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Our paper generalize to m ≥ 1 the results of that paper.

Keywords Elliptic systems · A priori estimates · Critical exponents ·
Weighted Sobolev spaces

Mathematics Subject Classification (2000) 35J48 · 35B45 · 35B33 · 46E35

Supported by ANPCyT (PICT 01307), by Universidad de Buenos Aires (grant X070), by Universidad
Nacional de La Plata (grant X500), and by CONICET (PIP 11220090100625). The first author is a member
of CONICET, Argentina.

R. G. Durán
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
1428 Buenos Aires, Argentina
e-mail: rduran@dm.uba.ar

M. Sanmartino (B) · M. Toschi
Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata,
1900 La Plata, Buenos Aires, Argentina
e-mail: tatu@mate.unlp.edu.ar

M. Toschi
e-mail: mtoschi@mate.unlp.edu.ar

123



772 R. G. Durán et al.

1 Introduction

In this paper, we consider the nonlinear problem

⎧
⎨

⎩

(−�)mu = a(x) v p in �
(−�)mv = b(x) uq in �
(
∂
∂ν

) j
u = (

∂
∂ν

) j
v = 0 on ∂� 0 ≤ j ≤ m − 1,

(1.1)

where � is the unit ball, namely, � = B = {x ∈ R
n : |x | < 1} when n ≥ 3, and B or

some perturbations of B for the case n = 2 (see [7] for details of this perturbation), ∂
∂ν

is the
normal derivative, p, q > 0, pq > 1, and a, b are nonnegative bounded functions. Let us
remark that the restriction on the domains is due to the fact that we will use that the Green
function of the corresponding linear problem is positive.

For the particular case m = 1, many authors have worked on the existence of different
types of solutions, see for example [10,12,14,15]. In all these papers, the exponents

α = 2(p + 1)

pq − 1
and β = 2(q + 1)

pq − 1

play an important role.
On the other hand, in recent years, the weighted Lebesgue spaces L p

d (�), where d is the
distance to the boundary of�, have played an important role in the study of several questions
in the theory of nonlinear elliptic problems (see for example [1,4,16–18]).

A priori bounds for nonnegative weak solutions of (1.1) with m = 1 in a C2 bounded
domain � were obtained by P. Souplet in [17]. He proved that if max{α, β} > n − 1, then

‖u‖L∞(�), ‖v‖L∞(�) ≤ C, (1.2)

where the constant C depends only on p, q, a, b and�. Moreover, he proved that the result is
sharp in the sense that if max{α, β} < n − 1, then there exist nonnegative bounded functions
a and b for which nonnegative unbounded solutions of (1.1) exist.

Our goal is to obtain similar results for nonnegative weak solutions of (1.1) for
general m. With this purpose, we will use the following generalization of the exponents
α and β,

α = 2m(p + 1)

pq − 1
and β = 2m(q + 1)

pq − 1
.

Let us mention that these exponents have appeared in different works (see for example
[8,13,19]) where the authors studied existence of positive solutions of (1.1) in � = R

n .
An important part of the arguments used in [17] are some weighted a priori estimates for

the associated linear problem
{−�u = f in �

u = 0 on ∂�.

Then, in order to generalize the results of [17] for the case m ≥ 2, we will need to extend
the weighted estimates to higher order linear problems. Nontrivial technical modifications
are needed to prove those estimates. Moreover, since we need to use positivity of the Green
function, we have to restrict the domain � as mentioned previously. Indeed, for m ≥ 2 and
general regions, the Green function is not necessarily positive.
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On the existence of bounded solutions for a nonlinear elliptic system 773

2 Weighted a priori estimates for the linear problem

We will denote by d(x) the distance from x to the boundary of � and we will work with the
Banach space L p

dm (�) where the norm is given by

‖u‖L p
dm (�)

=
⎛

⎝

∫

�

|u|p dm dx

⎞

⎠

1/p

for 1 ≤ p < ∞ and ‖u‖L∞
dm (�) := ‖u‖L∞(�).

In our arguments, we will use some results given in [6] for the linear problem
⎧
⎨

⎩

(−�)mu = f in �
(
∂

∂ν

) j

u = 0 on ∂� 0 ≤ j ≤ m − 1.
(2.1)

We recall those results in the following lemma.

Definition 2.1 Let f ∈ L1
dm (�). A weak solution of (2.1) is a function u ∈ L1(�) such that

∫

�

u (−�)mϕ =
∫

�

f ϕ

for all ϕ ∈ C2m(�) with
(
∂
∂ν

) j
ϕ = 0 on ∂�, 0 ≤ j ≤ m − 1.

We can see that the weak solution of this problem exists and is unique, in analogous way
as in Lemma 1 in [1]. Furthermore, by using the density of L2(�) in L1

dm (�), the solution is
given by the representation formula

u(x) =
∫

�

Gm(x, y) f (y) dy

where Gm(x, y) is the Green function of (−�)m .
By a weak solution (u, v) of (1.1), we understand a weak solution defined as in (2.1)

assuming that v p and uq belong to L1
dm (�).

In what follows the letter C will denote a generic constant, not necessarily the same at
each occurrence, whose dependence are made explicit when necessary.

Lemma 2.2 Let u ∈ C2m(�) and f ∈ C(�) satisfy (2.1).

• If 2m > n, then there exists C > 0 such that for all θ ∈ [0, 1]
‖u d−m+θn‖L∞(�) ≤ C ‖ f dm−(1−θ)n‖L1(�).

• Let 1 ≤ p ≤ q ≤ ∞. If 1
p − 1

q < min{ 2m
n , 1}, then taking α ∈ ( 1

p − 1
q ,min{ 2m

n , 1}] there
exists C > 0 such that for all θ ∈ [0, 1]

‖u d−m+θnα‖Lq (�) ≤ C ‖ f dm−(1−θ)nα‖L p(�).

Proof See Proposition 4.2 in [6]. �	
Let us remark that these results, and consequently our proposition below, are valid in

more general domains than those considered here. Indeed, the hypotheses used are that � is
a bounded domain with C6m+4 boundary for n = 2 and C5m+2 boundary for n ≥ 3.

Then, we have the following a priori estimates for solutions of problem (2.1).
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774 R. G. Durán et al.

Proposition 2.3 Let 1 ≤ p ≤ q ≤ ∞. Let f ∈ L p
dm (�) and let u be a weak solution of

(2.1).
We have

(1) if n ≤ m, then u ∈ L∞(�) and there exists C > 0 such that

‖u‖L∞(�) ≤ C ‖ f ‖L1
dm (�)

(2) if 1
p − 1

q <
2m

n+m , then u ∈ Lq
dm (�) and there exists C > 0 such that

‖u‖Lq
dm (�)

≤ C ‖ f ‖L p
dm (�)

.

Proof From Lemma 2.2, we have that, for 2m > n and θ ∈ [0, 1],
‖u d−m+θn‖L∞(�) ≤ C ‖ f dm−(1−θ)n‖L1(�). (2.2)

Then taking θ = 1 and using that −m + n < 0 and d(x) ≤ diam(�), we obtain

‖u‖L∞(�) ≤ C ‖u d−m+n‖L∞(�) ≤ C ‖ f dm‖L1(�)

and so (1) is proved.
On the other hand, using again Lemma 2.2, we have that, if there exists α ∈(

1
p − 1

q ,min{1, 2m
n }

]

and θ ∈ [0, 1] such that

{
−m + θ n α = m

q
m − (1 − θ) n α = m

p
(2.3)

we obtain

‖u‖Lq
dm (�)

≤ C ‖ f ‖L p
dm (�)

for 1
p − 1

q < min{1, 2m
n }.

Solving system (2.3) we obtain

α =
(

2 + 1

q
− 1

p

)
m

n
and θ =

(
1

q
+ 1

) (

2 − 1

p
+ 1

q

)−1

.

We are going to show thatα and θ satisfy the required conditions if 2m−n
m ≤ 1

p − 1
q <

2m
n+m .

Since 1 ≤ p, we have θ ∈ [0, 1]. On the other hand, from the definition of α, it is easy
to see that the condition 1

p − 1
q < α is equivalent to 1

p − 1
q < 2m

n+m , which is one of our
hypothesis.

Finally, we have to see that α ≤ min{1, 2m
n }. Since p ≤ q , we have α ≤ 2m

n . Therefore,
it only remains to consider the case 2m

n > 1. But α ≤ 1 is equivalent to 2m−n
m ≤ 1

p − 1
q , and

so the proposition is proved under this restriction.
Suppose now that 1

p − 1
q <

2m−n
m . In this case, for 2m > n, using again the first part of

Lemma 2.2, for all ∈ [0,1], we have

‖u d−m+n‖L∞(�) ≤ C ‖ f dm−(1−)n‖L1(�).

Moreover, if ≤ m
nq + m

n , it follows that

‖u‖Lq
dm (�)

≤ ‖u d−m+n‖L∞(�).
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On the existence of bounded solutions for a nonlinear elliptic system 775

Analogously, if 1 − m
n + m

np ≤,

‖ f dm−(1−)n‖L1(�) ≤ C‖ f ‖L p
dm (�)

.

Therefore, if we can choose satisfying 1 − m
n + m

np ≤≤ m
nq + m

n , we have

‖u‖Lq
dm (�)

≤ C ‖ f ‖L p
dm (�)

,

but, such a exists because 1
p − 1

q ≤ 2m−n
m and the proposition is proved. �	

Remark 2.4 The condition in (2) is almost optimal, i.e. if 1
p − 1

q >
2m

n+m , then the a priori
estimate does not hold in general. We postpone the proof of this observation to the end of the
paper because we will use the same technique as in the proof of our second main theorem.

In the proof of the following proposition, we will denote with λ1,m , the first eigenvalue
of the operator (−�)m and with φ1,m > 0, a corresponding eigenfunction normalized by∫

�
φ1,m = 1. We will use that there exist two positive constants c1 and c2 such that, in �,

c1 dm ≤ φ1,m ≤ c2 dm, (2.4)

see [5].

Proposition 2.5 If u is a weak solution of (2.1) with f ∈ L1
dm (�) and f ≥ 0, then there

exists C > 0 such that

(1) If n ≤ m and 1 ≤ k ≤ ∞,

‖u‖Lk
dm (�)

≤ C ‖u‖L1
dm (�).

(2) If n > m and 1 ≤ k < n+m
n−m

‖u‖Lk
dm (�)

≤ C ‖u‖L1
dm (�).

Proof By the definition of weak solution, we have that

‖ f ‖L1
dm

=
∫

�

f dm dx ≤ C
∫

�

f φ1,m dx

= C
∫

�

u (−�)mφ1,m dx = C λ1,m

∫

�

u φ1,m dx

≤ C
∫

�

|u| dm dx ≤ C ‖u‖L1
dm
.

Then, (1) follows directly from (1) in the previous proposition and (2) follows taking
p = 1 in (2) of the same proposition. �	

3 Main results

We consider problem (1.1) and define the exponents

α = 2m(p + 1)

pq − 1
and β = 2m(q + 1)

pq − 1
.

Then, the natural extension of the results in [17] is given by the following
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776 R. G. Durán et al.

Theorem 3.1 If

max(α, β) > n − m, (3.1)

then, any nonnegative weak solution of (1.1) satisfies

‖u‖L∞(�), ‖v‖L∞(�) ≤ C (3.2)

where C is a positive constant which depends only on a, b, p, q, m and �.

We also prove, in the following theorem, that condition (3.1) is almost optimal. We cannot
say optimal because we do not know what happens in the case max(α, β) = n − m.

Theorem 3.2 If

max(α, β) < n − m, (3.3)

then, there exist nonnegative bounded functions a and b, such that (1.1) have some nonneg-
ative weak solution (u, v), with u and v unbounded functions.

Remark 3.1 The analogues of Theorems 3.1 and 3.2 are also true for the problem
⎧
⎨

⎩

(−�)mu = a(x)u p in �
(
∂

∂ν

) j

u = 0 on ∂� 0 ≤ j ≤ m − 1.

In this case, the conditions 3.1 and 3.3 are replaced by p < n+m
n−m and p > n+m

n−m , respec-
tively. For the case m = 1, this exponent appears first in [2].

Once we have the results of the previous section, the proofs follow the lines of the case
m = 1 proved in [17]. A key point in the arguments given in that paper are the estimates

∫

�

u φ1,m,

∫

�

v φ1,m ≤ C. (3.4)

A straightforward extension of the arguments given in [18], to prove these estimates in the
case m = 1, is not possible. Indeed, the proof given in that paper is based on Lemma 3.2
of [3], which uses the maximum principle in subsets of�. An analogous maximum principle
is not valid in the case m ≥ 2. We give first a different proof of an analogous lemma using
pointwise estimates for the Green function Gm of problem (2.1) given later and conclude the
proof of (3.4) using that new result.

Recall that we have taken� such that the Green function is positive there, i.e. we assume
that � = B = {x ∈ R

n : |x | < 1} when n ≥ 3, and � = B or some perturbations of B for
the case n = 2 (see [7] for details of this perturbation). We have: for 2m < n,

Gm(x, y) ≥ C |x − y|2m−n min

{

1,
d(x)m d(y)m

|x − y|2m

}

, (3.5)

for 2m = n,

Gm(x, y) ≥ C log

(

1 + d(x)m d(y)m

|x − y|2m

)

≥ C log

(

2 + d(y)

|x − y|
)

min

{

1,
d(x)m d(y)m

|x − y|2m

}

,

(3.6)
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On the existence of bounded solutions for a nonlinear elliptic system 777

and for 2m > n,

Gm(x, y) ≥ C d(x)m−n/2 d(y)m−n/2 min

{

1,
d(x)n/2 d(y)n/2

|x − y|n
}

. (3.7)

The proofs of these estimates can be found in [7] for the case of m = n = 2 and in [11]
for the rest of the cases.

Lemma 3.3 Assume h ≥ 0, h ∈ L1
dm (�) and v a weak solution of

⎧
⎨

⎩

(−�)mv = h in �
(
∂

∂ν

) j

v = 0 on ∂� 0 ≤ j ≤ m − 1.
(3.8)

Then there exists C > 0, depending only on � and m, such that for all x ∈ �
v(x)

dm(x)
≥ C

∫

�

h dm . (3.9)

Proof By the representation formula

v(x) =
∫

�

Gm(x, y) h(y) dy

it is enough to prove that

Gm(x, y) ≥ C d(x)m d(y)m .

Consider, for example, the case 2m < n and suppose that d(x)m d(y)m

|x−y|2m ≥ 1. Then, it follows
from (3.5) that

Gm(x, y) ≥ C |x − y|2m−n ≥ d(x)m−n/2d(y)m−n/2 ≥ Cd(x)md(y)m

where in the last step, we have used that � is bounded. On the other hand, if the minimum
on the right-hand side of (3.5) is attained in d(x)m d(y)m

|x−y|2m , we have

Gm(x, y) ≥ C |x − y|−nd(x)md(y)m ≥ Cd(x)md(y)m .

The proofs for the cases 2m = n and 2m > n are analogous, using now (3.6) and (3.7),
respectively. �	

Proof of (3.4) For (u, v) nonnegative weak solution of (1.1), taking f = av p , it fol-
lows from (2.4) and Lemma 3.3 that u ≥ C

(∫

�
av pφ1,m

)
φ1,mand, for f = buq , v ≥

C
(∫

�
buqφ1,m

)
φ1,m . Then

∫

�

av pφ1,m ≥ C

⎛

⎝

∫

�

aφ p+1
1,m

⎞

⎠

⎛

⎝

∫

�

buqφ1,m

⎞

⎠

p

≥ C

⎛

⎝

∫

�

aφ p+1
1,m

⎞

⎠

⎛

⎝

∫

�

bφq+1
1,m

⎞

⎠

p ⎛

⎝

∫

�

av pφ1,m

⎞

⎠

qp

.
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778 R. G. Durán et al.

And by the same way

∫

�

buqφ1,m ≥ C

(
∫

�

bφq+1
1,m

) (
∫

�

aφ p+1
1,m

)q (
∫

�

buqφ1,m

)qp

.

Since pq > 1, if we show that there exists a constant C > 0 such that
∫

�

aφ p+1
1,m ≥ C and

∫

�

bφq+1
1,m ≥ C, (3.10)

we have
∫

�

av pφ1,m ≤ C and
∫

�

buqφ1,m ≤ C. (3.11)

Taking φ1,m as a test function in the problem (1.1), we have that (3.4) follows from (3.11).
To prove (3.10), let ε > 0,

∫

�

aφ p+1
1,m ≥

∫

{φ1,m≥ε}
aφ p+1

1,m ≥ ε p+1
∫

{φ1,m≥ε}
a

= ε p+1

⎛

⎜
⎝

∫

�

a −
∫

{φ1,m<ε}
a

⎞

⎟
⎠

≥ ε p+1

⎛

⎝

∫

�

a − ‖a‖∞
∣
∣{φ1,m < ε}∣∣

⎞

⎠ ,

and taking ε small enough, we have (3.10). �	
Proof of Theorem 3.1

Step 1: Initialization.

From (2.4) and (3.4) it follows immediately that

‖u‖L1
dm

=
∫

�

u dm ≤ C
∫

�

u φ1,m ≤ C

and

‖v‖L1
dm

=
∫

�

v dm ≤ C
∫

�

v φ1,m ≤ C,

and therefore, for n ≤ m,

‖u‖L∞(�), ‖v‖L∞(�) ≤ C

is an immediate consequence of (1) in Proposition2.3.
On the other hand, if n > m, it follows from Proposition 2.5 that

‖u‖Lk
dm

+ ‖v‖Lk
dm

≤ C(k) (3.12)

for 1 ≤ k < n+m
n−m .
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On the existence of bounded solutions for a nonlinear elliptic system 779

Without loss of generality, we may assume that q ≥ p and β > n − m ( the case q < p
is reduced to this case by interchanging u and v).

Then (p − 1)(q + 1) ≤ pq − 1 < 2m(q+1)
n−m and follow that (p − 1) < 2m

n−m , i.e. p < n+m
n−m .

So, there exists some k such that

k ≥ p and k ≥ n + m

n − m
− ε, (3.13)

with ε to be chosen below, for which (3.12) holds.

Step 2: Bootstrap on the first equation of (1.1).

Let k1 ∈ (k, ∞] such that

1

k1
>

p

k
− 2m

n + m
. (3.14)

Then, using Proposition 2.3, we have

‖u‖
L

k1
dm

≤ C ‖(−�)mu‖
Lk/p

dm
≤ C ‖v p‖

Lk/p
dm

= C ‖v‖p
Lk

dm
, (3.15)

which is finite because 1 ≤ k < n+m
n−m .

Observe that, if k > (n+m)pq
2m(q+1) , we can take k1 >

(n+m)q
2m satisfying (3.14).

Step 3: Bootstrap on the second equation of (1.1).

Assume

k1 > q (3.16)

and let k2 ∈ (k1, ∞] be such that

1

k2
>

q

k1
− 2m

n + m
. (3.17)

From Proposition 2.3, we have

‖v‖
L

k2
dm

≤ C ‖(−�)mv‖
L

k1/q
dm

≤ C ‖uq‖
L

k1/q
dm

= C ‖u‖q

L
k1
dm

, which is finite by step 2.

Step 4: Conclusion.

We can choose ρ ∈ (0, 1) such that (3.12) is true with k/ρ (see Remark below) with k
satisfying (3.13) and k ≤ (n+m)pq

2m(q+1) .
Iterating the procedure, we can reach, after a finite number of steps, some value

k̄ >
(n+m)pq
2m(q+1) . Then, it follows from the comment at the end of step 2 that there exists

k̄1 >
(n+m)q

2m ≥ (n+m)p
2m such that ‖u‖

L
k̄1
dm

≤ C .

Taking now k1 = k̄1, we can take k2 = ∞ in step 3 to conclude that ‖v‖L∞(�) ≤ C .
Analogously, by step 2, we obtain ‖u‖L∞(�) ≤ C . �	
Remark 3.4 Fulfilment of the bootstrap conditions. We can see that conditions (3.14), (3.16),
(3.17) and min{k1, k2} > k

ρ
for ρ ∈ (0, 1), to be chosen below, are equivalent to

A := p

k
− 2m

n + m
<

1

k1
< min

{
ρ

k
,

1

q

}

(3.18)
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780 R. G. Durán et al.

and

q

k1
− 2m

n + m
<

1

k2
<
ρ

k
. (3.19)

Observe now that if

k ≤ (n + m) pq

2m(q + 1)
, (3.20)

we have A > 0. Therefore, (3.18) can be solved for k1 ∈ [1,+∞) and with 1
k1

arbitrarily
closed to A whenever

p − ρ

k
<

2m

n + m
(3.21)

and

p

k
− 2m

n + m
<

1

q
. (3.22)

But, (3.21) holds if ρ satisfies

n − m

n + m
p < ρ < 1, (3.23)

and such a ρ exists because p < n+m
n−m .

On the other hand, since β = 2m (q+1)
pq−1 > n − m, we have 1

q >
p (n−m)

n+m − 2m
n+m . Then,

since k < n−m
n+m , we can choose ε such that (3.22) holds.

Let us now see that condition (3.19) can be fulfilled. Indeed, it is enough to see that all
our parameters can be chosen such that

q

k1
− 2m

n + m
<
ρ

k
. (3.24)

Taking 1
k1

in (3.18) closed enough to A, we have that (3.24) is equivalent to

ρ > 1 − η, (3.25)

where η := 2m
n+m (q + 1) k − (pq − 1).

Indeed, if 1
k1

is closed to A = p
k − 2m

n+m , then q
k1

− 2m
n+m is closed to qp

k − 2mq
n+m − 2m

n+m .
Now, ρ < 1 is equivalent to

k >
n + m

β
, (3.26)

but, since β > n − m, it is possible to take ε small enough in (3.13) such that (3.26) is
satisfied.

Finally, we can take ρ ∈ (0, 1) closed enough to one such that que (3.23) and (3.25) hold.

4 Existence of singular solutions

In order to prove Theorem 3.2, we follow the ideas of [17]. First, we will construct a function
f ∈ L1

dm (�) such that the corresponding weak solution of the linear problem (2.1) is not
bounded.
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On the existence of bounded solutions for a nonlinear elliptic system 781

Recall that our domain � is a ball when n ≥ 3 and smooth perturbations of a ball in the
case n = 2. In any case, given x0 ∈ ∂�, there exist r > 0 and a revolution cone �1 with
vertex x0 such that � := �1 ∩ B2r (x0) ⊂ �. Now, for 0 < α < n − m, we define

f (x) = |x − x0|−(α+2m)χ�,

where χ� denotes the characteristic function of �. Then, it is easy to see that f ∈ L1
dm (�).

Let u > 0 be the solution of (2.1) with f as right-hand side. Then, we have

u(x) =
∫

�

Gm(x, y) |y − x0|−(α+2m)χ�(y) dy.

Using this representation formula together with the estimates of the Green function (3.5),
(3.6) and (3.7), it is not difficult to see that, for x ∈ �,

u(x) ≥ C |x − x0|−αχ�(x). (4.1)

Proof of Theorem 3.2 Recall that α = 2m(p+1)
pq−1 and β = 2m(q+1)

pq−1 , and we are assuming
0 < α, β < n − m. We define

φ(x) = |x − x0|−(α+2m) χ�(x) and ψ(x) = |x − x0|−(β+2m) χ�(x).

Let u and v be nonnegative and such that
⎧
⎪⎪⎨

⎪⎪⎩

(−�)mu = φ in �
(−�)mv = ψ in �
(
∂

∂ν

) j

u = (
∂
∂ν

) j
v = 0 on ∂� 0 ≤ j ≤ m − 1.

Then, it follows from (4.1) that u /∈ L∞(�), v /∈ L∞(�),

v(x)p ≥ (
C |x − x0|−βχ�(x)

)p = C |x − x0|−(α+2m) χ�(x) = C φ(x)

and

u(x)q ≥ (
C |x − x0|−αχ�(x)

)q = C |x − x0|−(β+2m) χ�(x) = C ψ(x).

Therefore, defining a = φ/v p and b = ψ/uq , we have that a and b are nonnegative bounded
functions and (u, v) solves

(−�)mu = a(x) v p and (−�)mv = b(x) uq .

�	
We end the paper by proving the observation given in Remark 2.4 concerning the

optimality of condition (2) in Proposition 2.3.

Proposition 4.1 Assume 1 ≤ p ≤ q ≤ ∞ and 1
p − 1

q >
2m

n−m . Then, there exists f ∈ L p
dm (�)

such that u /∈ Lq
dm (�), where u is the weak solution of (2.1).

Proof Let 0 < α < n − m and we define, as above, f (x) = |x − x0|−(α+2m)χ�(x). Then
we have

‖ f ‖p
L p

dm (�)
=

∫

�

|x − x0|−(α+2m)p d(x)m dx ≤
∫

�

|x − x0|−(α+2m)p+m dx,

and then, since p < n+m
α+2m , f ∈ L p

dm (�).
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But, for x ∈ �, there exists a positive constant C such that d(x) ≥ C |x − x0|, and there-
fore, it follows from (4.1) that for q ≥ n+m

α
, u /∈ Lq

dm (�). To conclude the proof, we observe
that, since 1

p − 1
q >

2m
n−m , we can choose α ∈ (0, n − m) such that n+m

q < α < n+m
p−2m . �	

Finally, let us mention that, to our knowledge, it is not known what happens in general in
the limit case 1

p − 1
q = 2m

n−m . In the case p > m + 1, we have proved in [9] that

‖u‖Lq
dm (�)

≤ C ‖ f ‖L p
dm (�)

.
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