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Abstract We prove some results on the geometry of the level sets of harmonic functions,
particularly regarding their ‘oscillation’ and ‘pinching’ properties. These results allow us to
tackle three recent conjectures due to De Carli and Hudson (Bull London Math Soc 42:83–
95, 2010). Our approach hinges on a combination of local constructions, methods from
differential topology and global extension arguments.
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1 Introduction and statements

The study of level sets of harmonic functions is a central topic in the geometric theory of
PDEs dating back to the origins of potential theory. Topologically, a landmark result is the
analysis of the connection between the families of level curves of a harmonic function in the
plane and foliation theory [5,15]. The extension of these results to higher dimensions is a
long-standing open problem explicitly stated by Rubel and collected in [6,17] (cf. also [11]).
The geometric part of the problem (which is also rather subtle, as evidenced by the examples
in [12,13]) has also attracted considerable attention; in particular, an aspect that has been
extensively studied is that of the curvature and shape of level sets (see e.g., [1,9,16,20,21,24]
and references therein).

Recently, De Carli and Hudson [8] analyzed the geometry of level curves of harmonic
functions on the plane, deriving several interesting results and concluding their study with
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50 A. Enciso, D. Peralta-Salas

four conjectures. Our objective in this paper is to further investigate the geometric properties
of these curves (e.g., ‘oscillation’, ‘concentration’, and ‘pinching’), thereby proving or dis-
proving three of the latter authors’ conjectures. Unlike De Carli and Hudson’s, the techniques
we shall employ are not restricted to the case of harmonic functions in the plane, and in fact
we shall also present generalizations to higher dimensions and more general elliptic equa-
tions of second order. For the sake of brevity, we will refer to [8] for the precise statements
of De Carli and Hudson’s conjectures. We will denote by Bn

r (x) the ball in R
n centered at

x of radius r ; when n = 2 or x = 0, the superscript or the center will be respectively omitted
for the ease of notation.

The first conjecture of De Carli and Hudson roughly asserts [8, Conjecture 5.1] that the
zero set Z of a harmonic function u in the plane cannot contain an ‘almost closed’ curve.
Moreover, in the Introduction of [8], it is also suggested that one should also check whether
this conjecture holds true at least under the additional assumption that u is a harmonic poly-
nomial. Our first theorem disproves this conjecture even in this case:

Theorem 1.1 For any ε > 0, there exist a bounded planar domain D ⊃ B1 with C∞ bound-
ary γ , a connected subset γε ⊂ γ of length at most ε and a harmonic polynomial in R

2 which
is positive in the domain D and whose zero set Z contains γ \γε .

The second conjecture [8, Conjecture 5.3] asserts that if u is a harmonic function in R
n

and vanishes identically on Bn−1
1 × {0}, then u = 0 on R

n−1 × {0}. This is a concrete ques-
tion concerning one of the basic problems addressed by the aforementioned authors, namely,
under which conditions the fact that the zero set Z of u contains a subset S ⊂ R

n implies
that u must vanish on a set strictly larger than S. In a much more general context, this sort
of problems was also addressed in [3]. In this direction, one can easily prove the follow-
ing result, which in particular shows the validity of De Carli and Hudson’s third conjecture
(and whose first part obviously holds for any elliptic equation of second order with analytic
coefficients):

Theorem 1.2 Let u satisfy �u = 0 in a domain D ⊆ R
n. If M is an m-dimensional real

analytic submanifold of D and the zero set Z of u contains a nonempty, relatively open
subset of M, then M ⊆ Z. If M is a compact, boundaryless hypersurface of R

n, then u is
identically 0.

It is worth emphasizing that this is a qualitative result whose proof relies on the general
theory of real analytic functions not on fine quantitative estimates. Recent related results
relying on this kind of estimates (which often apply to less regular problems) are given, e.g.,
in [2,4,7] and references therein.

Qualitatively, the third conjecture [8, Conjecture 5.4] asserts that as the zero set Z of a
harmonic function cannot wiggle arbitrarily by the results of De Carli and Hudson, a small
region of space should not contain a large concentration of arc length of Z . We shall next
show, however, that this is not necessarily the case, at least when one considers a connected
component of Z instead of the whole (possibly disconnected) set Z :

Theorem 1.3 For any positive reals r < R and η < 1, there exist a harmonic polynomial
in R

2 and a connected component Z0 of its zero set Z such that

|Z0 ∩ Br | > η |Z0 ∩ BR | .
Whether the above inequality also holds true for Z instead of Z0, as in De Carli and

Hudson’s statement, remains open, since the techniques we have used to construct our coun-
terexample do not allow us to control the appearance of further connected components.
Notice, moreover, that we do not have any control over the degree of the harmonic polynomial.
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The proofs of Theorems 1.1–1.3 are respectively presented in Sects. 2–4. The idea of the
proof of Theorems 1.1 and 1.3 is to start with a curve with the same properties as the level set
we are looking for and construct a harmonic function in a neighborhood of this curve vanish-
ing on the curve and having a suitably controlled gradient. Then, we approximate this local
harmonic function by a harmonic polynomial and resort to appropriate stability arguments
to derive the result. It is worth mentioning that this kind of strategy, which combines analytic
approximation results and topological stability theorems, has been successfully applied to
deal with periodic trajectories of solutions of the Euler equation of Fluid Mechanics [10]. On
the contrary, the proof of Theorem 1.2 is elementary and follows from standard arguments
in real analytic geometry.

To conclude, it is worth mentioning that the techniques we use to prove Theorems 1.1
and 1.3 do not really depend on the dimension and can be trivially adapted to construct har-
monic polynomials in R

n whose zero set has a connected component of prescribed geometry
in a compact set (up to a small deformation). Nonetheless, in this paper, we have preferred
to focus on the simpler two-dimensional statements, which are easier to visualize and suffice
to prove De Carli and Hudson’s conjectures. For the benefit of the reader, we state the higher
dimensional generalizations explicitly, where we are taking also into account the important
Remarks 2.2 and 4.2, respectively, given in Sects. 2 and 4:

Theorem 1.4 Let D be a smooth bounded domain of R
n whose complement R

n\D is con-
nected and let us take a point z ∈ ∂ D. Then, for any ε > 0, there exists a diffeomorphism of
R

n, arbitrarily close to the identity in the C0-norm, which maps the hypersurface ∂ D\Bn
ε (z)

into the zero set of a harmonic polynomial.

Theorem 1.5 Let S be any smooth, properly embedded open hypersurface of R
n. Then, for

any R > 0, there is a diffeomorphism of R
n, arbitrarily close to the identity in the C1-norm,

which transforms S ∩ Bn
R into the zero set of a harmonic polynomial.

These results also hold true for any scalar linear elliptic equation with real analytic coef-
ficients at the expense of not having polynomial but analytic solutions. Indeed, the whole
proof carries over to this case except Paramonov’s theorem on approximation by harmonic
polynomials, which must be replaced by the Lax–Malgrange theorem [22, Theorem 3.10.7].

2 Proof of Theorem 1.1

In this section, we shall show that there exists a harmonic polynomial whose zero set has a
‘pinched’ component, in the sense specified in the statement of the theorem. As we will see,
the method of proof we employ, which is of separate interest, is extremely versatile and can
be used to deal with much more general geometries than that of the statement (cf. Remark 2.2
below).

Let us now begin with the proof of the theorem. To construct the domain D appearing
in the statement of the theorem, we will make use of an auxiliary domain D1. In order to
construct the latter, for any x < 4 and ε > 0, let us introduce the notation Rx,ε for the open
rectangle (x, 4) × (− ε

4 , ε
4

) ⊂ R
2. Consider the bounded domain with piecewise smooth

boundary

D0 := B2 ∪ R0,ε,

and let us denote by D1 a C∞ domain obtained by rounding off the corners of D0. We can
safely assume that ∂ D1 coincides with ∂ D0 but in a small neighborhood of the corners of
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Fig. 1 The domain D1 and the sets W and L

∂ D0 (say, in balls of radius at most ε/4). It is natural to assume that

D0 ⊂ D1\ ([3,∞) × R) and D1\ ((−∞, 3] × R) ⊂ D0,

i.e., that the corners of D0 are rounded off from the outside at B2 ∩ R0,ε and from the inside
at the rightmost side of the rectangle R0,ε (See Fig. 1 above).

Now, we introduce the Green’s function of the domain D1, which constitutes a natural
means of finding a nonnegative harmonic function in “most” of D1 (that is, in D1 minus
a point) having the boundary of D1 as its zero set. Therefore, let y = (y1, y2) be a point
of D1 with y1 > 3 and denote by G : D1\{y} → R the Dirichlet Green’s function of D1

with a pole at y, which satisfies the equation �G = −δy in D1 and the boundary condition
G|∂ D1 = 0. Here, δy denotes the Dirac measure supported at y. Obviously G is positive in
D1\{y} and smooth in D1\{y} by the maximum principle and standard regularity results. It
is well known that the maximum principle also implies that any level set of G is necessarily
connected.

By Hopf’s boundary point lemma [14, Lemma 3.4], the gradient of G does not vanish on
∂ D1 (and therefore in a half neighborhood of ∂ D1, by continuity), so G−1(t) is a smooth
closed curve for small enough t . (Actually, one can prove that ∇G is nonzero everywhere,
but we shall not need this fact). Let us fix a small t0 > 0 and consider the open set

W := D1\
(
R3,ε ∪ G−1((0, t0))

)
.

The situation is sketched in Fig. 1; one should notice that the definition of D1 ensures that W
is connected and contained in D0. We can take t0 small enough so that G−1((0, 3t0)) does
not intersect B1 and ∇G is nonzero in G−1((0, 3t0)).

By construction, G is harmonic in the closure of W (that is, �G = 0 in a neighborhood
of W ) and R

2\W does not have any compact components. Therefore, a theorem of Paramo-
nov [23] ensures that for any δ > 0, there exists a harmonic polynomial u : R

2 → R, which
approximates G in the set W in the C1 norm:

‖G − u‖C1(W ) := sup
W

(|G − u| + |∇G − ∇u|) < δ. (1)

We will see later on that, for δ small enough, u is the harmonic polynomial whose existence
is claimed in the statement, up to an additive constant. A key property of the level curves of
this polynomial is established in the following

Lemma 2.1 Let t0 be defined as above and take a positive constant

δ < min

(
t0, inf

G−1((0,3t0))
|∇G|

)
.
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Then, u−1(2t0)∩W is a smooth connected curve and divides W in two connected components.

Proof Let us consider the set

Aδ := G−1((2t0 − δ, 2t0 + δ)) ∩ W

and the line segment

L := {
(x1, x2) ∈ D1 : x1 = 3

}
.

Clearly, L ∩ Aδ has two connected components, one in the upper half-plane and one in
the lower half-plane. We recall that a function f is transverse to a curve � in a set S if, for
any point x ∈ � ∩ S,∇ f (x) is not orthogonal to the curve’s tangent vector at the point. By
the definitions of L and of the domain D1 and by the fact that the normal derivative of G at
∂ D1 is nonzero, G is transverse to L on ∂ D1. Hence, by continuity, t0 can be chosen small
enough so that G is transverse to L in Aδ for all δ � t0. The C1 approximation (1) ensures
that u is also transverse to L in Aδ if δ is chosen small enough.

Since ∇G is nonzero in G−1((0, 3t0)), by the definition of δ and Eq. (1), it follows that
∇u does not vanish on u−1(2t0) ∩ W , which implies that u−1(2t0) ∩ W is a smooth curve
contained in Aδ . Rolle’s theorem then ensures that u−1(2t0) ∩ L ∩ Aδ consists of precisely
two points, one in the upper component of L ∩ Aδ and one in the lower. From this, one can
readily infer that u−1(2t0) ∩ Aδ is connected. In order to see this, notice that u−1(2t0) ∩ Aδ

cannot contain a closed curve by harmonicity and cannot intersect G−1(2t0 + δ) ∩ W or
G−1(2t0 − δ) ∩ W by Eq. (1), so each component must intersect L at two distinct points. As
u−1(2t0) ∩ L ∩ Aδ consists of exactly two points, it stems that u−1(2t0) ∩ W is connected
and divides W in two components. �


By Lemma 2.1, u−1(2t0) divides W in two connected components. Let us denote by D2

the component of W\u−1(2t0) where v := u−2t0 is positive, which by construction contains
the ball B1. Let us fix a point z = (z1, z2) of u−1(2t0) ∩ W with z1 < 0 and let � be the
component of ∂ D2\R5/2,ε connected with z. Since both endpoints of the smooth curve � are
contained in the set

{
(x1, x2) ∈ R

2 : x1 = 5/2, |x2| < ε/4
}
,

the distance between them is at most ε/2, so it is standard that one can take a smooth arc
γε ⊂ D2 of length smaller than ε connecting the endpoints of � and such that γ := � ∪ γε is
a smooth closed curve. The theorem then follows upon noticing that the harmonic polynomial
v is positive in the domain D ⊃ B1 enclosed by γ and vanishes on �.

Remark 2.2 In fact, with the above argument, we have proved a stronger result than stated
in Theorem 1.1: we have proved that there exists a diffeomorphism (obtained by dragging
along the curves transverse to ∂ D1), which maps γ \γε into the zero set of the harmonic
polynomial v and is arbitrarily close to the identity in the C0-norm. The geometry of the
curve γ is inessential, and the method of proof can be obviously applied to any other closed
curve without self-intersections.

Remark 2.3 It is worth pointing out that De Carli and Hudson’s conjectures [8, Conjecture
5.1] are false even for quadratic harmonic polynomials if the region enclosing the ball B1,
which is determined by the zero set of the polynomial and the line segment of length at most ε,

is allowed to be unbounded. Indeed, the harmonic polynomial v(x, y) := (y −3)2 − x2 + ε2

4
is an explicit counterexample, since the union of the zero set of v and the segment {y =
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Fig. 2 An asymptotically pinched level set

3, |x | < ε/2} (which has length ε) divides the plane into four connected components, and
the function v is positive in the component that contains the ball of radius 1 centered at the
origin.

What is true, as suspected by De Carli and Hudson, is that a harmonic polynomial v(x, y)

cannot have an ‘asymptotically pinched’ level set, as the one displayed in Fig. 2. This can
be readily proved using that, up to a multiplicative constant and a rigid motion, the highest
order homogeneous term of v(x, y) is the real part of the complex polynomial z p , where p
is the degree of v. By looking at the auxiliary polynomial

ṽ(x, y) := (
x2 + y2)p

v

(
x

x2 + y2 ,
y

x2 + y2

)
,

which by the latter observation has the asymptotics

ṽ(r cos θ, r sin θ) = r p cos pθ + O(r p+1)

in polar coordinates, it is not difficult to prove that, sufficiently far away from the origin, the
zero set of v consists of 2p branches asymptotic to the straight lines of angles θ = πk/p,
with 0 � k � 2p −1. On the contrary, non-polynomial harmonic functions can have asymp-
totically pinched level sets, as evidenced by the function u(z) := Im eez − 1.

3 Proof of Theorem 1.2

Since u is harmonic in D, it is well known that u is real analytic in D [14], which is the
only property of u we need to prove the theorem. The argument is totally standard but we
include it here for completeness; notice that this result also follows after an easy discussion
from [2, Remark 2.1], where maximal analytic extensions are considered.

Before providing the proof, let us recall that the fact that M is an m-dimensional real ana-
lytic submanifold of a domain D ⊆ R

n means that M is a connected, locally arc-connected
subset of D, which is a real analytic manifold with the induced topology, and that the inclu-
sion map j : M → D is a real analytic embedding. For simplicity of notation, we will always
identify a set U ⊂ M with its embedded image j (U ).

By the hypotheses of the theorem, there is a set U relatively open in M that is contained
in Z but M\Z is nonempty (and relatively open in M , since Z is closed). There is no loss of
generality in assuming that U is connected and maximal in the sense that there is no open
connected subset of M properly containing U and contained in Z .

Let us take a point y ∈ ∂U . As M is a real analytic m-manifold, there are a relatively open
neighborhood B of y in M , a ball Bm

r in R
m and a real analytic diffeomorphism ϕ : B → Bm

r
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(a) (b)

Fig. 3 Construction of the curve γ and of the normal deformation

mapping y to 0. Consider the real analytic function v : Bm
r → R given by

v := u ◦ ϕ−1.

As v is real analytic, the radius of convergence ρv(x) of the Taylor expansion of v at a point
x is positive. Let us set

ρ := inf
x∈Bm

r/2

ρv(x) ∈ (0, r)

and let z be a point in Bm
ρ/2 ∩ ϕ(U ). The Taylor expansion of v at z is obviously identically

zero because v vanishes identically in a neighborhood of z. However, since |z| < ρ/2 and
the radius of convergence of the aforementioned Taylor series is at least ρ, v is guaranteed

to vanish in ϕ(U ) ∪ Bm
ρ/2. This means that u vanishes in U ∪ ϕ−1

(
Bm

ρ/2

)
, which is strictly

larger than U , thereby contradicting the maximality of U and completing the proof of the
theorem.

4 Proof of Theorem 1.3

Let us start by constructing a curve γ having the same properties as the level curve we are
looking for. To this end, we take some η′ ∈ (η, 1) and an open, connected, real analytic curve
γ ⊂ R

2 without self-intersections such that

|γ ∩ Br | > η′ |γ ∩ BR | . (2)

We can assume that γ looks approximately as in Fig. 3a above. It is standard that such a
curve can be constructed from a piecewise linear curve satisfying an inequality analogous
to (2) using Whitney’s approximation theorem [19].

Let us choose an orientation of γ and denote by ν(x), the corresponding unit normal at
a point x ∈ γ . A natural way to define a harmonic function associated with γ and having
some control on its zero set and on its gradient is via the following Cauchy problem:

�v = 0, v|γ∩B5R = 0,
∂v

∂ν

∣∣∣∣
γ∩B5R

= 1. (3)

The intersection with the ball B5R has been introduced for convenience. The Cauchy–
Kowalewski theorem ensures the existence of a solution v to the above problem in a neigh-
borhood of γ ∩ B5R ; by the boundedness of B5R , one can therefore assume that v is defined
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in the closure of

U := {x ∈ B4R : |σ(x)| < c}
for sufficiently small c. Here, σ denotes the signed distance function to γ , which is real
analytic if c is small enough [18] and satisfies |∇σ | = 1. We can also assume that U contains
the component of v−1([−a, a]) ∩ B4R connected with γ ∩ B4R for some a > 0. It should be
noticed that as the gradient of v does not vanish on γ ∩ B5R , by the implicit function theorem

v−1(0) ∩ U = γ ∩ U (4)

provided c is sufficiently small.
Since obviously R

2\U does not have any compact components, a theorem of Paramo-
nov [23] yields a harmonic polynomial u : R

2 → R such that

‖u − v‖C2(U ) :=
∑

|α|�2

sup
U

|Dα(u − v)| < δ, (5)

where δ is a small quantity to be specified later. Setting Z := u−1(0), Eq. (5) implies that
Z ∩ U ⊂ v−1((−δ, δ)), so Z ∩ U does not intersect the curves σ−1(±c) ∩ U if δ < a.

As ∇σ(x) = ν(x) for each x ∈ γ , it stems from (3) that

∇σ · ∇v �= 0 (6)

on γ ∩ B5R . By continuity, the inequality (6) will also hold true in U for small enough c, so
we can assume that

inf
U

|∇σ · ∇u| > 0 (7)

for δ < infU |∇σ · ∇v|.
We shall next show that u satisfies the properties we claimed in the statement of the the-

orem by using a diffeomorphism, constructed as the time-1 flow of a vector field, mapping
the intersection of the curve γ with the ball BR into the zero set of u. In order to do so, for
each z ∈ γ ∩ B2R let us define a parameterized normal curve ξz : (−c, c) → U by

ξz(s) := z + s ν(z).

As ∇σ(ξz(s)) = ν(z) for all s, it is clear that

d

ds
u(ξz(s)) = ∇u(ξz(s)) · ∇σ(ξz(s)) �= 0 (8)

by (7) for each fixed z ∈ γ ∩ B2R and all s ∈ (−c, c). Since [−a, a] ⊂ v(ξz(−c, c)) for
all z ∈ γ ∩ B2R and δ < a, we can ensure that u ◦ ξz has a zero in (−c, c) by (5). This
zero, which we shall call σ̄ (z), is necessarily unique by Eq. (8) and Rolle’s theorem, which
means that Z ∩ U ∩ B2R is connected. We can then denote by Z0 the unique component of
Z connected with U ∩ B2R .

Let χ : R
2 → [0, 1] be a C∞ function equal to 1 in v−1((−2δ, 2δ))∩ U ∩ B3R and equal

to 0 in
(
R

2\U
) ∪ {

x ∈ U ∩ B3R : |v(x)| > δ1/2 + 2δ
}
. (9)

We assume δ < a/3 so that

v−1((−2δ, 2δ)) ∩ B3R ∩ U ⊂ U.
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From (7), it stems that

dist(x, γ ) < C δ′ (10)

for all x ∈ U with |v(x)| < δ′ and all δ′ < a, so we can safely assume that

sup
R2

|∇χ | < C1 δ−1/2 (11)

for some constant independent of δ. Consider the set

V := {ξz(s) : z ∈ γ ∩ B2R, |s| < c},
which is contained in U and define a C∞ vector field X in V by setting

X (ξz(s)) := σ̄ (z) χ(ξz(s))∇σ(ξz(s)) (12)

for all z ∈ γ ∩ B2R and all |s| < c.
Our next objective is to prove that the time-1 flow of the vector field X is C1-close to

the identity. For this purpose, we find it convenient to introduce coordinates (ζ, σ ) in V by
choosing a parametrization π : γ ∩ B3R → I that is a diffeomorphism onto some interval
I ⊆ R and setting

ζ(ξz(s)) := π(z)

for all z ∈ γ ∩ B2R and s ∈ (−c, c). In view of this formula and Eq. (12), it is clear that
estimating the derivatives of σ̃ ◦ ζ , with σ̃ := σ̄ ◦ π−1, is crucial in order to control the
derivatives of X , which in turn are needed to control its time-1 flow. In the following lemma,
we show that the C1 norm of the vector field X is small. Before stating this result, we recall
that the function σ is the signed distance to γ ; it should be noticed that, by construction, ∇ζ

and ∇σ are orthogonal in V .

Lemma 4.1 There is a constant C ′ > 0 such that ‖X‖C1(R2) < C ′ δ1/2.

Proof A first observation is that

|σ̃ ◦ ζ | < C2 δ (13)

in V , where by each C j we will henceforth denote a constant independent of δ. In order to
see this, it should be noticed that, for any x ∈ ξz((−c, c)), we defined σ̃ (ζ(x)) as the value
for which

(u ◦ ξz) (σ̃ (ζ(x))) = 0,

which by (5) implies that

|(v ◦ ξz) (σ̃ (ζ(x)))| < δ.

As v(z) = 0 and
∣∣∣∣

d

ds
(v ◦ ξz)(s)

∣∣∣∣ = |∇v (ξz(s)) · ∇σ (ξz(s))| > C3

in U by (6), Eq. (13) readily follows.
Similarly, and writing u(ζ, σ ) for the expression of u in the coordinates (ζ, σ ) with a slight

abuse of notation, we can use the implicit function theorem and the fact that u(ζ, σ̃ (ζ )) = 0
to estimate its gradient as

|∇(σ̃ ◦ ζ )| = |∇ζ |
∣∣∣dσ̃

dζ

∣∣∣ = |∇ζ |
∣∣∣∣

∂u
∂ζ
∂u
∂σ

∣∣∣∣ = |∇ζ ·∇u|
|∇ζ | |∇σ ·∇u| � C4 |∇ζ · ∇u| (14)
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58 A. Enciso, D. Peralta-Salas

in V . In the last two steps, we have used (7) and the fact that (ζ, σ ) is an orthogonal coordinate
system. Let us now consider the function f := |∇ζ · ∇u|. As ∇ζ is tangent to γ , Eq. (3)
implies that ∇v · ∇ζ = 0 on γ ∩ B2R , so that | f | < C5 δ on γ ∩ B2R by (5). Moreover,
|∇ f | < C6 in V with C6 independent of δ by the C2 estimate (5), which in view of (9)
and (10) clearly guarantees that

| f | < C5 δ + C C6
(
δ1/2 + 2δ

)

in V ∩ supp χ . Hence, (14) yields

|∇(σ̃ ◦ ζ )| < C7 δ1/2 in V ∩ supp χ. (15)

Using the estimates (11), (13) and (15) and denoting by ∇ X the Jacobian of X , one then
obtains that

|X | � χ |σ̃ ◦ ζ | < C2 δ,

|∇ X | � χ |∇(σ̃ ◦ ζ )| + |∇χ | |(σ̃ ◦ ζ )| + χ |(σ̃ ◦ ζ )| |∇2σ |
< C7 δ1/2 + C1C2 δ1/2 + C8 δ < C9 δ1/2

in V , so it is standard that one can extend X to a vector field X̃ in R
2 that coincides with X

in V and satisfies

|X̃ | < 2C2 δ, |∇ X̃ | < 2C9 δ1/2

in R
2. This proves the lemma. �


Let us now denote by ϕt the flow defined by the bounded vector field X̃ . Since

ξ−1
z ([0, σ̄ (z)]) ⊂ v−1((−δ, δ)) ∩ V ∩ B3R

for all z ∈ γ ∩ B2R , one can easily compute the integral curves of X to show that

ϕ1(z) = ξz(σ̄ (z))

for all z ∈ γ ∩ B2R by the definition of χ and of X (cf. Fig. 3b). This implies that the
time-1 flow ϕ1 : R

2 → R
2 is a smooth diffeomorphism mapping γ ∩ B2R into Z0 ∩ B3R .

Furthermore, the bound for the vector field X proved in Lemma 4.1 immediately yields the
C1 estimate

‖ϕ1 − id‖C1(R2) < C10 δ1/2. (16)

To conclude, we shall use the above estimate to show that |Z0 ∩ Br | > η|Z0 ∩ BR | if
δ is sufficiently small, which completes the proof of the theorem. Denoting by ∇ϕ1(x)w the
action of the differential of ϕ1 at x on a vector w ∈ R

2 and defining

λmax(x) := max|w|=1
|∇ϕ1(x)w|

(and analogously λmin(x)), it is standard that the length of a curve � and its image by ϕ1 are
related by

length � · inf
�

λmin � length ϕ1(�) � length � · sup
�

λmax.

Therefore, since ϕ1(γ ) ∩ BR = Z0 ∩ BR , using the estimate (16) for ∇ϕ1 and the inequal-
ity (2), one can readily check that

|Z0 ∩ Br | >
(
η′ − C11 δ1/2) |Z0 ∩ BR | ,

so the theorem follows provided that δ1/2 < (η′ − η)/C11.
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Remark 4.2 The proof we have given actually yields a stronger result than Theorem 1.3:
we have showed that, given a smooth open curve γ and a positive number R, there exists a
harmonic polynomial u and a smooth diffeomorphism �1, arbitrarily close to the identity in
the C1 norm, which maps γ ∩ BR into a connected component of the zero set of u.
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