in R
n such that

B(0, R) ∩� = {(x1, . . . , xn) ∈ B(0, R) : xn > 0}
for some R > 0, and by choosing the trial sequence {2 1

n uk} in (3.5), where {uk} is the same
as in the final part of the proof of Proposition 2.1.

Proof of Theorem 1.2 We first focus on cases (i), (ii). The outline of the proof of these cases is
analogous to that of [11, Theorem I.6] (see also [5]), which deals with functions in W 1,n

0 (�).
Define

vk = uk − a for k ∈ N.
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Since |∇vk |n = |∇uk |n ∗
⇀ μ in M(�),

1 ≥
∫

�

|∇uk |n dx =
∫

�

|∇vk |n dx →
∫

�

dμ = μ(�). (3.19)

Next, let ϕ ∈ C1(�̄) be such that 0 ≤ ϕ ≤ 1. Owing to the fact that vk ⇀ 0 in W 1,n(�),
and vk → 0 in Ln(�), in both cases (i) and (ii) one may infer, via the same argument as in
the proof of [11, Theorem I.6], that

∫

�

|∇(ϕvk)|n dx =
∫

�

|vk∇ϕ + ϕ∇vk |n dx →
∫

�

ϕn dμ. (3.20)

Case (i): u = a and μ = δx0 .

To simplify notations, set K = n( 1
2ωn−1)

1
n−1 . Let ϕ be a test function such that ϕ = 1 on

� \ B(x0, η) and ϕ = 0 on B(x0, η/2) for some η > 0. On making use of (3.20), we obtain
that ∫

�

|∇(ϕvk)|n dx → 0. (3.21)

By inequality (1.8), for every K ′ < K there exists a constant C such that

∫

�

exp

(
K ′|ϕvk | n

n−1

‖∇(ϕvk)‖Ln(�)

)
dx ≤ C.

Hence, by (3.21), there exists δ > 0 such that
∫

�\B(x0,η)

exp(K (1 + δ)|vk | n
n−1 ) dx ≤

∫

�

exp(K (1 + δ)|ϕvk | n
n−1 ) dx ≤ C. (3.22)

From (3.22) and Vitali’s convergence theorem for equi-integrable sequences of functions,
one has that ∫

�\B(x0,η)

(
exp(K |vk | n

n−1 )− 1
)

dx → 0. (3.23)

Equation (3.23) and assumption (1.11) imply that
∫

B(x0,η)

(
exp(K |vk | n

n−1 )− 1
)

dx → c. (3.24)

Now, fix an arbitrary test function ψ ∈ C(�) and let ε > 0. There exists η > 0 such that

|ψ(x)− ψ(x0)| < ε

2 max(c, 1)
whenever x ∈ � and |x − x0| < η. (3.25)

We have that ∣∣∣∣∣∣∣
∫

�

ψ d(cδx0)−
∫

�

ψ
(

exp(K |vk | n
n−1 )− 1

)
dx

∣∣∣∣∣∣∣
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=
∣∣∣∣∣∣cψ(x0)−

∫

�

ψ
(

exp(K |vk | n
n−1 )− 1

)
dx

∣∣∣∣∣∣
≤

∫

�\B(x0,η)

|ψ |
(

exp(K |vk | n
n−1 )− 1

)
dx

+
∫

B(x0,η)

|ψ − ψ(x0)|
(

exp(K |vk | n
n−1 )− 1

)
dx +

+ |ψ(x0)| ·
∣∣∣∣c −

∫

B(x0,η)

(
exp(K |vk | n

n−1 )− 1
)

dx

∣∣∣∣. (3.26)

Let us denote by I1, I2 and I3, respectively, the addends on the rightmost side of (3.26). By
(3.23) and the fact that sup� |ψ | < ∞, there exists k1 ∈ N such that I1 < ε for k > k1.
Furthermore, on making use of (3.24) and (3.25), we obtain

I2 =
∫

B(x0,η)

|ψ − ψ(x0)|(exp(K |vk | n
n−1 )− 1) dx

≤ ε

2 max(c, 1)

∫

B(x0,η)

(exp(K |vk | n
n−1 )− 1) dx → ε

2

c

max(c, 1)
.

Therefore we can find k2 > k1 such that I2 < ε for k > k2. Finally, owing to (3.24), there
exists k3 > k2 such that I3 < ε for k > k3. Thus,

lim
k→∞

∫

�

ψ d(cδx0)−
∫

�

ψ
(

exp(K |vk | n
n−1 )− 1

)
dx = 0,

and (1.12) follows.
Case (ii): u = a and μ is not a Dirac mass at a single point.
By (3.19), μ(�) ≤ 1. Let us distinguish two subcases. If μ(�) < 1, then, by (3.19) again,

there exists δ > 0 such that ‖∇((1 + δ)
n−1

n uk)‖Ln(�) < 1 if k is sufficiently large, and thus

(1.13) follows via the Moser–Trudinger inequality applied to the sequence {(1 + δ)
n−1

n uk}.
Next, assume that μ(�) = 1. Since μ is not a Dirac mass at one point, there exists a

compact set A ⊂ � such that 0 < μ(A) < 1. Moreover, inasmuch as μ is a Radon mea-
sure, 0 < μ(A + B(0, 2η)) < 1 if η is a sufficiently small positive number. Via a standard
argument, one can find two smooth test functions 0 ≤ ϕ1 ≤ 1 and 0 ≤ ϕ2 ≤ 1 such that

ϕ1 ≡ 1 on A + B(0, η), ϕ1 ≡ 0 on � \ (A + B(0, 2η)),

ϕ2 ≡ 1 on � \ (A + B(0, η)) and ϕ2 ≡ 0 on A.

From (3.20) we obtain∫

�

|∇(ϕ1vk)|n dx →
∫

�

ϕn
1 dμ ≤ μ(A + B(0, 2η)) < 1

and ∫

�

|∇(ϕ2vk)|n dx →
∫

�

ϕn
2 dμ ≤ μ(� \ A) < 1.
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Thus, there exists δ > 0 such that, if k is sufficiently large, then∥∥∥∇((1 + δ)
n−1

n ϕ1vk)

∥∥∥
Ln(�)

< 1 and
∥∥∥∇((1 + δ)

n−1
n ϕ2vk)

∥∥∥
Ln(�)

< 1.

Hence, via inequality (1.9), we deduce that there exists δ > 0 such that∫

A+B(0,η)

exp
(

K (1 + δ)|vk | n
n−1

)
dx ≤

∫

�

exp
(

K (1 + δ)|ϕ1vk | n
n−1

)
dx ≤ C (3.27)

and ∫

�\(A+B(0,η))

exp
(

K (1 + δ)|vk | n
n−1

)
dx ≤

∫

�

exp
(

K (1 + δ)|ϕ2vk | n
n−1

)
dx ≤ C. (3.28)

Combining (3.27) and (3.28) tells us that∫

�

exp
(

K (1 + δ)|uk − a| n
n−1

)
dx =

∫

�

exp
(

K (1 + δ)|vk | n
n−1

)
dx ≤ C (3.29)

for some constant C . From (3.29), inequality (1.13) easily follows for every p < 1 + δ.
Case (iii): u is not constant.
The sequence {uk} is bounded in W 1,n(�), since it is weakly convergent in W 1,n(�). Inas-
much as

|med(uk)|n Ln(�)

2
≤

∫

�

|uk |n dx

for every k ∈ N, the sequence {med(uk)} is also bounded. Let C be any constant such that
|med(uk)| ≤ C for k ∈ N. Assume, by contradiction, that (1.14) fails for some p1 < P ,
namely ∫

�

exp
(

n( 1
2ωn−1)

1
n−1 p1|uk | n

n−1

)
dx → ∞. (3.30)

Next fix p2 ∈ (p1, P). Since the sequence {uk − med(uk)} is bounded in W 1,n(�), there
exists a weakly convergent subsequence, still denoted by {uk − med(uk)}. The sequence
{uk − med(uk)} satisfies the assumptions of Proposition 3.1. Thus, there exists a constant C ′
such that ∫

�

exp
(

n( 1
2ωn−1)

1
n−1 p2|uk − med(uk)| n

n−1

)
dx ≤ C ′ for k ∈ N. (3.31)

On the set {x ∈ � : ( p2
p1

− 1)|uk(x)− med(uk)| ≥ C} we have that

p1|uk | ≤ p1(|uk − med(uk)| + C) ≤ p2|uk − med(uk)|.
On the other hand,

|uk | < p2

p2 − p1
C

on the set {x ∈ � : ( p2
p1

−1)|uk(x)−med(uk)| < C}. Hence, by inequality (3.31), we derive
a contradiction for (3.30). Equation (1.14) is fully proved.

Finally, assertion (1.15) follows in both cases (ii) and (iii) from Vitali convergence theorem
on equiintegrable functions. ��
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