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Abstract This paper explores the dimensions of higher secant varieties to Segre-Veronese
varieties. The main goal of this paper is to introduce two different inductive techniques.
These techniques enable one to reduce the computation of the dimension of the secant vari-
ety in a high-dimensional case to the computation of the dimensions of secant varieties
in low-dimensional cases. As an application of these inductive approaches, we will prove
non-defectivity of secant varieties of certain two-factor Segre-Veronese varieties. We also
use these methods to give a complete classification of defective sth Segre–Veronese vari-
eties for small s. In the final section, we propose a conjecture about defective two-factor
Segre–Veronese varieties.
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1 Introduction

In many applications, it is natural to represent a collection of data as a multi-indexed list. Alter-
natively, one can think of the data as a multi-dimensional array. A mathematical framework
that includes the study of multi-dimensional arrays is through parameter spaces of tensors.
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62 H. Abo, M. C. Brambilla

Every tensor can be written as a linear combination of so-called decomposable tensors.
A tensor is said to have rank s if it can be written as a linear combination of s decomposable
tensors (but not fewer). Note that there are higher rank tensors that can be written as the limit
of lower rank tensors. A tensor is said to have border rank s if it can be expressed as the limit
of rank s tensors, but not as the limit of rank s − 1 tensors. For more details on tensor rank
and tensor border rank, we refer the reader, for example, to [26]. An interesting question is
“Given a positive integer s, what is the dimension of the parameter space of tensors with
border rank at most s?” In the following few paragraphs, we will formulate this problem as
a classical problem in algebraic geometry.

Let k be a positive integer. For each i ∈ {1, . . . , k}, let Vi be a vector space of dimension
ni + 1 over C, n1 ≤ · · · ≤ nk . The collection of decomposable tensors can be “embedded”
into the N -dimensional vector space

⊗k
i=1 Vi , where N = ∏k

i=1(ni + 1). Projectivizing to

account for the effect of scalars, we have a Segre map
∏k

i=1 P(Vi ) → P

(⊗k
i=1 Vi

)
. The

image of this map, denoted X , is called the Segre variety.
A secant (s −1)-plane to X is a linear subspace that passes through s linearly independent

points of X . Each point on the secant (s − 1)-plane is a linear combination of s points on X
and can be identified with a tensor, which is a linear combination of s fixed decomposable
tensors. The Zariski closure of the set of all points that lie on a secant (s − 1)-plane, i.e.,
the set of all tensors that can be written as the sum of s decomposable tensors, is called the
sth secant variety of X and denoted by σs(X). The variety σs(X) parameterizes tensors with
border rank at most s. Thus, the aforementioned question is equivalent to the question about
“What is the dimension of σs(X)?”

Since σs(X) ⊂ P
N−1 is the closure of the union of secant (s−1)-planes to X , the following

inequality holds:

dim σs(X) ≤ min

{

N − 1, s

(

1 +
k∑

i=1

ni

)

− 1

}

.

We say that σs(X) has the expected dimension if the equality holds. The Segre variety X has a
defective sth secant variety if σs(X) does not have the expected dimension. In particular, X is
called defective if X has a defective sth secant variety for some s. For example, if k = 2, then
X corresponds to the parameter space of rank one (n1 +1)×(n2 +1)matrices, and the points
of σs(X) correspond to (n1 + 1)× (n2 + 1) matrices that can be written as the sum of s (or
fewer) rank one matrices of the same size. Thus, the affine cone over σs(X) can be identified
with the general determinantal variety Mk of n1×n2 matrices of rank s or less. Recall that Mk

has codimension (n1 + 1 − s)(n2 + 1 − s) (see for example [25] for more details on determi-
nantal varieties). So if 2 ≤ s ≤ min{n1, n2}, then the dimension of σs(X) is strictly smaller
than the expected one. Therefore, most of secant varieties of Segre varieties with two factors
are defective. On the other hand, there are only a few families of defective Segre varieties
known to exist for k ≥ 3. It is therefore desirable to classify defective Segre varieties.

There are other categories of tensors such as symmetric tensors, alternating tensors, and
mixed regular and symmetric tensors. Those tensors also arise very naturally throughout
physics, computer science, engineering as well as mathematics.

The concepts of rank and border rank of regular tensors can be extended to tensors in
other categories. The geometry of decomposable tensors in each of these categories can be
analogously exploited: Veronese varieties, Grassmann varieties, and Segre-Veronese varieties
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Secant varieties of Segre-Veronese varieties 63

can be thought of as parameter spaces of decomposable symmetric tensors, decomposable
alternating tensors and decomposable mixed regular and symmetric tensors, respectively,
and questions about rank of tensors in each category are related to questions about secant
varieties of the corresponding varieties.

A well-known classification of the defective Veronese varieties was completed in a series
of papers by Alexander and Hirschowitz [7]. There are corresponding conjecturally com-
plete lists of defective Segre varieties [4] and Grassmann varieties [10]. Defective secant
varieties of Segre-Veronese varieties are, however, less well-understood, although consider-
able efforts have been already made to complete the list of such varieties (see for example,
[5,6,8,14,16,18,27]). Even the classification of defective two-factor Segre-Veronese varie-
ties is still far from complete.

One of the main goals of this paper is to provide several tools to study secant varieties
of Segre-Veronese varieties. In order to classify defective Segre-Veronese varieties, a crucial
step is to prove the existence of a large family of non-defective such varieties. A powerful
tool to establish non-defectivity of large classes of Segre-Veronese varieties is the inductive
approach based on specialization techniques, which consist in placing a certain number of
points on a chosen divisor. For a given n = (n1, . . . , nk) ∈ N

k , we denote P
n1 ×· · ·×P

nk by

P
n. Let Xa

n be the Segre-Veronese variety obtained by embedding P
n in P

∏k
i=1

(
ni + ai

ai

)

−1

by the morphism given by O(a) with a = (a1, . . . , ak) ∈ N
k . Thanks to the classical theo-

rem called Terracini’s lemma (see Theorem 2.1 for a more detailed statement of Terracini’s
lemma) , it is easy to see that the problem of determining the dimension of σs(Xa

n) is equiva-
lent to the problem of determining the value of the Hilbert function hPn (Z , ·) of a collection
Z of s general double points in P

n at a, i.e.,

hPn (Z , a) = dim H0(Pn,O(a))− dim H0(Pn, IZ (a)).

Suppose that a1 ≥ 2. Denote by n′ and a′ the k-tuples (n1 − 1, n2, . . . , nk) and (a1 − 1,
a2, . . . , ak), respectively. Given a P

n′ ⊂ P
n, we have a short exact sequence

0 → IZ̃ (a
′) → IZ (a) → IZ∩Pn′

,Pn′ (a) → 0,

where Z̃ is the residual scheme of Z with respect to P
n′

and Z ∩ P
n′

is the trace of Z on the
hyperplane. This short exact sequence gives rise to the so-called Castelnuovo inequality

hPn (Z , a) ≥ hPn (Z̃ , a′)+ h
Pn′ (Z ∩ P

n′
, a).

Thus, we can conclude that

(a) if hPn (Z̃ , a′) and h
Pn′ (Z ∩ P

n′
, a′) are the expected values and

(b) if the degrees of Z̃ and Z ∩P
n′

are both less than or both greater than dim H0(Pn,O(a′))
and dim H0(Pn′

,O(a)), respectively,

then hPn (Z , a) is also the expected value. By semicontinuity, the Hilbert function of a general
collection of s double points in P

n has the expected value at a.
The problem is, however, that it may or may not be possible to arrange that Condition (b)

is satisfied. In Sect. 2, we generalize the méthode d’Horace différentielle of Alexander and
Hirschowitz [7] to give a way around this numerical obstacle. The precise statement of our
version of the Horace method can be found in Theorem 2.9. For the reader’s convenience,
we state the same theorem in a slightly different format than Theorem 2.9 below.
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64 H. Abo, M. C. Brambilla

Theorem 1.1 Let a1 ≥ 3. Let n′ = (n1 − 1, n2, . . . , nk), let a′ = (a1 − 1, a2, . . . , ak), and
let a′′ = (a1 − 2, a2, . . . , ak). For a given positive integer s, let s′ and ε be the quotient and

remainder when dividing s
(
1 +∑k

i=1 ni

)
−
(

n1 + a1 − 1
a1 − 1

)
∏k

i=2

(
ni + ai

ai

)

by
∑k

i=1 ni .

Suppose that s′ ≥ ε. If σs′(Xn′,a), σs−s′(Xn,a′), and σs−s′−ε(Xn,a′′) have the expected dimen-
sion and if

(s − s′ − ε)

(

1 +
k∑

i=1

ni

)

≥
(

n1 + a1 − 2
a1 − 2

) k∏

i=2

(
ni + ai

ai

)

, (1)

then σs(Xn,a) also has the expected dimension.

This theorem enables one to check whether σs(Xn,a) has the expected dimension by induc-
tion on n and a. It cannot, however, be applied to σs(Xn,a) if a is small. The theorem requires
that one of the ai ’s is at least 3, so one cannot use it when every ai is less than or equal
to two. In addition, if at least one of the degrees is 1, it is frequent that Inequality (1) does
not hold. In Sect. 2, we, therefore, develop a different inductive approach for computing the
dimensions of secant varieties of such Segre-Veronese varieties. This approach allows one
to place a certain number of points not only on a hypersurface, but also on a subvariety (see
Theorem 2.13 for a more precise statement). Note that a similar approach was successfully
applied to study secant varieties of Segre varieties in [4].

In order to apply these inductive approaches, we need some initial cases regarding either
dimensions or degrees. The class of secant varieties of two-factor Segre-Veronese varieties
can be viewed as one of such initial cases. In Sect. 3, we will study secant varieties of such
Segre-Veronese varieties. The main goal of this section is to prove the following theorem:

Theorem 1.2 Let n, a ≥ 1, b ≥ 3,n = (n, 1) and a = (a, b). Then, Xn,a is not defective
except if (n, a, b) = (n, 2, 2k).

We will restate and prove this theorem in Sect. 3 (see Corollary 3.14).
The strength of Theorem 1.1 is to reduce establishing the existence of a large number

of families of non-defective Segre-Veronese varieties to establishing the existence of only a
small number of families of non-defective cases. We will prove the following theorem as an
application of Theorems 1.1 and 1.2 to demonstrate the power of Theorem 1.1:

Theorem 1.3 Suppose that Xn,a is not defective for every n and for a = (3, 3), (3, 4) and
(4, 4). Then, Xn,a is not defective for every n and for every a = (a, b) such that a, b ≥ 3.

This theorem will also be restated and proved in Sect. 3 (see Theorem 3.15).
As we shall see in Sect. 2, using a randomized algorithm which employs Terracini’s lemma,

we can compute the dimension of σs(Xn,a) for a given s ∈ N and for given n, a ∈ N
k . Based

on our experiments using this randomized algorithm, we expect that there are no defective
Segre-Veronese varieties Xn,a for any n if a = (3, 3), (3, 4) or (4, 4). Thus, Theorem 1.3
suggests the following conjecture:

Conjecture 1.4 Let n and a be pairs of positive integers. If a ≥ (3, 3), there are no defective
two-factor Segre-Veronese varieties Xn,a for all n ∈ N

2.

In Sect. 4, we apply the inductive procedures developed in Sect. 2 to classify all the
defective sth secant varieties of Segre-Veronese varieties for each s ∈ {2, 3, 4}.

Section 5 provides a conjecturally complete list of defective secant varieties of two-factor
Segre-Veronese varieties. In addition to evidence provided by our theorems, further evidence
in support of the conjecture was obtained via the computational experiments we carried out
with Macaulay2, a computer algebra system developed by Grayson and Stillman [24].
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Secant varieties of Segre-Veronese varieties 65

2 Inductive techniques

For each i ∈ {1, . . . , k}, let Vi be a (ni + 1)-dimensional vector space over C and let
P

ni = P(Vi ). Given two k-tuples n = (n1, . . . , nk) and m = (m1, . . . ,mk), we write n ≤ m
when ni ≤ mi for all i . Unless otherwise stated, n,n′, a, a′ and a′′ denote (n1, . . . , nk), (n1−
1, n2, . . . , nk), (a1, . . . , ak), (a1 − 1, a2, . . . , ak) and (a1 − 2, a2, . . . , ak) ∈ N

k , respec-
tively. We write P

n for
∏k

i=1 P
ni and Xn,a for the Segre-Veronese variety embedded in P

N−1

by OPn (a), where N = ∏k
i=1

(
ni + ai

ai

)

. Let NR =
(

n1 + a1 − 1
a1 − 1

)
∏k

i=2

(
ni + ai

ai

)

and

NT =
(

n1 + a1 − 1
a1

)
∏k

i=2

(
ni + ai

ai

)

. Let R = C
[
x0,1, . . . , xn1,1, . . . , x0,k, . . . , xnk ,k

]

and note that it can be thought of as an N
k-graded ring in the obvious way.

Let σs(Xn,a) be the sth secant variety of Xn,a, i.e., the Zariski closure of the union of
linear subspaces spanned by s-tuples of points on Xn,a. We now explain how to translate
the problem of computing the dimension of σs(Xn,a) into a question about the value of the
Hilbert function of the ideal of s double points on P

n at a. Let Tp(Xn,a) be the projective
tangent space to Xn,a at a point p. The following well-known result describes the tangent
space of σs(Xn,a):

Theorem 2.1 (Terracini’s lemma) Let p1, . . . , ps be generic points of Xn,a, and let q be a
generic point of 〈p1, . . . , ps〉. Then

Tq [σs(Xn,a)] = 〈
Tp1(Xn,a), . . . ,Tps (Xn,a)

〉
,

where Tq [σs(Xn,a)] is the projective tangent space to σs(Xn,a) at q ∈ σs(Xn,a).

Remark 2.2 Let n and a be k-tuples of non-negative integers. Let k be a positive integer. For
an i ∈ {1, . . . , k}, let Vi be an (ni +1)-dimensional vector space over C and let vi ∈ Vi \ {0}.
Denote by p ∈ Xn,a the equivalence class containing va1

1 ⊗ · · · ⊗ v
ak
k . Then, the affine cone

over Tp(Xn,a) in
⊗k

i=1 Sai Vi is

C[Tp(Xn,a)] =
k∑

i=1

v
a1
1 ⊗ · · · ⊗ v

ai −1
i Vi ⊗ · · · ⊗ v

ak
k .

In particular, C[Tp(Xn,a)] can be represented by a
[∑k

i=1(ni + 1)
]

× N matrix Ap . Thus,

Terracini’s lemma can be used to estimate the dimension of σs(Xn,a) as follows: First
choose randomly s points p1, . . . , ps on Xn,a. Next, compute the matrix representation

Api for each C[Tpi (Xn,a)]. Let A be the matrix

⎛

⎜
⎝

A1
...

An

⎞

⎟
⎠. It follows from Terracini’s lemma

that dim σs(Xn,a) ≥ rank(A) − 1. By semi-continuity, the equality holds if rank(A) =
min

{
s
(

1 +∑k
i=1 ni

)
, N

}
, because dim σs(Xn,a) ≤ min

{
s
(

1 +∑k
i=1 ni

)
− 1, N − 1

}
.

Finally, we would like to stress that although rank(A) �= min
{

1 +∑k
i=1 ni , N

}
is a strong

evidence that σs(Xn,a) is defective, it cannot be used to prove defectivity.

Note that H0(Pn,OPn (a)) can be identified with the set of hyperplanes in P
N . Since the

condition that a hyperplane H ⊂ P
N contains Tp(Xn,a) is equivalent to the condition that

H ∩ Xn,a contains the first infinitesimal neighborhood of p, the elements of H0(Pn, I2
p(a))
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can be viewed as hyperplanes containing Tp(Xn,a). Let Z be a collection of s double points
on P

n and let IZ be its ideal sheaf. Terracini’s lemma implies that dim σs(Xn,a) is equal to
the value of the Hilbert function hPn (Z , ·) of Z at a. Hence, proving that σs(Xn,a) has the
expected dimension is equivalent to proving that

hPn (Z , a) = min

{

s

(

1 +
k∑

i=1

ni

)

, N

}

.

The following definition is analogous to Definition 3.2 in [4]:

Definition 2.3 Let n, a ∈ N
k , let s be a non-negative integer and Z a zero-dimensional sub-

scheme of P
n . A triple (n; a; Z) is said to be subabundant (resp. superabundant) if deg Z ≤ N

(resp. deg Z ≥ N ). The triple (n; a; Z) is said to be equiabundant if it is both subabundant
and superabundant. We say that two triples have the same abundancy if both of them are either
superabundant or subabundant. We say that T (n; a; Z) is true if hPn (Z , .) has the expected
value at a. If Z is a collection of s general double points, we write T (n; a; s) instead of
T (n; a; Z) and (n; a; s) instead of (n; a; Z). We say that T (n; a) is true if T (n; a; s) is true
for every s ≥ 0.

Assume that a1 ≥ 2. Let H be a hypersurface defined by a linear form in R(1,0,...,0). For
a given zero-dimensional subscheme Z , we denote by Z̃ the residual of Z with respect to
H , i.e., the subscheme whose ideal is IZ : IH . The scheme Z ∩ H is called the trace of Z .
From the restriction exact sequence

0 → IZ̃ (a
′) → IZ (a) → IZ∩H (a) → 0,

we easily get the so-called Castelnuovo inequality

hPn (Z , a) ≥ hPn (Z̃ , a′)+ h
Pn′ (Z ∩ H, a).

From this inequality, it is easy to prove the following basic Horace lemma:

Theorem 2.4 Let a1 ≥ 2, let Z be a zero-dimensional subscheme of P
n, and let H be a

hyperplane defined by a linear form in R(1,0,...,0).

(i) If hPn (Z̃ , a′) and h
Pn′ (Z ∩ ‘H, a) are equal to the expected value;

(ii) if (n′; a; Z ∩ H) and (n; a′; Z̃) have the same abundancy,

then hPn (Z , a) is also the expected value.

Lemma 2.5 Assume that a1 ≥ 2. Let Z be a subscheme of P
n and let H a hyperplane defined

by a linear form in R(1,0,...,0). Then, there exists a collection� of u general points in H such
that

hPn (Z ∪�, a) = hPn (Z , a)+ u

if and only if u satisfies

hPn (Z , a)+ u ≤ hPn (Z̃ , a′)+
(

n1 − 1 + a1

n1 − 1

) k∏

i=2

(
ni + ai

ai

)

. (2)

Proof This lemma is an easy generalization of Lemma 3 in [21]. One can prove our statement
exactly in the same way as in [21], and thus, we omit the proof. ��
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Secant varieties of Segre-Veronese varieties 67

In the following example, we show how to combine Theorem 2.4 with Lemma 2.5, in order
to reduce computing the dimension of the secant variety of a Segre-Veronese variety to
computing the dimensions of secant varieties of smaller Segre-Veronese varieties.

Example 2.6 Let n = (1, 1) and let a = (3, 3). Let p1, . . . , p5 ∈ P
n and let Z =

{p2
1, . . . , p2

5}. Specialize two points, say p4 and p5, to H = P
0 × P

1 ⊂ (P1)2. Then, Z̃
consists of three double points and two simple points, while Z ∩ H consists of two double
points in H . So both (1, 1; 2, 3; Z̃) and (0, 1; 3, 3; Z ∩ H) = (1; 3; Z ∩ H) = (1; 3; 2) are
subabundant. It is well known that T (1; 3; 2) is true. We, therefore, want to prove the truth
of T (1, 1; 2, 3; Z̃).

Note that the inequality

11 = 9 + 2

= hPn
({p2

1, p2
2, p2

3}, (2, 3)
)+ 2

≤ hPn
({p2

1, p2
2, p2

3}, (1, 3)
)+

(
1 + 3

3

)

= 8 + 4 = 12,

holds. Thus, by Lemma 2.5, the expected value of the Hilbert function of Z̃ at (2, 3) is

hPn
(
Z̃ , (2, 3)

) = hPn
({p2

1, p2
2, p2

3}, (2, 3)
)+ 2 = 11.

Additionally, Theorem 2.1 in [18] implies that T (1, 1; 2, 3; 3) and T (1, 1; 1, 3; 3) are true.
Thus, T (1, 1; 2, 3; Z̃) is true. Therefore, the truth of T (n; a; 5) follows from Theorem 2.4.

As already stated in Sect. 1, one cannot always arrange that Condition (ii) in Theorem 2.4
is satisfied. We illustrate it in the following example:

Example 2.7 Let n = (2, 2), let a = (4, 4), let p1, . . . , p45 ∈ P
n and let Z = {p2

1, . . . , p2
45}.

To prove the truth of T (n; a; s), we want to specialize a certain number of points among
the pi ’s, say p1, . . . , ps′ , to H � P

1 × P
2 ⊂ (P2)2 in such a way that (1, 2; a; s′) and

(n; 3, 4; Z̃) have the same abundancy. This means that they must be equiabundant, because
(n; a; 45) is equiabundant. It is not possible, however, to find such an integer s′, because(

1 + 4
4

)(
2 + 4

4

)

/(1 + 2 + 1) �∈ Z. Thus, one cannot apply Theorem 2.4 to show that

T (n; a; s) is true.

One of the main goals of this section is to generalize the differential Horace method
introduced by Alexander and Hirschowitz to Segre-Veronese varieties in order to side step
numerical obstacles like above.

Given a linear system D on P
n, we say that a scheme Z is D-independent if the value

hPn (Z ,D) = dim H0(Pn,D) − dim H0(Pn, IZ ⊗ D) equals the degree of the scheme Z .
The following lemma is also due to Chandler (see [13, Lemma 6.1] for a detailed proof):

Lemma 2.8 Let Z ⊂ P
n be a zero-dimensional scheme contained in a finite collection of

double points and let D be a linear system on P
n. Then, Z is D-independent if and only if

every curvilinear subscheme ζ of Z is D-independent.

We are now able to prove the méthode d’Horace différentielle for Segre-Veronese varieties.

Theorem 2.9 Let a1 ≥ 3. For a given non-negative integer s, let s′ and ε be the quotient

and remainder in the division of s
(

1 +∑k
i=1 ni

)
− NR by

∑k
i=1 ni . Suppose that s′ ≥ ε.
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68 H. Abo, M. C. Brambilla

If T (n′; a; s′), T (n; a′; s − s′) and T (n; a′′; s − s′ − ε) are all true and if (n; a′′; s − s′ − ε)
is superabundant, then T (n; a; s) is also true.

Proof Here, we only focus on the case when (n; a; s) is subabundant, because the remaining
case can be proved in a similar manner.

Step 1. By assumption, NR =
(

1 +∑k
i=1 ni

)
(s − s′) − ε + s′, and since s′ ≥ ε, we have

that (n; a′; s − s′) is subabundant. This implies that since T (n; a′; s − s′) holds by assump-
tion, then the Hilbert function hPn (Z , a′) has the expected value for any subscheme Z of a
collection of s − s′ general double points.

Now, choose a hyperplane H defined by a linear form in R(1,0,...,0). Let � = {γ 1, . . . , γ ε}
be a collection of ε general points contained in H and	 a collection of s − s′ − ε points not
contained in H . Let Z = �2|H ∪	2. Then, from what we say above it follows

hPn (Z , a′) = min

{(

1 +
k∑

i=1

ni

)

(s − s′)− ε, NR

}

=
(

1 +
k∑

i=1

ni

)

(s − s′)− ε.

Step 2. Now, we want to add to Z a collection � of s′ simple points contained in H in such
a way that

hPn (Z ∪�, a′) = hPn (Z , a′)+ s′. (3)

By Lemma 2.5, we can do this if

hPn (Z , a′)+ s′ ≤ hPn (	2, a′′)+
(

n1 + a1 − 2
a1 − 1

) k∏

i=2

(
ni + ai

ai

)

.

By assumption, T (n; a′′; s − s′ − ε) is true and (n; a′′; s − s′ − ε) is superabundant, which
implies

hPn (	2, a′′)+
(

n1 + a1 − 2
a1 − 1

) k∏

i=2

(
ni + ai

ai

)

= NR .

On the other hand, by Step 1, we know that hPn (Z , a′)+ s′ = NR , then Equality (3) follows.
Step 3. From the assumption that (n, a, s) is subabundant and the definition of s′ and ε, it
follows that

s′
(

k∑

i=1

ni

)

+ ε = s

(
k∑

i=1

ni + 1

)

− NR ≤ N − NR = NT .

Since T (n′, a, s′) holds by assumption, the scheme (� ∪�2|H ) ⊂ H has Hilbert function

h
Pn′

(
� ∪�2|H , a

)
= s′

k∑

i=1

ni + ε

Now, for (t1, . . . , tε) ∈ K
ε, choose a flat family of general points 
(t1,...,tε) =

{δ1
t1 , . . . , δ

ε
tε } ⊆ P

n and a family of hyperplanes {Ht1 , . . . , Htε } defined by linear forms
in R(1,0,...,0) such that

• δi
ti ∈ Hti for any ti , and any i = 1, . . . , ε,

• δi
ti �∈ H for any ti �= 0, and any i = 1, . . . , ε,

• H0 = H and δi
0 = γ i ∈ H , for any i = 1, . . . , ε.
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Now, let us consider the following schemes:

• 
2
(t1,...,tε)

= {δ1
t1 , . . . , δ

ε
tε }2, notice that 
2

(0,...,0) = �2;

• �2, where � is the collection of the s′ points introduced in Step 2;
• 	2, the collection of the s − s′ − ε double points introduced in Step 1.

In order to prove T (n; a; s), it is enough to prove the following claim.

Claim There exists (t1, . . . , tε) such that the scheme 
2
(t1,...,tε)

is independent with respect
to the linear system I�2∪	2 ⊗ OPn (a).

Proof of the claim. Assume that the claim is false. Then, by Lemma 2.8 for all (t1, . . . , tε),
there exist pairs (δi

ti , η
i
ti ) for i = 1, . . . , ε, with ηi

ti a curvilinear scheme supported in δi
ti

(hence the length of ηi
ti is 2 for all i) and contained in 
2

(t1,...,tε)
such that

hPn (�2 ∪	2 ∪ η1
t1 ∪ · · · ∪ ηεtε , a) <

(

1 +
k∑

i=1

ni

)

(s − ε)+ 2ε. (4)

Let ηi
0 be the limit of ηi

ti , for i = 1, . . . , ε. Suppose that ηi
0 �⊂ H for i ∈ F ⊆ {1, . . . , ε}

and ηi
0 ⊂ H for i ∈ G = {1, . . . , ε} \ F . Given t ∈ K, let us denote Z F

t = ∪i∈F (η
i
t ) and

Z G
t = ∪i∈G(η

i
t ). Denote by η̃i

0 the residual of ηi
0 with respect to H and by f and g the

cardinalities, respectively of F and G. Then, by (4), we obtain

hPn (�2 ∪	2 ∪ Z F
0 ∪ Z G

t , a) <

(

1 +
k∑

i=1

ni

)

(s − ε)+ 2ε. (5)

On the other hand, by the semicontinuity of the Hilbert function, there exists an open
neighborhood O of 0 such that for any t ∈ O

hPn

(
� ∪	2 ∪

(
∪i∈F η̃

i
0

)
∪ Z G

t , a′) ≥ hPn

(
� ∪	2 ∪

(
∪i∈F η̃

i
0

)
∪ Z G

0 , a′) .

Since � ∪	2 ∪ (∪i∈F η̃
i
0

) ∪ Z G
0 ⊆ � ∪	2 ∪ �2|H , by Step 2, we compute

hPn

(
� ∪	2 ∪

(
∪i∈F η̃

i
0

)
∪ Z G

0 , a′) = s′ +
(

1 +
k∑

i=1

ni

)

(s − s′ − ε)+ f + 2g.

Since �2|H ∪ (∪i∈Fγ
i
)

is a subscheme of �2|H ∪ �, from Step 3, it follows that

h
Pn′

(
�2|H ∪

(
∪i∈Fγ

i
)
, a
)

≥ s′
k∑

i=1

ni + f

Hence, for any 0 �= t ∈ O , applying the Castelnuovo inequality to the scheme  = �2 ∪
	2 ∪ Z F

0 ∪ Z G
t , we get

hPn (, a) ≥ hPn

(
� ∪	2 ∪

(
∪i∈F η̃

i
0

)
∪ Z G

t , a′)+ h
Pn′

(
�2|H ∪

(
∪i∈Fγ

i
)
, a
)

≥ s′ +
(

1 +
k∑

i=1

ni

)

(s − s′ − ε)+ f + 2g + s′
k∑

i=1

ni + f

=
(

1 +
k∑

i=1

ni

)

(s − ε)+ 2ε,
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which contradicts Inequality (5). Thus, we completed the proof of the claim. ��

Example 2.10 Let n = (2, 2) and let a = (4, 4). In Example 2.7, we showed that it is
impossible to apply Theorem 2.4 to prove the truth of T (n; a; 45). In this example, we illus-
trate how to reduce T (n; a; 45) to computing the dimensions of secant varieties of “smaller”
Segre-Veronese varieties using Theorem 2.9.

Let s′ and ε be the quotient and remainder when dividing 45(2 + 2 + 1)−
(

5
2

)(
6
2

)

by

2 + 2, respectively. Then, s′ = 18 and ε = 3. Thus, s′ and ε clearly satisfy s′ > ε. Since

120 = (45 − 18 − 3)(2 + 2 + 1) >

(
4
2

)(
6
4

)

= 90,

the 5-tuple (2, 2; 2, 4; 45 − 18 − 3) is superabundant. Thus, by Theorem 2.9, one can reduce
T (2, 2; 4, 4; 45) to T (1, 2; 4, 4; 18), T (2, 2; 3, 4; 27) and T (2, 2; 2, 4; 24).

In order to complete the proof of the truth of T (2, 2; 4, 4; 45), one can apply Theorem 2.9
to T (1, 2; 4, 4; 18), T (2, 2; 3, 4; 27), and T (2, 2; 2, 4; 24). Like T (2, 2; 4, 4; 45), each state-
ment will be reduced to three sub-statements, each of which can be reduced to other three
sub-statements by applying Theorem 2.9. One must repeat this process until one achieves
either the statements that are all known to be true or the statements that are small enough, so
that one can computationally prove that they are true as indicated in Remark 2.2. For exam-
ple, we checked the truth of T (1, 2; 4, 4; 18), T (2, 2; 3, 4; 27) and T (2, 2; 2, 4; 24) directly
using Macaulay2. This shows the truth of T (2, 2; 4, 4; 45).

Unfortunately, if k = 2 and if one of ai ’s is 1, then it is often impossible to apply
Theorem 2.9. For example, if (n; a; s) = (2, 2; 1, 4; 9), then s′ = 3 and ε = 3. Thus,

15 = (9 − 3 − 3)(2 + 2 + 1) <

(
2 + 2

2

)

(2 + 1) = 18, and so (2, 2; 1, 2; 3) is not super-

abundant. Therefore, we cannot reduce T (2, 2; 1, 4; 9) to T (1, 2; 1, 4; 3), T (2, 2; 1, 3; 6)
and T (2, 2; 1, 2; 3). Another goal of this section is to provide a different approach to give a
way around this kind of problem. In Example 2.14, we will explain how to apply this second
approach to prove the truth of T (2, 2; 1, 4; 9).

Definition 2.11 Let a1 = 1 and letπ : P
n → ∏k

i=2 P
ni be the canonical projection. For each

point p ∈ P
n, let f p be the double point p2 restricted to π−1(π(p)). Consider general points

p1, . . . , ps, q1, . . . , qt , r1, . . . , rv ∈ P
n and let Z = {p2

1, . . . , p2
s , q1, . . . , qt , fr1 , . . . , frv }.

We say that the statement S(n; a; s; t; v) is true if T (n; a; Z) is true, that is, if

hPn (Z , a) = min

{

s

(

1 +
k∑

i=1

ni

)

+ t + v(n1 + 1), N

}

.

We will also write (n; a; s; t; v) for (n; a; Z).

Remark 2.12 Let n and a be k-tuples of non-negative integers. We make the following simple
remarks:

(i) S(n; a; s; 0; 0) is true if and only if T (n; a; s) is true.
(ii) If (n; a; s; t; v) is subabundant and if S(n; a; s; t; v) is true, then (n; a; s′; t ′; v′) is

subabundant and S(n; a; s′; t ′; v′) is true for any choice of s′, t ′ and v′ with s′ ≤
s, t ′ ≤ t and v′ ≤ v.
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(iii) If (n; a; s; t; v) is superabundant and if the statement S(n; a; s; t; v) is true, then
(n; a; s′; t ′; v′) is superabundant and S(n; a; s′; t ′; v′) is true for any choice of s′, t ′

and v′ with s ≤ s′, t ≤ t ′ and v ≤ v′. This implies that if s =
⌊∏k

i=1 (
ni +ai

ai
)

1+∑k
i=1 ni

⌋

and

s =
⌈∏k

i=1 (
ni +ai

ai
)

1+∑k
i=1 ni

⌉

, then, in order to prove the truth of T (n; a), it is sufficient to show

that T (n; a; s) are true for both s ∈ {s, s}.
(iv) The following statements are equivalent and have the same abundancy:

– S(0,n; 1, a; s; t; v).
– S(0,n; 1, a; s; t + v; 0).
– S(n; a; s; t + v; 0).

(v) If (n; a; s; t; 0) is subabundant, then it is clear that, since the t simple points are
assumed to be general, S(n; a; s; 0; 0) = T (n; a; s) is true if and only if S(n; a; s; t; 0)
is true.

The following theorem describes the induction procedure we can apply to study Segre-
Veronese varieties when one of the degree is one. This technique is inspired by the paper [4],
where the authors study Segre varieties.

Theorem 2.13 Let a1 = 1, n1 = n′
1 + n′′

1 + 1, s = s′ + s′′ and t = t ′ + t ′′, and let
n′ = (n′

1, n2, . . . , nk),n′′ = (n′′
1, n2, . . . , nk) ∈ N

k . Suppose that (n′; a; s′; t ′; v + s′′) and
(n′′; a; s′′; t ′′; v + s′) are subabundant (resp. superabundant). If S(n′; a; s′; t ′; v + s′′) and
S(n′′; a; s′′; t ′′; v + s′) are true, then (n; a; s; t; v) is subabundant (resp. superabundant)
and S(n; a; s; t; v) is true.

Proof We only focus on the case when (n′; a; s′; t ′; v + s′′) and (n′′; a; s′′; t ′′; v + s′) are
subabundant, because the remaining case can be proved in a similar fashion.

Let U be a (n′
1 + 1)-dimensional subspace of V1. Then, we have the following Koszul

complex:

· · · → (V1/U )∗ ⊗ OPn (a′) → OPn (a) → O
Pn′ (a) → 0,

where a = (1, a2, . . . , ak). Let ι : U → V1 be the inclusion. The linear transformation from
H0(OPn (a)) = V ∗

1 ⊗ H0(OPn (a′)) to H0(O
Pn′ (a)) = U∗ ⊗ H0(OPn (a′)) induced by the

last map of the Koszul complex is given by ι∗ ⊗ idH0(OPn (a′)), and hence, it is surjective. By
taking the cohomology, we therefore obtain the following short exact sequence:

0 → (V1/U )∗ ⊗ H0(OPn (a′)) → H0(OPn (a)) → H0(O
Pn′ (a)) → 0.

Taking the dual of the first linear transformation of the above sequence yields the rational
map ϕ from

∏k
i=1 P

ni to P
n′′ = P(V1/U )×∏k

i=2 P
ni .

Let Z = {p2
1, . . . , p2

s }, let � = {q1, . . . , qt } and let � = { fr1 , . . . , frv }. Suppose that
{p1, . . . , ps′′ } and {q1, . . . , qt ′′ } are not contained in P

n′
, but the rest of the pi ’s and qi ’s are

in P
n′

, while the ri ’s are general points. Then, we have the following short exact sequence:

0 → IZ∪�∪�∪Pn′ (a) → IZ∪�∪�(a) → I
(Z∪�∪�)∩Pn′

,Pn′ (a) → 0.
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Let π ′′ be the canonical projection from P
n′′

to
∏k

i=2 P
ni and let Z ′′ be the following zero-

dimensional subscheme of P
n′′

:

{ϕ(p1)
2, . . . , ϕ(ps′′)2, ϕ(q1), . . . , ϕ(qt ′′), fϕ(r1), . . . , fϕ(rv), fϕ(ps′′+1)

, . . . , fϕ(ps )}.
One can immediately show that H0(Pn′′

, IZ ′′(a)) is isomorphic to H0
(
P

n, IZ∪�∪Pn′ (a)
)
.

Let ψ be the projection from P
n \ P

n′′
to P

n′
and let Z ′ be the following zero-dimensional

subscheme of P
n′

:

{p2
s′′+1, . . . , p2

s , qt ′′+1, . . . , qt , fψ(r1), . . . , fψ(rv), fψ(p1), . . . , fψ(ps′′ )}.
Note that H0(IZ ′(a)) is isomorphic to

(
IZ∪� + I

Pn′ /I
Pn′
)

a. This implies that if

h
Pn′′ (Z ′′, a) = s′′

(

1 + n′′
1 +

k∑

i=2

ni

)

+ t ′′ + (v + s′)(n′′
1 + 1)

and

h
Pn′ (Z ′, a) = s′

(

1 + n′
1 +

k∑

i=2

ni

)

+ t ′ + (v + s′′)(n′
1 + 1)

then hPn (Z ∪�, a) = s
(

1 +∑k
i=1 ni

)
+ t + v(n1 + 1), which completes the proof. ��

Example 2.14 As the first application of Theorem 2.13, we will show that T (n; a; s) is
true with (n; a; s) = (2, 2; 1, 4; 9). Note that (n; a; s) is subabundant. Let s′ = 6. Then
s′′ = 9 − 6 = 3. Since (0, 2; 1, 4; 3; 0; 6) and (1, 2; 1, 4; 6; 0; 3) are equiabundant, we can
reduce T (n; a; s) to S(0, 2; 1, 4; 3; 0; 6) = S(2; 4; 3; 0; 6) and S(1, 2; 1, 4; 6; 0; 3). The
statement S(1, 2; 1, 4; 6; 0; 3) can be reduced to twice S(0, 2; 1, 4; 3; 0; 6). In order to prove
that T (n; a; s) is true, it is therefore enough to prove the truth of S(0, 2; 1, 4; 3; 0; 6). Note that
S(0, 2; 1, 4; 3; 0; 6) and S(2; 4; 3; 6; 0) are the same statements by Remark 2.12 (iv). Also,
the condition that S(2; 4; 3; 6; 0) is true is equivalent to the condition that S(2; 4; 3; 0; 0) =
T (2; 4; 3) is true by Remark 2.12 (v). It is known by the Alexander-Hirschowitz theorem
that T (2; 4; 3) is true. Thus, T (n; a; s) is also true.

Let n, a ∈ N
k . As already stated in Sect. 1, Theorem 2.9 cannot be applied to any secant

variety of Xn,a if a = (2k). Theorem 2.13 cannot be used directly in this case either. In
the following example, we illustrate how to combine an argument based on the Castelnuovo
inequality with Theorem 2.13 to study secant varieties of such Segre-Veronese varieties:

Example 2.15 Here, we prove that T (2, 2; 2, 2; 5) is true. Let p1, . . . , p5 be generic points
of (P2)2 and let Z = {p2

1, . . . , p2
5}. Specializing p1, p2 and p3 to H = P

1 × P
2 ⊂ (P2)2

yields a short exact sequence

0 → IZ̃ (1, 2) → IZ (2, 2) → IZ∩H,H (2, 2) → 0.

It was shown by Bauer and Draisma [9] that h H (Z ∩ H, (2, 2)) has the expected value,
i.e., T (1, 2; 2, 2; 3) is true. It suffices therefore to show that Z̃ has the expected value at
(1, 2). Note that Z̃ = {p1, p2, p3, p2

4, p2
5}. Recall that p1, p2 and p3 lie in H . Thus, spe-

cializing p5 to H , we can reduce the above-mentioned statement to S(1, 2; 1, 2; 1; 3; 1)
and S(0, 2; 1, 2; 1; 0; 1). Note that S(0, 2; 1, 2; 1; 0; 1) is equivalent to S(2; 2; 1; 1; 1; 0).
Since S(2; 2; 1; 1; 0; 0) is true, so is S(2; 2; 1; 1; 1; 0) by Remark 2.12. Thus, it remains to
show that S(1, 2; 1, 2; 1; 3; 1) is true. This statement can be reduced to S(0, 2; 1, 2; 1; 1; 1)
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and S(0, 2; 1, 2; 0; 2; 2). By Remark 2.12, S(0, 2; 1, 2; 1; 1; 1) and S(0, 2; 1, 2; 0; 2; 2) are
equivalent to S(2; 2; 1; 2; 0) and S(2; 2; 0; 4; 0), respectively. Clearly, the latter statement
is true. Also, since S(2; 2; 1; 0; 0) is true, so is S(2; 2; 1; 2; 0). Thus, S(1, 2; 1, 2; 1; 3; 1) is
true. Therefore, T (1, 2; 2, 2; 3) is true.

We conclude this section by presenting immediate, but useful consequences of Theo-
rem 2.4 and Lemma 2.5.

Lemma 2.16 Let a,b,n,m ∈ (Z≥0)
k \ {(0, . . . , 0)} and let s ∈ N. Suppose that a ≤ b and

n ≤ m.

(i) If T (n; a; s) is true, if (n; a; s) is subabundant and if a ≥ (1, . . . , 1), then T (n; b; s)
is true and (n; b; s) is subabundant.

(ii) If T (n; a; s) is true, if (n; a; s) is subabundant and if

s ≤
(

n� + a� − 1
a� − 1

)∏

i �=�

(
ni + ai

ai

)

for all � such that m� > n� and a� ≥ 1, then T (m; a; s) is true and (m; a; s) is
subabundant.

(iii) If T (n; b; s) is true and if (n; b; s) is superabundant, then T (n; a; s) is true and
(n; a; s) is superabundant.

Proof Note that if (n; a; s) is subabundant, then so are (n; b; s) and (m; a; s).

(i) Since a ≥ (1, . . . , 1), without loss of generality, we may assume that 1 ≤ a1 < b1. Let
a′ = (a1 + 1, a2, . . . , ak) and H a hyperplane defined by a linear form in R(1,0,...,0). By
induction, it suffices to prove that T (n; a′; s) is true. Consider a collection Z of s general
double points in P

n. Suppose that the support of Z is not contained in H . From the short
exact sequence,

0 → IZ (a) → IZ (a′) → OH (a′) → 0,

we can conclude that hPn (Z , a′) is the expected value, because the trace of Z is empty and
Z̃ = Z .
(ii) The statement is trivial if n = m. Thus, we may assume that n < m. Then, there exists
at least one � ∈ {1, . . . , k} such that m� > n� and a� ≥ 1, because otherwise T (n; a; s) and
T (m; a; s) are the same statement. Without loss of generality, we may assume that � = 1.
Then, by induction, it is enough to prove that T (n′; a; s) is true for n′ = (n1 +1, n2, . . . , nk).
Consider a collection Z of s general double points of P

n′
. Suppose that they are all contained

in H = P
n ⊂ P

n′
. Hence, the trace of Z is given by s double points of H , while the residual

Z̃ is given by s simple points contained in the hyperplane H . Then, we have the following
exact sequence

0 → IZ̃ (a1 − 1, a2, . . . , ak) → IZ (a) → IZ∩H (a) → 0.

By assumption, T (n; a; s) is true. Thus, (ii) immediately follows from Lemma 2.5 and from

the assumption that s ≤
(

n1 + a1 − 1
a1 − 1

)
∏k

i=2

(
ni + ai

ai

)

.

(iii) Clearly, if (n; b; s) is superabundant, then (n; a; s) is also superabundant. Given b′ =
(b1 − 1, b2, . . . , bh), we only need to prove T (n; b′; s). As in the proof of (i), we consider
a collection Z of s general double points whose support is not contained in H . Then, by the
Castelnuovo exact sequence, we can immediately see that T (n; b′; s) is true. ��
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3 Two-factor Segre-Veronese varieties

The purpose of this section is to establish the existence of a class of non-defective two-factor
Segre-Veronese varieties. First of all, we will recall some basic results on secant varieties
of such Segre-Veronese varieties. Let n = (m, n), a = (a, b) ∈ N

2 and let N (n, a) =(
m + a

a

)(
n + b

b

)

. We use just N instead of N (n; a) if n and a are clear from the context.

As in the previous section, we denote by Xn,a the Segre-Veronese variety obtained from P
n

by embedding in P
N−1 by the morphism given by O(a). Let s(n, a) = �N/(m +n +1)� and

let s(n, a) = �N/(m + n + 1)�. We write s and s instead of s(n, a) and s(n, a), respectively,
if n and a are clear from the context. As mentioned in Remark 2.12, in order to prove that
T (n; a) is true, it is sufficient to show that T (n; a; s) for s = s and s.

As was mentioned earlier, the problem of finding the dimension of σs(Xn,a) can be trans-
lated into the problem of calculating the value of the multi-graded Hilbert function of s
double points on P

n at a. In their several papers, Catalisano, Geramita, and Gimigliano
showed the relationship between ideals of varieties in multi-projective space and ideals in
standard polynomial rings. In [18, Theorem 2.1], they used it to prove the following theorem:

Theorem 3.1 ([18]) T (1, 1; a, b; s) is true except for a = 2, b = 2d (d ≥ 1) and s = b +1.

This theorem was also proved by Baur and Draisma. Their proof uses tropical techniques
(see [9, Theorem 1.1] for more details).

Example 3.2 As the first application of our techniques, we prove that T (m, 1; 1, 2; 2) is true
for any m ≥ 1.

By Theorem 3.1, T (1, 1; 1, 2; 2) is true. Moreover, (1, 1; 1, 2; 2) is equiabundant. Since

s = 2 < 3 =
(

n1 + a1 − 1
a1 − 1

)(
n2 + a2

a2

)

,

we can deduce that T (m, 1; 1, 2; 2) are true for all m ≥ 1 by Lemma 2.16 (ii).

Let s be a positive integer and let s′ and ε be the quotient and remainder when divid-

ing s(m + n + 1) −
(

m + a − 1
a − 1

)(
n + b

b

)

by m + n. In order to prove the truth of

T (m, n; a, b; s), we need to show that the 5-tuple (m, n; a − 2, b; s − s′ − ε) is superabun-
dant. The following lemma proves that this is actually the case for most of (m, n; a, b).

Lemma 3.3 Let a, b ≥ 3. For each 1 ≤ s ≤
⌈
(m+a

a )(
n+b

n )
m+n+1

⌉

, let s′ and ε be as above. Then,

(m, n; a − 2, b; s − s′ − ε) is superabundant unless (m, n) = (1, 1).

Proof We want to prove that the integer F(m, n; a, b) is non-negative, where

F(m, n; a, b) = (s − s′ − ε)(m + n + 1)− N (m, n; a − 2, b). (6)

By definition,

s (m + n + 1)− N (m, n; a − 1, b) = s′ (m + n)+ ε, (7)
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where 0 ≤ ε ≤ m + n − 1. So we have

F(m, n; a, b)

= s (m + n + 1)− s′ (m + n)− ε − s′ − ε (m + n)− N (m, n; a − 2, b)

= N (m, n; a − 1, b)− N (m, n; a − 2, b)− s′ − ε (m + n)

= N (m − 1, n; a − 1, b)− s′ − ε (m + n)

Since s (m + n + 1) ≤ N (m, n; a, b)+ (m + n + 1) by assumption, the following inequality
holds:

s (m + n + 1)− N (m, n; a − 1, b) ≤ N (m − 1, n; a, b)+ (m + n + 1).

This implies that s′ (m + n) ≤ N (m − 1, n; a, b)+ (m + n + 1), i.e.,

s′ ≤ 1

m + n
{N (m − 1, n; a, b)+ (m + n + 1)} .

Thus, we obtain

F(m, n; a, b)

≥ N (m − 1, n; a − 1, b)− {N (m − 1, n; a, b)+ (m + n + 1)}
m + n

− ε (m + n)

≥

(
n + b

n

)

m + n
H(m, n; a)− m + n + 1

m + n
− (m + n − 1)(m + n),

where H(m, n; a) = (m+a−2)!
a!(m−1)! {a(m + n)− (m + a − 1)}. Note that H(m, n; a) is an

increasing function of a if a ≥ 3. Let

G(m, n; a, b) =

(
n + b

n

)

m + n
H(m, n; a)− m + n + 1

m + n
− (m + n − 1)(m + n).

It follows that G(m, n; a, b) is an increasing function of a and b, if a ≥ 3. It is not very hard
to show that G(m, n; 3, 3) ≥ − 2

3 unless (m, n) = (1, 1). Hence, we have F(m, n; a, b) ≥
G(m, n; a, b) ≥ G(m, n; 3, 3) ≥ − 2

3 . Since F(m, n; a, b) is an integer, we can conclude
that is it non-negative. ��

In the following lemma, we show that the inequality s′ ≥ ε holds in most cases:

Lemma 3.4 Let a ≥ 3 and let b,m, n ≥ 1. For each s ≥
⌊
(m+a

a )(
n+b

n )
m+n+1

⌋

, let s′ and ε be as

above. Then, s′ ≥ ε in the following cases:

(i) b ≥ 3;
(ii) b = 1 and m ≥ 3;

(iii) b = 1,m = 2 and n = 1.

Proof Since n+m−1 ≥ ε, it suffices to show that s′ ≥ n+m−1. Assume that s′ < n+m−1.

By assumption, we know that s(m + n + 1) ≥
(

m + a
a

)(
n + b

n

)

− (m + n). Combining

this relation with (7) yields

N (m, n; a, b)− (m + n) ≤ s′ (m + n)+ ε + N (m, n; a − 1, b)

123



76 H. Abo, M. C. Brambilla

from which, we obtain

N (m − 1, n; a, b) ≤ s′ (m + n)+ ε + (m + n)

≤ (n + m − 2)(m + n)+ (m + n − 1)+ (m + n)

= (n + m)2 − 1.

Now, we need to prove that this inequality provides a contradiction in each case. Let
G(m, n, a, b) = N (m − 1, n; a, b)− (m + n)2. It is enough to prove that G(m, n, a, b) > 0.
(i) Suppose that b ≥ 3. Note that N (m − 1, n; a, b) ≥ N (m − 1, n; 3, 3). It follows there-
fore that if a, b ≥ 3, then G(m, n, a, b) ≥ G(m, n; 3, 3). It is straightforward to prove that
G(m, n, 3, 3) is positive for all m, n ≥ 1.
(ii) Suppose that b = 1 and m ≥ 3. In the same way as in (i), one can prove that
G(m, n, a, b) ≥ G(m, n; 3, 1). It is not hard to show that G(m, n, 3, 1) is positive when
m ≥ 3, and n ≥ 1.
(iii) Assume that b = 1,m = 2, and n = 1. Then, we have ε ≤ 2. We want to prove that s′ ≥ 2.

Assume for the contradiction that s′ ≤ 1. By the hypothesis, we have s ≥
⌊
(a+2)(a+1)

4

⌋
,

which implies 4s ≥ (a + 2)(a + 1)− 3. By (7), we have

(a + 2)(a + 1)− 3 ≤ a(a + 1)+ 3s′ + ε ≤ a(a + 1)+ 3 + 2,

or 2(a − 3) ≤ 0, which is false for all a ≥ 4. If a = 3, then we have s ≥ 5. On the other
hand, (7) gives rise to 4s ≤ 12 + 3 + 2 = 17, which is a contradiction. ��

The result presented below was already proved by Chiantini and Ciliberto [22]. Here, we
give a different proof to illustrate how the Horace method works.

Theorem 3.5 T (n, 1; 1, d) is true for any n, d ≥ 1.

Proof The proof is by induction on d . It is immediate to check that T (n, 1; 1, 1) is true (see
Sect. 1). The truth of the statement T (n, 1; 1, 2) immediately follows from Example 3.2 and
[2, Example 2.9]. Thus, we may assume d ≥ 3 and n ≥ 1.

We first prove the truth of T (n, 1; 1, d; s) for s = s(n, 1; 1, d) =
⌊
(n+1)(d+1)

n+2

⌋
. Let

p1, . . . , ps be points on P
n × P

1 and let Z = {p2
1, . . . , p2

s }. Suppose that ps lies in a hyper-
plane H of degree (0, 1). Then, we get the following sequence:

0 → IZ̃ (1, d − 1) → IZ (1, d) → IZ∩H,H (1, d) → 0,

where Z̃ = {p2
1, . . . , p2

s−1} ∪ {ps}. Since the trace of Z consists of only one double point
of H , we have

h H (Z ∩ H, (1, d)) = n + 1.

By induction hypothesis, T (n, 1; 1, d − 1; s − 1) and T (n, 1; 1, d − 2; s − 1) are both true,
and thus

hPn ({p2
1, . . . , ps−1

2}, (1, d − 1)) = min{(s − 1)(n + 2), (n + 1)d} = (s − 1)(n + 2)

and

hPn ({p2
1, . . . , ps−1

2}, (1, d − 2)) = min{(s − 1)(n + 2), (n + 1)(d − 1)}.
It is straightforward to prove the inequality

(s − 1)(n + 2)+ 1 ≤ min{(s − 1)(n + 2), (n + 1)(d − 1)} + (n + 1).
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So it follows from Lemma 2.5 that hPn (Z̃ , (1, d −1)) = (s −1)(n +2)+1. By Theorem 2.4
we can deduce that hPn (Z , (1, d)) = s(n + 2), because hPn (Z̃ , a′) and h

Pn′ (Z ∩ H, a) are
the expected values and they are both subabundant. Thus, T (n, 1; 1, d; s) is true.

In a similar manner, we can prove that T (n, 1; 1, d; s) is true for s = s(n, 1; 1, d). Let
p1, . . . , ps be points on P

n × P
1 and let Z = {p2

1, . . . , p2
s }. Specializing ps to H yields the

following sequence:

0 → IZ̃ (1, d − 1) → IZ (1, d) → IZ∩H,H (1, d) → 0.

As in the previous case, we have h H (Z ∩ H, (1, d)) = n + 1. By induction hypothesis,
T (n, 1; 1, d − 1; s − 1) is true. Additionally, (n, 1; 1, d − 1; s − 1) is superabundant. There-
fore, hPn (Z , (1, d)) = (n + 1)(d + 1), which completes the proof. ��

We recall now a result proved by Abrescia.

Theorem 3.6 ([6]) T (n, 1; 2, 2d + 1) is true for any n ≥ 1 and d ≥ 0.

The following is the first application of the differential Horace lemma:

Theorem 3.7 T (n, 1; a, 2d + 1) is true for any d, n, a ≥ 1.

Proof The proof is by double induction on n and a. We know that T (n, 1; 1, 2d + 1) is
true by Theorem 3.5 and that T (n, 1; 2; 2d + 1) is true by Theorem 3.6. The statement
T (1, 1; a, 2d + 1) is also true by Theorem 3.1.

Suppose now that a ≥ 3 and n ≥ 2. Recall that it is enough to prove T (n, 1; a, 2d + 1; s)
for s ∈ {s, s}. We want to apply Theorem 2.9. Let s′ and ε be the quotient and remain-
der when dividing s(n + 2) − N (n, 1; a − 1, 2d + 1) by n + 1. Note that, by Lemma 3.3,
(n, 1; a − 2, 2d + 1; s − s′ + ε) is superabundant, because n ≥ 2, a ≥ 3 and 2d + 1 ≥ 3.
Additionally, by Lemma 3.4 (i), we obtain s′ ≥ ε. Now, by induction hypothesis, T (n − 1,
1; a, 2d +1), T (n, 1; a−1, 2d +1) and T (n, 1; a−2, 2d +1) are all true. Thus, Theorem 2.9
implies that T (n, 1; a, 2d + 1) is true. ��

The following theorem is a consequence of Theorem 2.13:

Theorem 3.8 For any n, d ≥ 1, T (n, 1; 2, 2d; s) is true if s ≤ d(n + 1) or s ≥ (d + 1)
(n + 1).

Proof To prove this theorem, we only need to show that T (n, 1; 2, 2d; d(n + 1)) and
T (n, 1; 2, 2d; (d + 1)(n + 1)) are true. The proof is by induction on n. Recall that
T (1, 1; 2, 2d; s) is true unless s = 2d + 1 by Theorem 3.1. Also, T (n, 1; 1, 2d) is true
by Theorem 3.5.

We first prove that T (n, 1; 2, 2d; d(n + 1)) is true. Let s = dn + d, s′ = dn, s′′ = d and
let H be a hyperplane of multi-degree (1, 0).

Specializing s′ points to H , since (n − 1, 1; 2, 2d; s′) and (n, 1; 1, 2d; s′′; s′; 0) are both
subabundant, we can apply Theorem 2.4. By induction hypothesis, T (n − 1, 1; 2, 2d; s′)
is true, and so, it suffices to prove that hPn×P1(Z̃ , (1, 2d)) is the expected value,
where Z̃ is given by s′′ general double points and s′ simple points contained in H
(and general). In order to prove this fact, we apply now Theorem 2.13. Since (n −
1, 1; 1, 2d; 0; s′; s′′) and (0, 1; 1, 2d; s′′; 0; 0) are both subabundant, it is enough to prove
that S(n − 1, 1; 1, 2d; 0; s′; s′′) and S(0, 1; 1, 2d; s′′; 0; 0) are true.

By Theorem 3.5, S(n −1, 1; 1, 2d; s′′; 0; 0) = T (n −1, 1; 1, 2d; s′′) is true. This implies
that S(n − 1, 1; 1, 2d; 0; 0; s′′) is also true. Additionally, the s′ points are in general position
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in H . So S(n − 1, 1; 1, 2d; 0; s′; s′′) is true. Since S(0, 1; 1, 2d; d; 0; 0) = T (1; 2d; d) is
clearly true, the theorem follows from Theorem 2.13.

One can prove that T (n, 1; 2, 2d; (d + 1)(n + 1)) is true by taking s′ = (d + 1)n
and s′′ = d + 1 and by replacing “subabundant” by “superabundant” in the previous
argument. ��
Remark 3.9 In [6], Abrescia proved Theorem 3.8 with different techniques. Moreover, she
proved that σs(X(n,1),(2,2d)) is defective for any d(n + 1)+ 1 ≤ s ≤ (d + 1)(n + 1)− 1.

Lemma 3.10 T (n, 1; 3, 4) is true for any n ≥ 1.

Proof To prove this lemma, it is enough to show that T (n, 1; 3, 4; s) is true for s ∈ {s, s}.
Here, we only show that T (n, 1; 3, 4; s) is true for s = s, because the remaining case follows
the same path. The proof is by induction on n. Note that T (1, 1; 3, 4) is true by Theorem 3.1.

Suppose now that n ≥ 2. We also assume by induction that T (n − 1, 1; 3, 4) is true. Let

s′ and ε be the quotient and remainder in the division of s(n + 2) − 5

(
n + 2

2

)

by n + 1.

Then, in order to apply Theorem 2.9, it is enough to check that T (n, 1; 2, 4; s − s′) and
T (n, 1; 1, 4; s − s′ − ε) are true, that (n, 1; 1, 4; s − s′ − ε) is superabundant and that s′ ≤ ε.

From Theorem 3.5, it follows that T (n, 1; 1, 4) is true. Moreover, (n, 1; 1, 4; s − s′ −ε) is
superabundant by Lemma 3.3, because n ≥ 2 and s′ ≥ ε by Lemma 3.4 (i). By Theorem 3.8,
T (n, 1; 2, 4; s − s′) is true if s − s′ ≤ 2(n +1). Hence, our task is to show that the inequality
s′ ≤ ε holds.

It is not hard to prove that the inequality holds for n = 2, and so we may assume that
n ≥ 3. By the definitions of s and s′, we have

2n + 2 − s + s′ = 2n + 2 −
⌊

5
(n+3

3

)

n + 2

⌋

+

⎢
⎢
⎢
⎢
⎢
⎣

⌊
5(n+3

3 )
n+2

⌋

(n + 2)− 5
(n+2

2

)

n + 1

⎥
⎥
⎥
⎥
⎥
⎦

= 2n + 2 +
⎢
⎢
⎢
⎣

⌊
5(n+3)(n+1)

6

⌋
− 5

(n+2
2

)

n + 1

⎥
⎥
⎥
⎦

> 2n + 2 +
⌊

5(n+3)(n+1)
6

⌋
− 5

(n+2
2

)

n + 1
− 1

≥ 2n + 1 + 5(n + 3)

6
− 1

n + 1
− 5(n + 2)

2

= 2n2 − 7n − 15

6(n + 1)
.

It is straightforward to show that f (n) = 2n2−7n−15
6(n+1) is an increasing function. Since f (3) =

−3/4, we can conclude that 2n + 2 − s + s′ ≥ 0. Thus, we completed the proof. ��
Lemma 3.11 T (n, 1; 4, 4) is true for any n ≥ 1.

Proof In order to prove the truth of this statement, it is enough to show that T (n, 1; 4, 4; s)
and T (n, 1; 4, 4; s) are true. Here, we only consider the first case, because the remaining
case can be proved in a similar fashion.
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We use induction on n. Note that T (1, 1; 4, 4; s) is true by Theorem 3.1. It can be also
proved directly that T (2, 1; 4, 4; s) is true. So we may assume that n ≥ 3. Let s′ and ε be

the quotient and remainder in the division of s(n + 2)− 5

(
n + 3

3

)

by n + 1, respectively.

Since (n, 1; 2, 4; s − s′ − ε) is superabundant by Lemma 3.3 and s′ ≥ ε by Lemma 3.4 (i),
the statement T (n, 1; 4, 4; s) can be reduced to T (n −1, 1; 4, 4; s′), T (n, 1; 3, 4; s − s′) and
T (n, 1; 2, 4; s − s′ −ε). By induction hypothesis, T (n −1, 1; 4, 4; s′) is true. It follows from
Lemma 3.10 that T (n, 1; 3, 4; s − s′) is true. Hence, it suffices to prove that the inequality
s − s′ − ε ≥ 3n + 3 holds by Theorem 3.8.

It is not hard to show that the above inequality holds for n = 2. Suppose therefore that
n ≥ 3. Then

s − s′ − ε =
⌊

5
(n+4

4

)

n + 2

⌋

−

⎢
⎢
⎢
⎢
⎢
⎣

⌊
5(n+4

4 )
n+2

⌋

(n + 2)− 5
(n+3

3

)

n + 1

⎥
⎥
⎥
⎥
⎥
⎦− ε

= −

⎢
⎢
⎢
⎢
⎢
⎣

⌊
5(n+4

4 )
n+2

⌋

− 5
(n+3

3

)

n + 1

⎥
⎥
⎥
⎥
⎥
⎦− ε

≥
−
⌊

5(n+4
4 )

n+2

⌋

+ 5
(n+3

3

)

n + 1
− n

≥ −5(n + 4)(n + 3)

24
+ 5(n + 3)(n + 2)

6
− n

= 15n2 + 41n + 60

24
.

One can readily show that 15n2+41n+60
24 ≥ 3n + 3 if n ≥ 3. Thus we completed the

proof. ��
Theorem 3.12 T (n, 1; a, 4) is true for any n ≥ 1 and a ≥ 3.

Proof The proof is by induction on n and a. Note that, since a ≥ 3, T (1, 1; a, 4) is true by
Theorem 3.1. We have also proved that T (n, 1; 3, 4) and T (n, 1; 4; 4) are true for any n ≥ 1
(see Lemmas 3.10 and 3.11).

Assume now that n ≥ 2 and s ∈ {s, s}. Let s′ and ε be the quotient and remainder in the

division of s(n + 1)− 5

(
n + a

a

)

by n + 1, respectively. Note that (n, 1; a − 2, 4; s − s′ − ε)
is superabundant by Lemma 3.3 and s′ ≥ ε by Lemma 3.4 (i). Thus, T (n, 1; a, 4; s) can be
reduced to T (n −1, 1; a, 4; s′), T (n, 1; a −1, 4; s − s′) and T (n, 1; a −2, 4; s − s′ − ε). By
induction hypotheses, these statements are all true. The statement T (n, 1; a, 4; s) is therefore
true by Theorem 2.9. ��
Theorem 3.13 If a, b ≥ 3, then T (n, 1; a, b) is true for any n ≥ 1.

Proof The statement T (1, 1; a, b) is true by Theorem 3.1, because a, b ≥ 3. Suppose now
that n ≥ 2. The proof is by induction on b. Note that T (n, 1; a, 3) is true by Theorem 3.7 and
T (n, 1; a, 4) is true by Theorem 3.12 for any a ≥ 3. Thus, we may assume that b ≥ 5. It is
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enough to prove T (n, 1; a, b; s) and T (n, 1; a, b; s). Assume that s ∈ {s, s}. Let s′ and ε be

the quotient and remainder in the division of s(n + 2)−
(

n + a
a

)

b by n + 1. By induction

hypothesis, T (n, 1; a, b − 1; s − s′) and T (n, 1; a, b − 2; s − s′ − ε) are true. Addition-
ally, Lemma 3.3 implies that (n, 1; a, b − 2; s − s′ − ε) is superabundant, because n ≥ 2.
Lemma 3.4 (i) implies that s′ ≥ ε, since a, b ≥ 3. Note that T (n, 0; a, b; s′) is true if n ≥ 2
with only four exceptions by the Alexander-Hirschowitz theorem [7]. Thus, the statement fol-
lows immediately from Theorem 2.9 if (n, a, s′) �∈ {(2, 4, 5), (3, 4, 9), (4, 3, 7), (4, 4, 14)}.

Since s′ and ε are the quotient and remainder in the division by n + 1, respectively, we
have the following equality:

(n + 1)s′ + ε = s(n + 2)−
(

n + a
a

)

b for 0 ≤ ε ≤ n. (8)

If n = 3 and a = 4, then s = s = s = 7(b + 1), and thus s′ = 8 and ε = 3. So the above
argument implies that T (3, 1; 4, b; s), and hence T (3, 1; 4, b), is true for every b. The same
idea, however, cannot be applied to (n, a) = (2, 5), (4, 3) and (4, 4). Therefore, for each
(n, a) ∈ {(2, 4), (4, 3), (4, 4)} and for each s such that

(

n, a,
s(n + 2)− (n+a

a

)
b − ε

n + 1

)

falls into one of the above cases, we need to prove that T (n, 1; a, b; s) holds in a different way.

Let t and δ be the quotient and remainder in the division of s(n + 2) −
(

n + a − 1
a − 1

)

(b + 1) by n + 1, respectively. Note that (n, 1; a − 2, b; s − t − δ) is superabundant by
Lemma 3.3 and t ≥ δ by Lemma 3.4 (i). So in order to apply Theorem 2.9, we need only to
check that T (n − 1, 1; a, b; t), T (n, 1; a − 1, b; s − t) and T (n, 1; a − 2, b; s − t − δ) are
true. Below, we will consider the above-mentioned three cases separately.
(i) Let (n, a, s′) = (2, 4, 5). From (8), we have 15 + ε = 4s − 15b and 0 ≤ ε ≤ 2. This im-
plies that we can assume that s is an integer of the form s = 15(b+1)+ε

4 for some ε ∈ {0, 1, 2}.
It suffices to prove the truth of T (2, 1; 4, b; s) for such an s.

Let t and δ be the quotient and remainder in the division of 4s−10(b+1) by 3, respectively.
Note that T (1, 1; 4, b; t) is true by Theorem 3.1, T (2, 1; 3, b; s − t) is true for the first part of
the proof. Moreover, T (2, 1; 2, b; s − t −δ) holds by Lemma 3.6 if b is odd. By Theorem 3.8,
the statement is also true for b = 2k if s − t −δ ≥ 3(k +1). Therefore, we need only to verify
that this inequality holds. Assume that b = 2k. Then ε = 1 and 15b ≡ 0 (mod 4), which
implies that k is even. Set k = 2�, so that b = 4� and s = 15�+ 4. Note that we may assume
that � ≥ 2, because b ≥ 5. Thus, t = � 4s−10(b+1)

3 � = � 20�+6
3 � ≤ 7� + 2. By definition,

δ ≤ 2. Thus, we have s − t − δ ≥ (15�+ 4)− (7�+ 2)− 2 = 8� ≥ 6�+ 3 = 3(k + 1).
(ii) Let (n, a, s′) = (4, 3, 7). From (8), we have 35 + ε = 6s − 35b and 0 ≤ ε ≤ 4. This
implies that we may assume that s is an integer of the form s = 35(b+1)+ε

6 with 0 ≤ ε ≤ 4.
Thus, we need to prove T (4, 1; 3, b; s) for such an s.

Let t and δ be the quotient and remainder in the division of 6s − 15(b + 1) by 5. We have
that T (3, 1; 3, b; t) holds by the first part of the proof. By Lemma 3.6, T (4, 1; 2, b; s − t)
is true if b is odd. Additionally, if b = 2k is even, T (4, 1; 2, b; s − t) holds by Theorem 3.8
if s − t ≤ 5k. Thus, it remains only to prove that this inequality holds. Since we know that
ε ≤ 4, we need to take the following two cases into account:

(a) ε = 1, k = 3h, b = 6h, s = 35h + 6;
(b) ε = 3, k = 3h + 1, b = 6h + 2, s = 35h + 18.
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In case (a), t = � 6s−15(b+1)
5 � = 24h + � 21

5 � ≥ 24h + 4. Thus, s − t ≤ (35h + 6) −
(24h + 4) = 11h + 2 ≤ 15h = 5k. In case (b), t = � 6s−15(b+1)

5 � ≥ 24h + 12, and hence
s − t ≤ (35h + 18)− (24h + 12) = 11h + 6 ≤ 5(3h + 1) = 5k.
(iii) Let (n, a, s′) = (4, 4, 14). From (8), we have 70+ε = 6s −70b and 0 ≤ ε ≤ 4. This im-
plies that ε = 2ε′ is even, and we may assume that s is an integer of the form s = 35(b+1)+ε′

3
for ε′ = 0, 1, 2.

Let t and δ be the quotient and remainder in the division of 6s − 35(b + 1) by 5. We have
already shown that T (3, 1; 4, b; t) and T (4, 1; 3, b; s − t) are true. Thus, we only need to
prove T (4, 1; 2, b; s − t − δ). By Lemma 3.6 and Theorem 3.8 , this statement holds either
if b is odd or if b = 2k and s − t − δ ≥ 5(k + 1). Thus, all we have to do is to prove the
above inequality holds. To do so, we consider only the following possible three cases:

(a) k = 3�, ε′ = 1, b = 6�, s = 70�+ 12,
(b) k = 3�+ 1, ε′ = 0, b = 6�+ 2, s = 70�+ 35,
(c) k = 3�+ 2, ε′ = 2, b = 6�+ 4, s = 70�+ 59.

In all these three cases, it is straightforward to show that s − t − δ ≥ 5(k + 1) holds. Thus,
we completed the proof. ��
Corollary 3.14 Let n, a ≥ 1, b ≥ 3,n = (n, 1) and a = (a, b). Then Xn,a is not defective
except for (n, a, b) = (n, 2, 2k).

Proof In the previous theorem, we proved the statement for a, b ≥ 3. So we need only
to consider the cases a = 1, 2. Theorem 3.5 implies that the statement is true if a = 1.
By Remark 3.9 and Theorem 3.6, Xn,(2,b) is defective if and only if b is even. Thus, we
completed the proof. ��
Theorem 3.15 Suppose that T (n,m; 3, 3), T (n,m; 3, 4) and T (n,m; 4, 4) are true for any
n and m. Then, T (m, n; a, b) is true for any a, b ≥ 3.

Proof We have already shown that T (1,m; a, b) is true (see Theorem 3.13). It follows from
Theorem 2.9, Lemma 3.3, and Lemma 3.4 that it is sufficient to prove that T (n,m; 3, b) and
T (n,m; 4, b) are true for every b ≥ 3.

We first prove that T (n,m; 3, b) is true for every b ≥ 3. It has been already proved
in Theorem 3.13 that T (n, 1; 3, b) is true. We know by assumption that T (n,m; 3, 3)
and T (n,m; 3, 4) are true. Thus, the truth of T (n,m; 3, b) immediately follows from
Theorem 2.9.

We can analogously prove that T (n,m; 4, b) is true for every b ≥ 3. Indeed, T (n, 1; 4, b)
holds by Theorem 3.13, and T (n,m; 4, 3) and T (n,m; 4, 4) are true by assumption. Thus,
by Theorem 2.9, T (n,m; 4, b) is also true. ��

4 Classification of s-defective Segre-Veronese varieties with s ≤ 4

This section is devoted to the classification of all the defective sth secant varieties of Segre-
Veronese varieties with s ∈ {2, 3, 4}. Let k ∈ N and let n = (n1, . . . , nk), a = (a1, . . . , ak) ∈
(Z≥0)

k \ {(0, . . . , 0)}. The defective sth secant varieties of Segre varieties, i.e., Segre-
Veronese varieties Xn,a with a = (1k), has been completely classified for such an s in [4]
and for k ≥ 3. On the other hand, it is well known that T (n1, n2; 1, 1; s) is false if and only if
2 ≤ s ≤ min{n1n2}. We thus restrict our attention to the classification of defective sth secant
varieties of Segre-Veronese varieties Xn,a for a > (1k). Let us first reformulate Lemma 2.16
(ii) as follows:
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Lemma 4.1 Suppose that k ≥ 2 and that s ∈ {2, 3, 4}. If the following are satisfied:

(i) m ≥ n;
(ii) a > (1, 1) if k = 2;

(iii) (n; a; s) is subabundant and
(iv) T (n; a; s) is true,

then T (m; a; s) is also true.

Proof If n = m, there is nothing to prove. So we may assume that n < m. Let  = {i ∈
{1, . . . , k} | mi > ni and ai ≥ 1}. Then, we showed that  �= ∅ in Lemma 2.16 (ii).
Lemma 2.16 (ii) also says that, in order to prove this lemma, we only need to establish

s ≤ min
h∈

⎧
⎨

⎩

(
nh + ah − 1

ah − 1

)∏

i �=h

(
ni + ai

ai

)
⎫
⎬

⎭
.

Without loss of generality, we may assume that

(
n1 + a1 − 1

a1 − 1

) k∏

i=2

(
ni + ai

ai

)

= min
h∈

⎧
⎨

⎩

(
nh + ah − 1

ah − 1

)∏

i �=h

(
ni + ai

ai

)
⎫
⎬

⎭

If a ≥ (1k) and k ≥ 3, then

(
n1 + a1 − 1

a1 − 1

) k∏

i=2

(
ni + ai

ai

)

≥
(

n1 + a1 − 1
a1 − 1

)(
n2 + a2

a2

)(
n3 + a3

a3

)

≥
(

n1 + 1 − 1
1 − 1

)(
n2 + 1

1

)(
n3 + 1

1

)

≥ 1 (n2 + 1)(n3 + 1)

≥ 2 · 2

≥ s.

Suppose now that k = 2. If a1 ≥ 2, then
(

n1 + a1 − 1
a1 − 1

)(
n2 + a2

a2

)

≥
(

n1 + 2 − 1
2 − 1

)(
n2 + 1

1

)

≥ (n1 + 1)(n2 + 1)

≥ 2 · 2

≥ s.

Similarly, if a1 = 1 and if a2 ≥ 3, then

(
n1 + a1 − 1

a1 − 1

)(
n2 + a2

a2

)

≥ 4. Suppose now that

(a1, a2) = (1, 2). Analogously, we can immediately check that

(
n1+a1−1

a1 − 1

)(
n2+ai

a2

)

≥3.

Now, assume that s = 4, and note that (n1, 1; 1, 2; 4) is superabundant for every positive
integer n1. Thus, we may assume that n2 ≥ 2. Then, it is straightforward to see that also in

this case

(
n1 + a1 − 1

a1 − 1

)(
n2 + a2

a2

)

≥ 4 = s. ��
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For fixed k ≥ 2, a > (1, 1, 0, . . . , 0) and s ∈ {2, 3, 4}, let us consider the following
partially ordered set:

M = {n ∈ N
k | (n; a; s) is subabundant}.

Lemma 4.1 implies that, in order to prove that T (n; a; s) is true for every n ∈ M , it is enough
to prove that T (n; a; s) is true for every minimal element of M (there are only finitely many
minimal elements in M). In particular, if (1k; a; s) is subabundant and if T (1k; a; s) is true,
then T (n; a; s) is also true for every n ∈ N

k . In this case, T (m; b; s) is also true for every
m ∈ N

� and for every b ∈ N
� with b ≥ a and � ≥ k, by Lemma 2.16 (i) and Lemma 4.1.

One can readily show that there are only finitely many superabundant k-tuple (n; a; s)
if s ∈ {2, 3, 4} except for (n, 1; 1, 2; 3), (n, 1; 1, 2; 4) and (n, 1; 1, 3; 4) with n ≥ 1.
Since we have already proved, in Theorem 3.5, that T (n; a; s) is true for each (n; a; s) ∈
{(n, 1; 1, 2; 3), (n, 1; 1, 2; 4), (n, 1; 1, 3; 4) | n ≥ 1}, we only need to show the truth of a
finite number of statements to complete the classification of defective sth secant varieties of
Segre-Veronese varieties for the desired s.

In order to prove that T (n; a; s) = S(n; a; s; 0; 0) is true for a given (n; a; s), we apply
Theorem 2.13 that allows us to reduce it to proving the truth of two statements of the forms
S(n′; a; s′; 0; s′′) and S(n′′; a; s′′; 0; s′), where (n′; a; s′; 0; s′′) and (n′′; a; s′′; 0; s′) have
the same abundancy. If the truth of at least one of these statements, say S(n′; a; s′; 0; s′′),
is not known yet, then we apply Theorem 2.13 to S(n′; a; s′; 0; s′′). In order to prove that
T (n; a; s) is true, one must repeat the same process over and over until one achieves the state-
ments that are all known to be true. This procedure is sometimes tedious to explicitly describe
with words. To avoid tediousness, we will represent this process by a tree diagram as follows:
Let S(n; a; s; t; v) be a statement one wishes to prove to be true. Then, the application of
Theorem 2.13 can be represented as the following binary tree:

S(n; a; s; t; v)

����������������

����������������

S(n′; a; s′; t ′; v + s′′) S(n′′; a; s′′; t ′′; v + s′)

If the statements at the leaves of the tree are identical, we draw

S(n; a; s; t; v)

��
2 ∗ S(n′; a; s′; t ′; v + s′′)

instead of a usual binary tree. In this case, (n; a; s; t; v) and (n′; a; s′; t ′; v+s′′) should have
the same abundancy.

The tree grows downward until one achieves only leaf nodes, which are known to be true.
By Theorem 2.13, in order to prove that the statement at the root is true, it suffices to show
that the leaf statements are all true and have the same abundancy.

4.1 Case 1: s = 2

Theorem 4.2 T (n; a; 2) is true with the following exceptions:

• k = 1, n1 ≥ 2 and a = 2;
• n = (n1, n2) and a = (1, 1) with 2 ≤ n1 ≤ n2.
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84 H. Abo, M. C. Brambilla

Proof It is known by the Alexander-Hirschowitz theorem that if k = 1, then T (n; a; 2) fails
if and only if n1 ≥ 2 and a1 = 2. Thus, we may assume that k ≥ 2.

Suppose now that a = (1, 2). Then (n; a; 2) is subabundant for every n ∈ N
2. Since

T (1, 1; 1, 2; 2) is true by Theorem 3.1, it follows from Lemma 2.16 and Lemma 4.1 that
T (n; a; 2) are also true for all n ∈ N

2 and for all a ≥ (1, 2).
Note that (13; 13; 2) is equiabundant and T (13; 13; 2) is true. Hence (n; a; 2) are subabun-

dant for all n, a ∈ N
k with k ≥ 3, and Lemma 2.16 and Lemma 4.1 imply that T (n; a; 2) is

true, for any n, a > (13, 0k−3). ��
4.2 Case 2: s = 3

Proposition 4.3 The following statements are true:

(i) T (12, 2; 12, 2; 3);
(ii) T (1, 2, 1; 12, 2; 3).

Proof Each statement can be reduced as in the following diagrams:
(i)

T (12, 2; 12, 2; 3) = S(12, 2; 12, 2; 3; 0; 0)

�� �������������������������

S(0, 1, 2; 12, 2; 2; 0; 1) = S(1, 2; 1, 2; 2; 1; 0) S(0, 1, 2; 12, 2; 1; 0; 2) = S(1, 2; 1, 2; 1; 2; 0)

(ii)

T (1, 2, 1; 12, 2; 3) = S(1, 2, 1; 12, 2; 3; 0; 0)

�� �������������������������

S(0, 2, 1; 12, 2; 2; 0; 1) = S(2, 1; 1, 2; 2; 1; 0) S(0, 2, 1; 12, 2; 1; 0; 2) = S(2, 1; 1, 2; 1; 2; 0)

One can easily check that the following are all subabundant:

(12, 2; 12, 2; 3), (1, 2, 1; 12, 2; 3), (1, 2; 1, 2; 2; 1; 0),
(1, 2; 1, 2; 1; 2; 0), (2, 1; 1, 2; 2; 1; 0), (2, 1; 1, 2; 1; 2; 0).

By Theorem 4.2, S(1, 2; 1, 2; 2; 0; 0) and S(2, 1; 1, 2; 2; 0; 0) are true. Thus, the following
statements are also true by Remark 2.12 (v):

S(1, 2; 1, 2; 2; 1; 0) and S(2, 1; 1, 2; 2; 1; 0).

Likewise, S(1, 2; 1, 2; 1; 2; 0) and S(2, 1; 1, 2; 1; 2; 0) are true, because S(1, 2; 1, 2; 1; 0; 0)
and S(2, 1; 1, 2; 1; 0; 0) are true. Thus, we conclude that

T (12, 2; 12, 2; 3) and T (1, 2, 1; 12, 2; 3)

are true. ��
Proposition 4.4 T (14; 13, 2; 3) is true.

Proof We can reduce this statement as follows:

T (14; 13, 2; 3) = S(14; 13, 2; 3; 0; 0)

�� ��������������������������

S(0, 13; 13, 2; 2; 0; 1) = S(13; 12, 2; 2; 1; 0) S(0, 13; 13, 2; 1; 0; 2) = S(13; 12, 2; 1; 2; 0)
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Theorem 4.2 implies that S(13; 12, 2; 2; 0; 0) is true, from which it follows that S(13; 12, 2;
2; 1; 0) is true. Also, it is clear that S(13; 12, 2; 1; 0; 0) is true, and so S(13; 12, 2; 1; 2; 0) is
true too. Since the following have the same abundancy:

(13; 12, 2; 2; 1; 0), (13; 12, 2; 1; 2; 0) and (14; 13, 2; 3),

we can conclude that T (14; 13, 2; 3) is true. ��

Theorem 4.5 T (n; a; 3) is true with the following exceptions:

• k = 1, n1 ≥ 3 and a = 2;
• n = (n1, n2) with 3 ≤ n1 ≤ n2 and a = (1, 1);
• n = (1, 1) and a = (2, 2);
• n = (1, 1, n) with n ≥ 3 and a = (1, 1, 1);
• n = (1, 1, 1) and a = (1, 1, 2);
• n = (14) and a = (14).

Proof Let k = 1. Then, from the theorem of Alexander and Hirschowitz it follows that
T (n; a; 3) is false if and only if n1 ≥ 3 and a1 = 2. Let us assume that k ≥ 2.

The 11-tuple (15; 15; 3) is subabundant and T (15; 15; 3) is true (see [20] for the proof).
This means that if k ≥ 5, then T (n; a; 3) are true for all n, a ∈ N

k . Thus, we may assume
that k ≤ 4.

Suppose that k = 4. In [4], it was proved that if a = (14), then there are no defective
cases except for n = (14). We have proved in Proposition 4.4 that T (14; 13, 2; 3) is true.
This proves, by Lemma 2.16 and Lemma 4.1, that T (n; a; 3) is true for every n ∈ N

4 and
a ≥ (13, 2). So the theorem holds if k = 4, and hence, we may assume that k ≤ 3.

Let a = (13). Then T (n; a; 3) is true except for n = (12, n) with n ≥ 3 (see [4]). So as-
sume that a > (13). Since T (13; 1, 22; 3) is true (see [9]), it follows from Lemma 2.16
and Lemma 4.1 that if a ≥ (1, 22), then T (n; a; 3) is true for every n ∈ N

3. Note
that (13; 12, 3; 3) is subabundant. Additionally, the truth of T (13; 12, 3; 3) was proved by
Bauer and Draisma [9]. Thus, it remains only to show that T (n; 12, 2; 3) is true except for
(n) = (13). It is not hard to prove that (n; 12, 2; 3) is subabundant for every n ∈ N

3. Since
T (13; 12, 2; 3) is false, we need to show that T (12, 2; 12, 2; 3) and T (1, 2, 1; 12, 2; 3) are
true and we did it in Proposition 4.3. Thus, we may now assume that k = 2.

Suppose that a = (1, 1). It is known that T (n; a; 3) holds if and only if 3 ≤ n1 ≤ n2.
Suppose that a = (1, 2). Then, (n; a; 3) is subabundant if n �= (2, 1), (1, 1). It was already
proved in [9] that T (1, 2; 1, 2; 3) is true. Thus, T (n; 1, 2; 3) is true of n ≥ (1, 2). By Theo-
rem 3.5, T (n, 1; 1, 2; 3) with n ≥ 1 is true, and hence T (n; 1, 2; 3) is true for every n ∈ N

2.
Let a = (1, 3). Then, (n; a; 3) is superabundant if and only if n = (1, 1). Note that

T (1, 1; 1, 3; 3) is true, by Theorem 3.5. It was also proved that both T (1, 2; 1, 3; 3) and
T (2, 1; 1, 3; 3) are true (see [9]), which implies that T (n; 1, 3; 3) is true for any n ∈ N

2.
Next consider a = (1, 4). Clearly, (n; a; 3) is subabundant for every n ∈ N

2. Since
T (1, 1; 1, 4; 3) is true by Theorem 3.5, T (n; 1, b; 3) is also true for each b ≥ 4 and n ∈ N

2.
Let a = (2, 2). Then, T (1, 1; a; 3) is known to be false by Theorem 3.1. Let n = (1, 2).

Then, (n; a; 3) is subabundant. Since (n; 1, 1; 3) is subabundant and since T (n; 1, 1; 3) is true
by Theorem 3.5, T (n; a; 3) is also true. This also proves that T (n; a; 3) is true if n > (1, 1)
and if a ≥ (2, 2). Thus, it remains only to prove that T (12; 2, 3; 3) is true, because (12; 2, 3; 3)
is subabundant. But T (12; 2, 3; 3) is true by Theorem 3.1. Therefore we can conclude that
if k = 2, then T (n; a; 3) fails if and only if n = (n1, n2) with 3 ≤ n1 ≤ n2 and a = (1, 1)
or n = (1, 1) and a = (2, 2). ��

123



86 H. Abo, M. C. Brambilla

4.3 Case 3: s = 4

Let n = (n2, 1) with n ≥ 2 and let a = (12, 2). Then, T (n; a; n + 2) is known to be false by
[15, Corollary 5.5]. Here we give a different, but shorter proof of the same result:

Proposition 4.6 T (n2, 1; 12, 2; n + 2) is false for every n ≥ 2.

Proof Let n = (n2, 1) and let a = (12, 2). The defectivity of σn+2(Xn,a) can be proved by
the existence of a certain rational normal curve in X2n+2 passing through generic (n + 2)
points of Xn,a.

For each i ∈ {1, 2, 3}, let πi the canonical projection from P
n to the i th factor of P

n.
Given generic points p1, . . . , pn+2 ∈ P

n, let qi = π3(pi ) ∈ P
1. Since any ordered sub-

set of n + 2 points in general position in P
n is projectively equivalent to the ordered set

{πi (p1), . . . , πi (pn+2)} for i ∈ {1, 2}, there is a rational normal curve νn,i : P
1 → Cn ⊂ P

n

of degree n such that νn,i (q j ) = πi (p j ) for all j ∈ {1, . . . , n+2}. Let ν = (νn,1, νn,2, id) and
let C = ν(P1). Then, C passes through p1, . . . , pn+2. The image of C under the morphism
given by O(12, 2) is a rational normal curve of degree 2n + 2(= n + n + 2 · 1) in P

2n+2.
Thus, we have

dim σ2n+2(Xn,a) ≤ 2n + 2 + (n + 2)(2n + 1 − 1)

= 2n2 + 6n + 2

< (n + 2)(2n + 2)− 1

= 2n2 + 6n + 3,

and so σ2n+2(Xn,a) is defective. ��
The above proposition only proves that if n = (n2, 1) with n ≥ 2 and a = (12, 2), then

dim σn+2(Xn,a) ≤ 2n2 + 6n + 2. Below, we will show that the equality actually holds.

Proposition 4.7 Let n = (n2, 1) with n ≥ 2 and let a = (12, 2). Then

dim σn+2(Xn,a) = 2n2 + 6n + 2.

Proof The statement T (n; a; n + 2) can be reduced to S(n − 1, n, 1; 12, 2; n + 1; 0; 1) and
S(0, n, 1; 12, 2; 1; 0; n + 1) = S(n, 1; 1, 2; 1; n + 1; 0). Since (n, 1; 1, 2; 1; n + 1; 0) is
subabundant and S(n, 1; 1, 2; 1; 0; 0) is clearly true, it follows that S(n, 1; 1, 2; 1; n + 1; 0)
is also true. We can reduce S(n − 1, n, 1; 12, 2; n + 1; 0; 1) to

S(n − 2, n, 1; 12, 2; n; 0; 2) and S(n, 1; 1, 2; 1; n + 1; 0).

We continue in this manner until we reduce to

S(0, n, 1; 12, 2; 2; 0; n) = S(n, 1; 1, 2; 2; n; 0) and n ∗ S(n, 1; 1, 2; 1; n + 1; 0).

Since (n, 1; 1, 2; 2; n −1; 0) is equiabundant and since S(n, 1; 1, 2; 2; 0; 0) is true by Propo-
sition 4.2, S(n, 1; 1, 2; 2; n − 1; 0) is also true. This proves the truth of S(n, 1; 1, 2; 2; n; 0).
The truth of S(n, 1; 1, 2; 2; n; 0) implies that the linear subspace spanned by σ2(X(n,1),(1,2))
and n generic points coincides with P

3(n+1)−1, while the truth of S(n, 1; 1, 2; 1; n + 1; 0)
implies that the linear subspace spanned by σ1(X(n,1),(1,2)) and n + 1 generic points has
dimension 2n + 2 = (n + 2)+ (n + 1)− 1. Therefore,

dim σn+2(Xn,a) ≥ 3n + 3 + n(2n + 3)− 1

= 2n2 + 6n + 2.

Thus we obtain dim σn+2(Xn,a) = 2n2 + 6n + 2. ��
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Remark 4.8 More generally, let n = (n, n, 1)with n ≥ 2, let a = (1, 1, 2d)with d ≥ 1. As a
particular case of [3, Example 3.7], we know that σs(Xn,a) is defective for any d(n+1)+1 ≤
s ≤ d(n + 1) + n. If � (2d+1)(n+1)

2 � ≤ s ≤ nd + n + d , then (n; a; s) is superabundant.
Thus, dim σs(Xn,a) is expected to be (n +1)2(2d +1)−1. However, there exist a form f1 of
multi-degree (1, 0, d) and a form f2 of multi-degree (0, 1, d), both of which vanish at given
s generic simple points. Thus, the form f = f1 f2 of multi-degree (1, 1, 2d) vanishes at the
s generic double points. So dim σs(Xn,a) < (n + 1)2(2d + 1) − 1, and hence σs(Xn,a) is
defective. It is worth mentioning that these defective cases were first found by Catalisano,
Geramita, and Gimigliano in [18]. When d(n + 1)+ 1 ≤ s ≤ � (2d+1)(n+1)

2 � − 1, the proof
of the defectivity of σs(Xn,a) is not immediate and we refer to [3] for more details. On the
other hand, one can slightly modify the proof of Proposition 4.7 to show that σs(Xn,a) is not
defective if s ≤ d(n + 1) or if s ≥ nd + n + d + 1. Thus, we can conclude that σs(Xn,a) is
defective exactly when d(n + 1)+ 1 ≤ s ≤ d(n + 1)+ n.

Proposition 4.9 Let k ∈ N and let n = (n2, . . . , nk) ∈ N
k−1 and let a = (a2, . . . , ak) ∈

N
k−1 with either a > (1, 1, 0, . . . , 0) or a > (2, 0, . . . , 0). Then, T (1,n; 1, a; 4) is true.

Proof Let n = (n2, . . . , nk) and let a = (a2, . . . , ak). The statement can be reduced as in
the following diagrams:

T (1,n; 1, a; 4) = S(1,n; 1, a; 4; 0; 0)

��
2 ∗ S(0,n; 1, a; 2; 0; 2) = 2 ∗ S(n; a; 2; 2; 0)

Then, (1,n; 1, a; 4) and (n; a; 2; 2; 0) must have the same abundancy. By Theorem 4.2,
S(n; a; 2; 0; 0) = T (n; a; 2) is true because of the assumption on a. Thus, S(n; a; 2; 2; 0)
is true, from which the truth of T (1, n; 1, d; 4) follows. ��

The following is an immediate consequence of Proposition 4.9:

Corollary 4.10 The following statements are true:

(1) T (1, 2; 1, b; 4) are true for b ∈ {3, 4};
(2) T (1, 3, 1; 12, 2; 4);
(3) T (13; 12, 2; 4);
(4) T (13; 1, 22; 4);
(5) T (12, 2; 12, 2; 4);
(6) T (1, 2, 1; 12, 2; 4);
(7) T (13; 12, 3; 4).

Proposition 4.11 The following statements are all true:

(i) T (2, 3, 1; 12, 2; 4);
(ii) T (23; 12, 2; 4);

Proof Each statement in this theorem can be reduced as indicated in the following diagram:
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(i)

T (2, 3, 1; 12, 2; 4) = S(2, 3, 1; 12, 2; 4; 0; 0)

��
2 ∗ S(2, 1, 1; 12, 2; 2; 0; 2)

��
4 ∗ S(2, 0, 1; 12, 2; 1; 0; 3) = 4 ∗ S(2, 1; 1, 2; 1; 3; 0)

(ii)

T (23; 12, 2; 4) = S(23; 12, 2; 4; 0; 0)

�� ��������������������������

S(12, 2; 12, 2; 2; 0; 2)

��

S(0, 22; 12, 2; 2; 0; 2) = S(22; 1, 2; 2; 2; 0)

2 ∗ S(0, 22; 12, 2; 1; 0; 3) = 2 ∗ S(22; 1, 2; 1; 3; 0)

Note that the following are all subabundant:

(2, 3, 1; 12, 2; 4), (2, 1; 1, 2; 1; 3; 0), (23; 12, 2; 4), (22; 1, 2; 2; 2; 0), (22; 1, 2; 1; 3; 0).

Since S(22; 1, 2; 2; 0; 0) is true by Theorem 4.2, so is S(22; 1, 2; 2; 2; 0). Furthermore,
both S(2, 1; 1, 2; 1; 0; 0) and S(22; 1, 2; 1; 0; 0) are true. Thus, S(2, 1; 1, 2; 1; 3; 0) and
S(22; 1, 2; 1; 3; 0) are also true. This means that all the statements that appear at the leaf
nodes in each tree are true. Thus, also T (2, 3, 1; 12, 2; 4) and T (23; 12, 2; 4) are true. ��
Proposition 4.12 T (14; 13, 2; 4) is true.

Proof This statement can be reduced as follows:

T (14; 13, 2; 4) = S(14; 13, 2; 4; 0; 0)

��
2 ∗ S(0, 13; 13, 2; 2; 0; 2) = 2 ∗ S(13; 12, 2; 2; 2; 0)

The classification of defective second secant varieties of Segre-Veronese varieties
(Theorem 4.2) implies that S(13; 12, 2; 2; 0; 0) is true, from which the truth of S(13; 12,

2; 2; 2; 0) follows. Since (13; 12, 2; 2; 2; 0) and (14; 13, 2; 4) have the same abundancy, we
conclude that T (14; 13, 2; 4) is true. ��
Theorem 4.13 Let k ∈ N and let n, a ∈ N

k . Then, T (n; a; 4) is false if and only if (n; a)
falls into one of the following cases:

• (n; a) = (n, 2) with n ≥ 4;
• n = (n1, n2) with 4 ≤ n1 ≤ n2 and a = (1, 1);
• (n; a) = (1, 2; 22);
• (n; a) = (23; 13);
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• (n; a) = (1, 2, n; 13) with n ≥ 4;
• (n; a) = (22, 1; 12, 2).

Proof The Alexander-Hirschowitz theorem says that if k = 1, then T (n; a; 4) fails if and
only if (n; a) = (n, 2) with n ≥ 4. Thus, we may assume that k ≥ 2.

The 11-tuple (15; 15; 4) is subabundant, and the truth of T (15; 15; 4) has been proved by
Catalisano, Geramita and Gimigliano (see [20]). This means that if k ≥ 5, then T (n; a; 4) is
true for all n, a ∈ N

k . Thus, we may assume that k ≤ 4.
Suppose first that k = 4. In [4], it was proved that there are no defective cases if a = (14).

Note that (13, 2; 14; 4) is equiabundant. Thus, it follows from Lemma 2.16 and Lemma 4.1
that T (n; a; 4) is true for every n ∈ N

k with n ≥ (13, 2) and for every a ∈ N
k . Moreover,

we have already proved that T (14; 13, 2; 4) is true (see Proposition 4.12). This proves that
T (14; a; 4) is true for every a ∈ N

4. So the theorem holds if k ≥ 4, and thus, we may assume
that k ≤ 3.

Suppose now that k = 3. In [4, Theorem 4.6], T (n; 14; 3)was proved to be true except for
n = (23) and n = (1, 2, n)with n ≥ 4. So we may assume that a > (13). In Corollary 4.10 it is
proved that T (13; 1, 22; 4) and T (13; 12, 3; 4) are true. Since (13; 1, 22; 4) and (13; 12, 3; 4)
are both subabundant, it follows that T (n; a; 4) is true for every n ∈ N

3 if a ≥ (12, 3) or
a ≥ (1, 22). This means that it remains only to prove the truth of T (n; 12, 2; 4) for every
n ∈ N

3 except for n = (22, 1). A 7-tuple (n; 12, 2; 4) is not equiabundant, but superabundant
precisely when n = (13) and (1, 2, 1). Additionally, we have proved that T (22, 1; 12, 2; 4)
is false in Proposition 4.7. Thus, all we need to do is show that T (n; 12, 2; 4) are true for
all n ∈ {(13), (1, 2, 1), (1, 3, 1), (12, 2), (23), (2, 3, 1)}. Those statements were, however,
proved to be true in Corollary 4.10 and Proposition 4.11.

Finally, assume that k = 2. In [9] it was already proved that T (12; a; 4) is true for every
a ∈ N

2 and that T (1, 2; a; 4) is true for every a ∈ N
2 except for a = (2, 2). Since the

5-tuple (12; 2, 3; 4) is equiabundant and the statement T (12; 2, 3; 4) is true, we conclude,
by Lemma 2.16 and Lemma 4.1, that T (n; a; 4) is true for every a ≥ (2, 3) and every
n ∈ N

2. This means that to complete the proof it is enough to prove the truth of T (n; a; 4)
for a = (1, d) with d ≥ 2 and for a = (2, 2).

Assume first that a = (2, 2). The 5-tuple (22; 22; 4) is subabundant and the statement
T (22; 22; 4) is true by Example 2.15 and Remark 2.12 (ii), because the 5-tuple (22; 22; 5) is
also subabundant. So, by Lemma 4.1, we conclude that T (n; 22; 4) is true for every n ≥ (2, 2).

We now consider the case a = (1, d). Note that T (12; 1, 5; 4) is true and (12; 1, 5; 4)
is equiabundant. Thus, by Lemma 2.16 and Lemma 4.1, T (n; 1, d; 4) is also true for all
d ≥ 5 and for any n ∈ N

2. If d = 4, (12; 1, 4; 4) and (2, 1; 1, 4; 4) are the only non-
subabundant 5-tuples. Thus T (n; 1, 4; 4) is true for every n, because the truth of T (n; 1, 4; 4)
was already proved to be true for every n ∈ {(12), (2, 1), (3, 1), (1, 2)}. Let d = 3. It is
straightforward to prove that (n; 1, 3; 4) is not subabundant if and only if n = (m, 1) with
m ≥ 1, and T (m, 1; 1, 3; 4) is true for every m ≥ 1, by Theorem 3.5. Furthermore, we
proved in Corollary 4.9 that T (1, 2; 1, 3; 4) is true. This means that T (n; 1, 3; 4) holds for
every n ∈ N

2. Finally, suppose that d = 2. It is immediate to show that (n; 1, 2; 4) is not
subabundant if and only if n = (1, 2),n = (2, 2) or n = (m, 1) with m ≥ 1. This means
that, in order to prove the truth of T (n; 1, 2; 4) for every n ∈ N

2, it is sufficient to show that
T (n; 1, 2; 4) is true for every n ∈ {(1, 2), (1, 3), (2, 2), (2, 3), (m, 1) with m ≥ 1}. In [2], it
was proved that T (1, n; 1, 2; 4) are true for n = {2, 3} and that T (2, 3; 1, 2; 4) is true. The
truth of T (2, 2; 1, 2; 4) was shown in [1]. Finally T (m, 1; 1, 2; 4) is true for every m ≥ 1,
by Theorem 3.5. Thus we completed the proof. ��

123



90 H. Abo, M. C. Brambilla

5 Conjectures

The main purpose of this section is to give a conjectural complete list of defective two-factor
Segre-Veronese varieties. The first part of this section is devoted to collecting some results
on defective secant varieties of Segre-Veronese varieties. To start with, we would like to
consider the so-called “unbalanced” Segre-Veronese varieties.

Definition 5.1 Let n = (n1, . . . , nk) ∈ N
k and let a = (a1, . . . , ak−1, 1) ∈ N

k .

• (n; a) is said to be balanced if nk ≤ ∏k−1
i=1

(
ni + ai

ai

)

−∑k−1
i=1 ni .

• (n; a) is said to be unbalanced if nk ≥ ∏k−1
i=1

(
ni + ai

ai

)

−∑k−1
i=1 ni + 1.

The notion of “unbalanced” was first introduced for Segre varieties (see for example [17]
and [4]). Then, it was extended to Segre-Veronese varieties in [19]. The following theorem
was proved by Catalisano, Geramita, and Gimigliano:

Theorem 5.2 ([19]) Let n = (n1, . . . , nk) ∈ N
k and let a = (a1, . . . , ak−1, 1) ∈ N

k .
Suppose that (n; a) is unbalanced. Then, T (n; a; s) fails if and only if

k−1∏

i=1

(
ni + ai

cai

)

−
k−1∑

i=1

ni < s < min

{

nk + 1,
k−1∏

i=1

(
ni + ai

ai

)}

. (9)

Remark 5.3 Let n and a be as given in the above theorem. Then, Xn,a is defective if and
only if Inequalities (9) have an integer solution. Since (n, a) is unbalanced, if nk + 1 ≤
∏k−1

i=1

(
ni + ai

ai

)

, then (9) must have at least one integer solution.

Suppose now that nk + 1 >
∏k−1

i=1

(
ni + ai

ai

)

, then (9) have an integer solution if and

only if

k−1∏

i=1

(
ni + ai

ai

)

−
[

k−1∏

i=1

(
ni + ai

ai

)

−
k−1∑

i=1

ni

]

=
k−1∑

i=1

ni > 1.

This inequality holds unless k = 2 and n1 = 1. Thus, if (n, a) is unbalanced and if (k, n1) �=
(2, 1), then Xn,a is defective.

Many other examples of defective secant varieties of two-factor Segre-Veronese varieties
have also been discovered by several authors. In Table 1 below, we provide the list of such
defective secant varieties.

Remark 5.4 For an explanation of the cases where the degree is (1, 2), we refer to [2, Remark
5.1]. The defective cases of degree (2, 2) are explained in [19, Section 3].

We are now in position to state our conjecture:

Conjecture 5.5 Let n = (m, n) ∈ N
2, let a = (a, b) ∈ N

n and let Xn,a be the Segre-
Veronese variety P

m × P
n embedded by OPm×Pn (a). Then, Xn,a is defective if and only if

(n, a) falls into one of the following cases:
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Table 1 Defective Segre-Veronese varieties

n a s References

(1) (2, 2k + 1) (1, 2) 3k + 2 [27]

(2) (4, 3) (1, 2) 6 [16]

(3) (1, 2) (1, 3) 5 [23,16]

(4) (1, n) (2, 2) n + 2 ≤ s ≤ 2n + 1 [18,19,14]

(5) (2, 2) (2, 2) 7,8 [18,19]

(6) (2, n) (2, 2)
⌊

3n2+9n+5
n+3

⌋
≤ s ≤ 3n + 2 [18,12]

(7) (3, 3) (2, 2) 14,15 [18,19]

(8) (3, 4) (2, 2) 19 [12]

(9) (n, 1) (2, 2k) kn + k + 1 ≤ s ≤ kn + k + n [6]

(a) (n; a) = (m, n; a, 1) is unbalanced and m ≥ 2.
(b) n = (1, n) and a = (2k, 2) with k ≥ 1.
(c) n = (4, 3), (2, n) with n odd and a = (1, 2).
(d) n = (1, 2) and a = (1, 3).
(e) n = (2, 2), (3, 3), (3, 4) and a = (2, 2).

Evidence for this conjecture was provided by the quoted results of many authors. Further
evidence in support of the conjecture was obtained via computation. Theorem 3.15 suggests
the following little weaker conjecture:

Conjecture 5.6 Let n, a and Xn,a be as given in Conjecture 5.5. If a ≥ (3, 3), there are no
defective two-factor Segre-Veronese varieties Xn,a for all n ∈ N

2.

A substantial amount of effort has been made to complete the list of defective secant
varieties of two-factor Segre-Veronese varieties Xn,a for a given (n, a). In Table 2, we list
the cases that have been fully understood. Please refer to Table 1 for the exceptions.

Table 2 List of known cases

n a Exceptions References

(1, n) (1, 2) None [16]

(2, n) (1, 2) (1) [2]

(n, n − 1) (1, 2) (2) [1]

(n, n) (1, 2) None [1]

(k, n) (1, k + 1) None [18]

(1, 2) (1, b) (3) [23]

(n, 1) (1, b) None [22]

(m, n) (1, b) with b ≥ 3 and (m + n + 1)|
(

n + b

b

)

None [11]

(n, 1) (2, b) (9) [6]

(n, 1) (3, b) (3) [6]

(1, 1) (a, b) (9) [18]

(n, 1) (a, b) with b ≥ 3 (9) Theorem 1.2
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