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Abstract In this paper, we prove the existence of infinitely many small solutions to the
following quasilinear elliptic equation −�p(x)u+|u|p(x)−2u = f (x, u) in a smooth bounded
domain � of R

N with nonlinear boundary conditions |∇u|p−2 ∂u
∂ν

= |u|q(x)−2u. We also
assume that {q(x) = p∗(x)} �= ∅, where p∗(x) = N p(x)/(N − p(x)) is the critical Sobolev
exponent for variable exponents. The proof is based on a new version of the symmetric
mountain-pass lemma due to Kajikiya, and property of these solutions is also obtained.

Keywords p(x)-Laplacian · Generalized Lebesgue-Sobolev spaces ·
Nonlinear boundary conditions · Concentration-compactness principle
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1 Introduction

In this paper, we deal with quasilinear elliptic problem of the form{−�p(x)u + |u|p(x)−2u = f (x, u), in �,

|∇u|p(x)−2 ∂u
∂ν

= |u|q(x)−2u, on ∂�,
(1.1)

where � ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary and p(x), q(x) are two

continuous functions on �, 1 < p− = infx∈� p(x) ≤ p(x) 
 q(x) < N , where denote
by p(x) 
 q(x) the fact that inf x∈�(q(x) − p(x)) > 0. �p(x)u := div(|∇u|p(x)−2∇u)
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2 S. Liang, J. Zhang

is the p(x)-Laplacia operator and ∂
∂ν

is the outer normal derivative. On the exponent q(x),
we assume that is the critical exponent in the sense that {q(x) = p∗(x)} �= ∅, where
p∗(x) = N p(x)/(N − p(x)) is the critical exponent according to the Sobolev embedding.
In the spirit of [1–7], our goal will be to obtain infinitely many small weak solutions that tend
to zero for (1.1) in the generalized Sobolev space W 1,p(x)(�) for the general nonlinearities
of the type f (x, u).

The study of differential equations and variational problems involving variable exponent
conditions has been a very interesting and important topic. The interest in studying such
problems was stimulated by their applications in elastic mechanics, fluid dynamics, image
processing and so on. For example, Chen et al. [8] proposed the following model in image
processing

F(u) =
∫
�

|∇u(x)|p(x)

p(x)
+ f (|u(x) − I (x)|)dx → min,

where p(x) is a function satisfies 1 ≤ p(x) ≤ 2 and f is a convex function. For more
information on modelling physical phenomena by equations involving p(x)-growth con-
dition, we refer to [9–12]. The appearance of such physical models was facilitated by the
development of variable Lebesgue and Sobolev spaces, L p(x) and W 1,p(x), where p(x) is a
real-valued function. On the variable exponent Sobolev spaces that have been used to study
p(x)-Laplacian problems, we refer to [13–15]. On the existence of solutions for elliptic
equations with variable exponent, we refer to [16–29].

In recent years, the existence of infinitely many solutions has been obtained by many
papers. When p(x) ≡ p = 2 (a constant) with Dirichlet boundary condition, Li and Zou
[6] studied a class of elliptic problems with critical exponents, they obtained the existence
theorem of infinitely many solutions under suitable hypotheses. He and Zou [4] proved
that the existence infinitely many solutions under case the general nonlinearities. When
p(x) ≡ p �= 2. Ghoussoub and Yuan [30] obtained the existence of infinitely many non-
trivial solutions for Hardy-Sobolev subcritical case and Hardy critical case by establishing
Palais-Smale type conditions around appropriate chosen dual sets in bounded domain. Li and
Zhang [31] studied the existence of multiple solutions for the nonlinear elliptic problems of
p&q-Laplacian type involving the critical Sobolev exponent, they obtained infinitely many
weak solutions by using Lusternik-Schnirelman’s theory for Z2-invariant functional.

On the existence of infinitely many solutions for p(x)-Laplacian problems have been
studied by [16,18,20,23], but they did not give any further information on the sequence of
solutions. Moreover, these papers deal with subcritical nonlinearities. Very little is known
about critical growth nonlinearities for variable exponent problems [34,35], since one of the
main techniques used in order to deal with such issues is the concentration-compactness
principle. This result was recently obtained for the variable exponent case independently in
[1,33]. In both of these papers, the proof is similar and both relate to that of the original proof
of P.L. Lions [36,37].

Recently, Kajikiya [5] established a critical point theorem related to the symmetric moun-
tain pass lemma and applied to a sublinear elliptic equation. But there are no such results on
p(x)-Laplacian problem with critical growth (1.1).

Motivated by reasons above, the aim of this paper is to show that the existence of infinitely
many solutions of problem (1.1), and there exists a sequence of infinitely many arbitrarily
small solutions converging to zero by using a new version of the symmetric mountain-pass
lemma due to Kajikiya [5]. In order to use the symmetric mountain-pass lemma, there are
many difficulties. The main one in solving the problem is a lack of compactness which can
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Infinitely many small solutions for the p(x)-Laplacian operator 3

be illustrated by the fact that the embedding of W 1,p(x)(�) into L p∗(x)(∂�) is no longer
compact. Hence, the concentration-compactness principle is used here to overcome the
difficulty. It should be noted that the embedding of W 1,p(x)(�) to Lq(x)(�) can be com-
pact even when q = p∗ in some points, see Kurata and Shioji [24].

The main result of this paper is as follows.

Theorem 1.1 Suppose that f (x, u) satisfies the following conditions:

(H1) f (x, u) ∈ C(� × R, R), f (x,−u) = − f (x, u) for all u ∈ R;
(H2) lim|u|→∞ f (x,u)

|u|p(x)−1 = 0 uniformly for x ∈ �;

(H3) lim|u|→0+ f (x,u)

u p−−1
= ∞ uniformly for x ∈ �.

Then, problem (1.1) has a sequence of nontrivial solutions {un} and un → 0 as n → ∞.

Remark 1.1 If without the symmetry condition (i.e. f (x,−u) = − f (x, u)) in Theorem 1.1,
we get an existence theorem of at least one nontrivial solution to problem (1.1) by the same
method in this paper.

Remark 1.2 In this paper, we use concentration-compactness principle due to [1] which is
slightly more general than those in [33], since we do not require q(x) to be critical everywhere.

Remark 1.3 There exist many functions f (x, t) satisfy conditions (H1)−(H3), for example,
f (x, u) = u(p−−1)/3, where p− > 1.

Remark 1.4 Theorem 1.1 is new as far as we know. We mainly follow the way in [7] to prove
our main result.

Definition 1.1 We say that u0 ∈ W 1,p(x)(�) is a weak solution of problem (1.1) in the weak
sense if for any v ∈ W 1,p(x)(�)∫

�

(
|∇u0|p(x)−2∇u0 · ∇v + |u0|p(x)−2u0v

)
dx −

∫
∂�

|u0|q(x)−2u0vdσ

−
∫
�

f (x, u0)vdx = 0,

where dσ is the surface measure on the boundary.

The energy functional corresponding to problem (1.1) is defined as follows,

J (u) =
∫
�

|∇u|p(x) + |u|p(x)

p(x)
dx −

∫
∂�

1

q(x)
|u|q(x)dσ −

∫
�

F(x, u)dx,

where F(x, t) = ∫ t
0 f (x, s)ds. Then, it is easy to check that as arguments [38] show that

J (u) is well defined on W 1,p(x)(�) and J ∈ C1(W 1,p(x)(�), R) and the weak solutions
for problem (1.1) coincides with the critical points of J . We try to use a new version of the
symmetric mountain-pass lemma due to Kajikiya [5]. But since the functional J (u) is not
bounded from below, we could not use the theory directly. So we follow [7] to consider a
truncated functional of J (u). Denote J ′ : E → E∗ is the derivative operator of J in the
weak sense. Then

〈J ′(u), v〉 =
∫
�

(
|∇u|p(x)−2∇u · ∇v + |u|p(x)−2uv

)
dx −

∫
∂�

|u|q(x)−2uvdσ

−
∫
�

f (x, u)vdx, ∀ u, v ∈ W 1,p(x)(�).

123



4 S. Liang, J. Zhang

Definition 1.2 We say J satisfies Palais-Smale condition ((P S) for short) in W 1,p(x)(�),
if any sequence {un} ⊂ W 1,p(x)(�) which satisfies that {J (un)} is bounded and
‖J ′(un)‖p(x) → 0 as n → ∞, has a convergent subsequence.

Under assumptions (H1) and (H2), we have

f (x, u)u = o
(
|u|p(x)

)
, F(x, u) = o

(
|u|p(x)

)
,

which means that, for all ε > 0, there exist a(ε), b(ε) > 0 such that

| f (x, u)u| ≤ a(ε) + ε|u|p(x), (1.2)

|F(x, u)| ≤ b(ε) + ε|u|p(x). (1.3)

Hence, for any constants β, we have

|F(x, u) − β f (x, u)u| ≤ c(ε) + ε|u|p(x), (1.4)

for some c(ε) > 0.
The remainder of the paper is organized as follows. In Sect. 2, we shall present some

basic properties of the variable exponent Sobolev spaces. In Sect. 3, we will prove the corre-
sponding energy functional satisfies the (P S) condition. In Sect. 4, we shall prove our main
results.

2 Weighted variable exponent Lebesgue and Sobolev spaces

We recall some definitions and properties of the variable exponent Lebesgue-Sobolev spaces
L p(·)(�) and W 1,p(·)(�), where � is a bounded domain in R

N . Set

C+(�) =
{

h ∈ C(�) : min
x∈�

h(x) > 1

}
.

For any h ∈ C+(�), we define

h+ = sup
x∈�

h(x) and h− = inf
x∈�

h(x).

We can introduce the variable exponent Lebesgue space as follows:

L p(·)(�) =
⎧⎨
⎩u : u is a measurable real-valued function

such that
∫
�

|u(x)|p(x) dx < ∞
⎫⎬
⎭ ,

for p ∈ C+(�). Equipping with the norm on L p(x)(�) by

|u|p(·) = inf

⎧⎨
⎩μ > 0 :

∫
�

∣∣∣∣u(x)

μ

∣∣∣∣
p(x)

dx ≤ 1

⎫⎬
⎭ ,

which is a Banach space, we call it a generalized Lebesgue space.
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Infinitely many small solutions for the p(x)-Laplacian operator 5

Proposition 2.1 [13,22]

(i) The space (L p(x)(�), | · |p(x)) is a separable, uniform convex Banach space, and its
conjugate space is L p′(x)(�), where 1/p′(x) + 1/p(x) = 1. For any u ∈ L p(x)(�) and
v ∈ L p′(x)(�), we have∣∣∣∣∣∣

∫
�

uv dx

∣∣∣∣∣∣ ≤
(

1

p− + 1

p′−

)
|u|p(·)|v|p′(·); (2.1)

(ii) If 0 < |�| < ∞ and p1, p2 are variable exponents in C+(�) such that p1 ≤ p2 in �,
then the embedding L p2(·)(�) ↪→ L p1(·)(�) is continuous.

Proposition 2.2 [13,22] The mapping ρp(·) : L p(·)(�) → R defined by

ρp(·)(u) =
∫
�

|u|p(x) dx .

Then, the following relations hold:

|u|p(·) < 1 (= 1; > 1) ⇔ ρp(·)(u) < 1 (= 1; > 1),

|u|p(·) > 1 ⇒ |u|p−
p(·) ≤ ρp(·)(u) ≤ |u|p+

p(·),

|u|p(·) < 1 ⇒ |u|p+
p(·) ≤ ρp(·)(u) ≤ |u|p−

p(·),
|un − u|p(·) → 0 ⇔ ρp(·)(un − u) → 0.

Next, we define W 1,p(x)(�) is defined by

W 1,p(x)(�) := {u ∈ L p(x)(�) | |∇u| ∈ L p(x)(�)}
and it can be equipped with the norm

‖u‖ = |u|p(x) + |∇u|p(x), ∀ u ∈ W 1,p(x)(�).

Proposition 2.3 [13,22]

(i) W 1,p(x)(�) are separable reflexive Banach spaces;
(ii) If p ∈ C+(�), then the embedding W 1,p(x)(�) ↪→ L p(x)(�) is compact and contin-

uous.

Proposition 2.4 [32] Let � ⊂ R
n be an open bounded domain with Lipschitz boundary.

Suppose that p ∈ C0(�) and 1 < p− ≤ p+ < N. If σ ∈ C0(∂�) satisfies the condition

1 ≤ σ(x) <
(N − 1)p(x)

N − p(x)
, ∀ x ∈ ∂�. (2.2)

Then, there is a compact boundary trace embedding W 1,p(·)(�) ↪→ Lσ(·)(∂�), we denote
by K the embedding constant.

In this paper, we use the following equivalent norm on W 1,p(x)(�):

‖u‖p(·) = inf

⎧⎨
⎩μ > 0 :

∫
�

∣∣∣∣∇u

μ

∣∣∣∣
p(x)

+
∣∣∣∣ u

μ

∣∣∣∣
p(x)

dx ≤ 1

⎫⎬
⎭ . (2.3)
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6 S. Liang, J. Zhang

Proposition 2.5 [14,17] Let I (u) = ∫
�

|∇u|p(x) + |u|p(x)dx. If u, un ∈ W 1,p(x)(�), then
the following relations hold:

‖u‖p(·) < 1 (= 1; > 1) ⇔ I (u) < 1 (= 1; > 1), (2.4)

‖u‖p(·) > 1 ⇒ ‖u‖p−
p(·) ≤ I (u) ≤ ‖u‖p+

p(·), (2.5)

‖u‖p(·) < 1 ⇒ ‖u‖p+
p(·) ≤ I (u) ≤ ‖u‖p−

p(·), (2.6)

‖un − u‖p(·) → 0 ⇔ I (un − u) → 0. (2.7)

3 Preliminaries and lemmas

In the following, we always use C and ci (i = 1, 2, . . .) to denote positive constants.
To prove Theorem 1.1, since we have lost the compactness in the inclusion W 1,p(x)(�) ↪→

L p∗(x)(∂�), we can no longer expect the Palais-Smale condition to hold. Anyway we can
prove a local Palais-Smale condition that will hold for J (u) below a certain value of energy.
Let un be a bounded sequence in W 1,p(x)(�) then there exists a subsequence that we still
denote un such that

un ⇀ u weakly in W 1,p(x)(�),

un → u strongly in Lr(x)(�), 1 ≤ r(x) 
 p∗(x),

|∇un |p(x) ⇀ dμ, |un |∂�|p∗(x) ⇀ dν,

weakly-∗ in the sense of measures. Observe that dν is a measure supported on ∂�.
The technical result used here, the concentration-compactness principle of the variable

exponent, is mainly due to [1]. The proof is similar to the original proof of Lions [36,37].
The following lemma follows exactly as in [1] and the proof is omitted.

Lemma 3.1 Let q(x) and p(x) be two continuous functions such that

1 < inf
x∈�

p(x) ≤ sup
x∈�

p(x) < N and 1 ≤ q(x) ≤ p∗(x) in �.

Let {u j } j∈N be a weakly convergent sequence in W 1,p(x)(�) with weak limit u, and such
that |∇u j |p(x) ⇀ dμ weakly-∗ in the sense of measures; |u j |∂�|q(x) ⇀ dν weakly-∗ in the
sense of measures. Assume, moreover that � = {x ∈ ∂� : q(x) = p∗(x)} �= ∅. Then, for
some countable index set I , there exists x1, . . . , xl ∈ � such that

(i) dν = |u|q(x) +∑l
i=1 νiδxi , νi > 0;

(ii) dμ ≥ |∇u|p(x) +∑l
i=1 μiδxi , μi > 0;

(iii) Sν
p(xi )/p∗(xi )
i ≤ μi , i ∈ I ;

where {xi }l
i=1 ⊂ � and S is the best constant in the Sobolev trace embedding theorem.

Remark 3.1 From Lemma 3.1, we know that if I = ∅, then u j → u strongly in Lq(x)(∂�).

In order to prove the functional J satisfies the local (P S)c condition, we take function
η(x) ∈ C1(�) satisfies p(x) 
 η(x) 
 q(x),∀ x ∈ �. Denote

d1 := inf
x∈�

(
1

p(x)
− 1

η(x)

)
> 0, (3.1)

d2 := inf
x∈�

(
1

η(x)
− 1

q(x)

)
> 0. (3.2)
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Infinitely many small solutions for the p(x)-Laplacian operator 7

Lemma 3.2 Assume condition (H2) holds. Then, there exists positive constant m∗ > 0 such
that the functional J satisfies the local (P S)c condition in

c ∈
(

−∞,
d2

4
· SN − m∗

)

in the following sense: if

J (un) → c <
d2

4
· SN − m∗

and J ′(un) → 0 for some sequence in W 1,p(x)(�). Then, {un} contains a subsequence
converging strongly in W 1,p(x)(�).

Proof First, we show that {un} is bounded in W 1,p(x)(�). Indeed, assume by contradiction
that {un} is not bounded in W 1,p(x)(�). Then, passing eventually to a subsequence, still
denoted by {un}, we assume that ‖un‖p(x) → ∞ as n → ∞. Thus, we may assume that
‖un‖p(x) > 1 for any integer n.

Then, for n sufficiently large, we have

M + o(1)‖un‖p(x)

≥ J (un) − 〈J ′(un),
un

η
〉

=
∫
�

(
1

p(x)
− 1

η(x)

)
·
(
|∇un |p(x) + |un |p(x)

)
dx +

∫
∂�

(
1

η(x)
− 1

q(x)

)
· |un |q(x)dσ

−
∫
�

[
F(x, un) − 1

η(x)
f (x, un)un

]
dx +

∫
�

|∇un |p(x)−2∇unun∇η

η2(x)
dx

≥ d1 ·
∫
�

(
|∇un |p(x) + |un |p(x)

)
dx + d2 ·

∫
∂�

|un |q(x)dσ

−
∫
�

[
F(x, un) − 1

η(x)
f (x, un)un

]
dx +

∫
�

|∇un |p(x)−2∇unun∇η

η2(x)
dx . (3.3)

By (1.4), for any (x, t) ∈ � × R, we have

∫
�

[
F(x, un) − 1

η(x)
f (x, un)un

]
dx

≤
∫
�

∣∣∣∣F(x, un) − 1

η(x)
f (x, un)un

∣∣∣∣ dx

≤
∫
�

max

{∣∣∣∣F(x, un) − 1

η+ f (x, un)un

∣∣∣∣ ,
∣∣∣∣F(x, un) − 1

η− f (x, un)un

∣∣∣∣
}

dx

≤ c(ε1)|�| + ε1

∫
�

|un |p(x)dx . (3.4)
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On the other hand, noting that p(x) 
 q(x), by the Young inequality, for any ε2 ∈ (0, 1),
we get ∣∣∣∣∣

|∇un |p(x)−2∇unun∇η

η2(x)

∣∣∣∣∣ ≤ c1|∇un |p(x)−1|un |

≤ c1

(
ε2(p(x) − 1)

p(x)
|∇un |p(x) + ε

1−p(x)
2

p(x)
|un |p(x)

)

≤ c1

(
ε2|∇un |p(x) + ε

1−p+
2 |un |p(x)

)
, (3.5)

and

|un |p(x) ≤ ε3 p(x)

q(x)
|un |q(x) + q(x) − p(x)

q(x)
ε

p(x)
p(x)−q(x)

3

≤ ε3|un |q(x) + ε
− p+

(q−p)−
3 . (3.6)

From Proposition 2.1 (ii), we have

|un |q(x) ≤ c2‖un‖p(x), (3.7)

where c2 > 0 is some positive constant. Thus, relations (3.3)–(3.7) imply that

M + o(1)‖un‖p(x)

≥
[
d1 − c1ε2 − c2ε3(ε1 + c1ε

1−p+
2 )

] ∫
�

(
|∇un |p(x) + |un |p(x)

)
dx

+ d2

∫
∂�

|un |q(x)dσ − (ε1 + c1ε
1−p+
2 )ε

− p+
(q−p)−

3 |�| − c(ε1)|�|

=
[

d1 − c1ε2 − c2ε3

(
d1

2
+ c1ε

1−p+
2

)]∫
�

(
|∇un |p(x) + |un |p(x)

)
dx

+ d2

∫
∂�

|un |q(x)dσ −
(

d1

2
+ c1ε

1−p+
2

)
ε
− p+

(q−p)−
3 |�| − c

(
d1

2

)
|�|, (3.8)

where ε1 = d1
2 . Thus, we choose ε2, ε3 be so small that d1−c1ε2−c2ε3

(
d1
2 + c1ε

1−p+
2

)
> 0.

It follows from (2.5) and (3.8) that {un} is bounded in W 1,p(x)(�). Therefore, we can assume
that by Lemma 3.1, there exists a subsequence, there exists a subsequence, that we still denote
un such that

un ⇀ u weakly in W 1,p(x)(�),

un → u strongly in Lr(x)(�), 1 ≤ r 
 q(x), and a.e. in �,

|un |∂�|q(x) ⇀ dν = |u∂�|q(x) +
l∑

i=1

νiδxi , νi > 0, (3.9)

|∇un |p(x) ⇀ dμ ≥ |∇u|p(x) +
l∑

i=1

μiδxi , μi > 0, (3.10)

Sν
p(xi )/q(xi )
i ≤ μi . (3.11)
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Let us show that if c < d2
4 · SN − m∗ (m∗ is a constant) and {un} is a Palais-Smale

sequence, with energy level c, then I = ∅.
In fact, suppose that I �= ∅. Let xi be a singular point of the measures μ and ν, define

a function φ(x) ∈ C∞(�) such that φ(x) = 1 in B(xi , ε), φ(x) = 0 in � \ B(xi , 2ε) and
|∇φ| ≤ 2/ε in �. As J ′(un) → 0 in (W 1,p(x)(�))′, we obtain that

lim
n→∞〈J ′(un), φun〉 → 0,

i.e.

lim
n→∞

⎧⎨
⎩
∫
�

|∇un |p(x)−2∇un · ∇(φun)dx +
∫
�

|un |p(x)−2unφundx

−
∫
∂�

|un |q(x)−2unφundσ −
∫
�

f (x, un)φundx

⎫⎬
⎭ = 0.

On the other hand, by Hölder inequality and boundedness of {un}, we have that

0 ≤ lim
ε→0

lim
n→∞

∣∣∣∣∣∣
∫
�

un |∇un |p(x)−2∇un∇φdx

∣∣∣∣∣∣

≤ C lim
ε→0

lim
n→∞

⎛
⎝∫

�

|un |p(x)|∇φ|p(x)dx

⎞
⎠

1
p(x)
⎛
⎝∫

�

|∇un |p(x)dx

⎞
⎠

p(x)−1
p(x)

≤ C lim
ε→0

⎛
⎜⎝

∫
B(xi ,ε)

|u|p(x)|∇φ|p(x)dx

⎞
⎟⎠

1
p(x)

≤ C lim
ε→0

⎛
⎜⎝

∫
B(xi ,ε)

|∇φ|N dx

⎞
⎟⎠

1
N
⎛
⎜⎝

∫
B(xi ,ε)

|u|p∗(x)dx

⎞
⎟⎠

1
p∗(x)

≤ C lim
ε→0

⎛
⎜⎝

∫
B(xi ,ε)

|u|p∗(x)dx

⎞
⎟⎠

1
p∗(x)

= 0. (3.12)

It is easy to check that

lim
ε→0

lim
n→∞

∫
�

|un |p(x)−2unφundx = 0,

lim
ε→0

lim
n→∞

∫
�

f (x, un)φundx = 0.
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10 S. Liang, J. Zhang

From above facts, we get that

0 = lim
ε→0

⎡
⎣∫

�

φdμ −
∫
∂�

φdν

⎤
⎦ = μi − νi . (3.13)

Combing this with Lemma 3.1 (iii), we obtain μ

1
p(xi )

i ≥ Sμ

1
p∗(xi )

i . This result implies that

μi = 0 or μi ≥ SN .

Furthermore, I �= ∅ implies that μi ≥ SN for some i ∈ I , then by using Lemma 3.1
and (3.13), we have νi ≥ SN , for some i ∈ I . Thus, we select ε2, ε3 in (3.8) such that

d1 − c1ε2 − c2ε3

(
d1
2 + c1ε

1−p+
2

)
> d2

4 , we have

c = lim
n→∞

(
J (un) − 〈J ′(un),

un

η
〉
)

≥ d2

4
· lim

n→∞

⎛
⎝∫

�

(
|∇un |p(x) + |un |p(x)

)
dx

⎞
⎠−

(
d1

2
+ c1ε

1−p+
2

)

× ε
− p+

(q−p)−
3 |�| − c

(
d1

2

)
|�|

= d2

4
·
∫
�

dμ −
(

d1

2
+ c1ε

1−p+
2

)
ε
− p+

(q−p)−
3 |�| − c

(
d1

2

)
|�|

≥ d2

4
·
∫
�

|∇u|p(x)dx + d2

4
· SN −

(
d1

2
+ c1ε

1−p+
2

)
ε
− p+

(q−p)−
3 |�| − c

(
d1

2

)
|�|

≥ d2

4
· SN −

(
d1

2
+ c1ε

1−p+
2

)
ε
− p+

(q−p)−
3 |�| − c

(
d1

2

)
|�|

= d2

4
· SN − m∗,

where m∗ =
(

d1
2 + c1ε

1−p+
2

)
ε
− p+

(q−p)−
3 |�| − c

(
d1
2

)
|�|. This is impossible. Consequently,

the index set I is empty. From Remark 3.1, we have

∫
∂�

|un |q(x)dσ →
∫
∂�

|u|q(x)dσ, as n → ∞.

Since {un} is bounded in W 1,p(x)(�), we deduce that there exists a subsequence, again
denoted by {un}, and u0 ∈ W 1,p(x)(�) such that {un} converges weakly to u0 in W 1,p(x)(�).
Note that

〈J ′(un) − J ′(u0), un − u0〉 → 0, as n → ∞.
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On the other hand, we have

∫
�

(|∇un |p(x)−2∇un − |∇u0|p(x)−2∇u0) · (∇un − ∇u0)dx

+
∫
�

(|un |p(x)−2un − |u0|p(x)−2u0)(un − u0)dx

= 〈J ′(un) − J ′(u0), un − u0〉 +
∫
∂�

(|un |q(x)−2un − |u0|q(x)−2u0)(un − u0)dσ

+
∫
�

( f (x, un) − f (x, u0))(un − u0)dx .

Using the fact that {un} converges strongly to u0 in Lq(x)(∂�) and |un − u0|p(x) → 0 as
n → ∞, and Proposition 2.4 implies that W 1,p(x)(�) is compactly embedded L p(x)(∂�) we
deduce that

lim
n→∞

∫
�

( f (x, un) − f (x, u0))(un − u0)dx = 0, (3.14)

lim
n→∞

∫
∂�

(|un |q(x)−2un − |u0|q(x)−2u0)(un − u0)dσ = 0, (3.15)

lim
n→∞

∫
�

(|un |p(x)−2un − |u0|p(x)−2u0)(un − u0)dx = 0. (3.16)

By (3.14), (3.15) and (3.16), we obtain

lim
n→∞

∫
�

(|∇un |p(x)−2∇un − |∇u0|p(x)−2∇u0) · (∇un − ∇u0)dx

+ lim
n→∞

∫
�

(|un |p(x)−2un − |u0|p(x)−2u0)(un − u0)dx = 0. (3.17)

It is known that

(|s|p−2s − |t |p−2t, s − t
) ≥

{
C p|s − t |p, ∀ p ≥ 2,

C p
|s−t |2

(|s|+|t |)2−p , ∀ p ≤ 2,
s, t ∈ R

N , (3.18)

where (· , ·) is the standard scalar product in R
N . Relations (3.17) and (3.18) yield

lim
n→∞

∫
�

(
|∇un − ∇u0|p(x) + |un − u0|p(x)

)
dx = 0.

This fact and relation (2.7) imply ‖un − u0‖p(x) → 0 as n → ∞. The proof is complete.
��
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4 Existence of a sequence of arbitrarily small solutions

In this section, we prove the existence of infinitely many solutions of (1.1) which tend to
zero. Let X be a Banach space and denote

� := {A ⊂ X \ {0} : A is closed in X and symmetric with respect to the orgin} .

For A ∈ �, we define genus γ (A) as

γ (A) := inf{m ∈ N : ∃ ϕ ∈ C(A, Rm \ {0}),−ϕ(x) = ϕ(−x)}.
If there is no mapping ϕ as above for any m ∈ N , then γ (A) = +∞. Let �k denote the
family of closed symmetric subsets A of X such that 0 �∈ A and γ (A) ≥ k. We list some
properties of the genus (see [5]).

Proposition 4.1 Let A and B be closed symmetric subsets of X which do not contain the
origin. Then the following hold.

(1) If there exists an odd continuous mapping from A to B, then γ (A) ≤ γ (B);
(2) If there exists an odd homeomorphism from A to B, then γ (A) = γ (B);
(3) If γ (B) < ∞, then γ (A \ B) ≥ γ (A) − γ (B);
(4) Then n-dimensional sphere Sn has a genus of n + 1 by the Borsuk-Ulam Theorem;
(5) If A is compact, then γ (A) < +∞ and there exists δ > 0 such that Uδ(A) ∈ � and

γ (Uδ(A)) = γ (A), where Uδ(A) = {x ∈ X : ‖x − A‖ ≤ δ}.

The following version of the symmetric mountain-pass lemma is due to Kajikiya [5].

Lemma 4.1 Let E be an infinite-dimensional space and J ∈ C1(E, R) and suppose the
following conditions hold.

(C1) J (u) is even, bounded from below, J (0) = 0 and J (u) satisfies the Palais-Smale
condition;

(C2) For each k ∈ N, there exists an Ak ∈ �k such that supu∈Ak
J (u) < 0.

Then either (R1) or (R2) below holds.

(R1) There exists a sequence {uk} such that J ′(uk) = 0, J (uk) < 0 and {uk} converges to
zero.

(R2) There exist two sequences {uk} and {vk} such that J ′(uk) = 0, J (uk) < 0, uk �= 0,

limk→∞ uk = 0, J ′(vk) = 0, J (vk) < 0, limk→∞ vk = 0, and {vk} converges to a
non-zero limit.

Remark 4.1 From Lemma 4.1, we have a sequence {uk} of critical points such that J (uk)≤0,

uk �= 0 and limk→∞ uk = 0.

In order to get infinitely many solutions, we need some lemmas. we focus our attention on
the case when u ∈ W 1,p(x)(�) with ‖u‖p(x) < 1. For such a u by relation (2.6), we obtain

∫
�

|∇u|p(x) + |u|p(x)dx ≥ ‖u‖p+
p(x). (4.1)
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Using (1.3), we deduce that

J (u) =
∫
�

|∇u|p(x) + |u|p(x)

p(x)
dx −

∫
∂�

1

q(x)
|u|q(x)dσ −

∫
�

F(x, u)dx

≥
(

1

p+ − ε

)
· ‖u‖p+

p(x) − Sq− + Sq+

q− ·
(
‖u‖q+

p(x) + ‖u‖q−
p(x)

)
− b(ε)|�|

≥ 1

2p+ · ‖u‖p+
p(x) − Sq− + Sq+

q− · ‖u‖q+
p(x) − Sq− + Sq+

q− · ‖u‖q−
p(x) − b

(
1

2p+

)
|�|

≥ A‖u‖p+
p(x) − B‖u‖q+

p(x) − C, (4.2)

where ε = 1
2p+ and

A = 1

2p+ , B = Sq− + Sq+

q− , C = Sq− + Sq+

q− + b

(
1

2p+

)
|�|,

for any u ∈ W 1,p(x)(�) with ‖u‖p(x) < 1. If we define

Q(s) = As p+ − Bsq+ − C.

As Q(s) attains a local but not a global minimum (Q is not bounded below), we have to
perform some sort of truncation. To this end, let R0, R1 be such that m < R0 < M < R1,
where m is the local minimum of Q(s) and M is the local maximum and Q(R0) > Q(m).
For these values R1 and R0, we can choose a smooth function χ(t) defined as follows

χ(t) =
⎧⎨
⎩

1, 0 ≤ t ≤ R0,

0, t ≥ R1,

C∞, χ(t) ∈ [0, 1], R0 ≤ t ≤ R1.

Then, it is easy to see χ(t) ∈ [0, 1] and χ(t) is C∞. Let ϕ(u) = χ(‖u‖p(x)) and consider
the perturbation of J (u):

G(u) =
∫
�

|∇u|p(x) + |u|p(x)

p(x)
dx − ϕ(u)

∫
∂�

1

q(x)
|u|q(x)dσ −

∫
�

F(x, u)dx . (4.3)

Then

G(u) ≥ A‖u‖p+
p(x) − Bϕ(u)‖u‖q+

p(x) − C

= Q(‖u‖p(x)),

where Q(t) = At p+ − Bχ(t)tq+ − C and

Q(t) =
{

Q(t), t ≤ R0,

At p+ − C, t ≥ R1.

From the above arguments, we have the following:

Lemma 4.2 Let G(u) is defined as in (4.3). Then

(i) G ∈ C1(E, R) and G is even and bounded from below;
(ii) If G(t) ≤ 0, then Q(‖u p(x)‖) ≤ 0, consequently, ‖u‖p(x) < R0 and J (u) = G(u);
(iii) G satisfies a local (P S)c condition for c < d2

4 · SN − m∗, where m∗ is given by
Lemma 3.2.
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14 S. Liang, J. Zhang

Proof Items (i) and (ii) are immediate. Item (iii) is a consequence of item (ii) and Lemma 3.2.
��

Lemma 4.3 Assume that (H3) of Theorem 1.1 holds. Then for any k ∈ N, there exists
δ = δ(k) > 0 such that γ ({u ∈ W 1,p(x)(�) : G(u) ≤ −δ(k)} \ {0}) ≥ k.

Proof First, by (H3) of Theorem 1.1, for any fixed u ∈ W 1,p(x)(�), u �= 0, we have

F(x, ρu) ≥ M(ρ)(ρu)p−
with M(ρ) → ∞ as ρ → 0. (4.4)

Next, given any k ∈ N , let Ek be a k-dimensional subspace of W 1,p(x)(�). We take u ∈ Ek

with norm ‖u‖p(x) = 1, for 0 < ρ < min{R0, 1}, we get

G(ρu) = J (ρu)

=
∫
�

ρ p(x) |∇u|p(x) + |u|p(x)

p(x)
dx −

∫
∂�

ρq(x) 1

q(x)
|u|q(x)dx −

∫
�

F(x, ρu)dx

≤ 1

p− ρ p−
∫
�

|∇u|p(x) + |u|p(x)dx − 1

q+ ρq+
∫
∂�

|u|q(x)dσ − M(ρ)ρ p−
∫
�

|u|p−
dx .

Since Ek is a space of finite dimension, all the norms in Ek are equivalent. If we define

Ak = inf

⎧⎨
⎩
∫
∂�

|u|q(x)dσ : u ∈ Ek, ‖u‖p(x) = 1

⎫⎬
⎭ > 0,

Bk = inf

⎧⎨
⎩
∫
�

|u|p−
dx : u ∈ Ek, ‖u‖p(x) = 1

⎫⎬
⎭ > 0.

It follows from (4.4) that

G(ρu) ≤ 1

p− ρ p− − 1

q+ ρq+
Ak − M(ρ)ρ p−

Bk

≤ ρ p−
(

1

p− − M(ρ)Bk

)
− 1

q+ ρq+
Ak

= −δ(k)ρ p−
< 0, as ρ → 0,

since lim|ρ|→0 M(ρ) = +∞. That is,

{u ∈ Ek : ‖u‖p(x) = ρ} ⊂ {u ∈ W 1,p(x)(�) : G(u) ≤ −δ(k)} \ {0}.
This completes the proof. ��

Now, we give the proof of Theorem 1.1 as following.

Proof of Theorem 1.1 Recall that

�k = {A ∈ E \ {0} : A is closed and A = −A, γ (A) ≥ k}
and define

ck = inf
A∈�k

sup
u∈A

G(u).

By Lemmas 4.2 (i) and 4.3, we know that −∞ < ck < 0. Therefore, assumptions (C1)

and (C2) of Lemma 4.1 are satisfied. This means that G has a sequence of solutions {un}
converging to zero. Hence, Theorem 1.1 follows by Lemma 4.2 (ii). ��
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