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Abstract We discuss the unitary equivalence of generators G A,R associated with abstract
damped wave equations of the type ü+ Ru̇+ A∗ Au = 0 in some Hilbert space H1 and certain
non-self-adjoint Dirac-type operators Q A,R (away from the nullspace of the latter) in H1 ⊕
H2. The operator Q A,R represents a non-self-adjoint perturbation of a supersymmetric self-
adjoint Dirac-type operator. Special emphasis is devoted to the case where 0 belongs to the
continuous spectrum of A∗ A. In addition to the unitary equivalence results concerning G A,R

and Q A,R , we provide a detailed study of the domain of the generator G A,R , consider spectral
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632 F. Gesztesy et al.

properties of the underlying quadratic operator pencil M(z) = |A|2 − i z R − z2 IH1 , z ∈ C,
derive a family of conserved quantities for abstract wave equations in the absence of damping,
and prove equipartition of energy for supersymmetric self-adjoint Dirac-type operators. The
special example where R represents an appropriate function of |A| is treated in depth, and
the semigroup growth bound for this example is explicitly computed and shown to coincide
with the corresponding spectral bound for the underlying generator and also with that of the
corresponding Dirac-type operator. The cases of undamped (R = 0) and damped (R �= 0)
abstract wave equations as well as the cases A∗ A ≥ ε IH1 for some ε > 0 and 0 ∈ σ(A∗ A)
(but 0 not an eigenvalue of A∗ A) are separately studied in detail.

Keywords Dirac operators · Supersymmetry · Wave equations · Semigroups ·
Damping terms · Quadratic operator pencils

Mathematics Subject Classification (2000) Primary 35J25 · 35L05 · 35L15;
Secondary 35J40 · 35P05 · 47A05 · 47A10 · 47F05

1 Introduction

We are interested in an abstract version of the damped wave equation of the form

ü(t)+ Ru̇(t)+ A∗ Au(t) = 0, u(0) = f0, u̇(0) = f1, t ≥ 0, (1.1)

where A is a densely defined closed operator in a separable Hilbert spaceH, f j ∈ H, j = 0, 1,
are chosen appropriately, R is a certain perturbation of A∗ A to be specified in more detail in
Sect. 3, and we used the abbreviations u̇ = (d/dt)u, ü = (d2/dt2)u. (In the main body of
this paper we will employ a two Hilbert space approach where A maps its domain, a dense
subspace of the Hilbert space H1 into a Hilbert space H2.)

Traditionally, one rewrites (1.1) in the familiar first-order form

d

dt

(
u
u̇

)
=
(

0 IH
−A∗ A −R

)(
u
u̇

)
,

(
u(0)
u̇(0)

)
=
(

f0

f1

)
, t ≥ 0. (1.2)

Our principal result centers around a unitary equivalence between an appropriate operator
realization of the formal generator G A,R of (1.2),

G A,R =
(

0 IH
−A∗ A −R

)
, (1.3)

in an associated energy space HA ⊕ H to be determined in Sect. 2, and the operator

Q A,R(IH ⊕ [IH − Pker(A∗)]) =
(−i R A∗[IH − Pker(A∗)]

A 0

)
, (1.4)

with Q A,R a perturbed supersymmetric Dirac-type operator in H ⊕ H,

Q A,R =
(−i R A∗

A 0

)
, dom(Q A,R) = dom(A)⊕ dom(A∗) ⊆ H ⊕ H. (1.5)

More precisely, we will first establish the unitary equivalence between the self-adjoint

operators i G A,0 in HA ⊕H and Q A,0 in H1 ⊕H2 and then treat the damping terms

(
0 0
0 −R

)
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Abstract wave equations and Dirac-type operators 633

and

(−i R 0
0 0

)
perturbatively, keeping the same unitary equivalence between i G A,R and

Q A,R for R �= 0.
Particular attention is devoted to domain properties of the generator G A,R . Moreover, we

carefully distinguish the cases of undamped (R = 0) and damped (R �= 0) abstract wave
equations, and the cases where A∗ A ≥ ε IH for some ε > 0 and the far more subtle situation
where 0 ∈ σ(A∗ A) (but 0 is not an eigenvalue of A∗ A).

More precisely, the case where A∗ A ≥ ε IH for some ε > 0 and no damping, that
is, the situation R = 0, is treated in Sect. 2. The unitary equivalence of the generator
G A,0 and the supersymmetric self-adjoint Dirac-type operator Q A,0 (away from its null-
space) is the centerpiece of this section. Section 2 concludes with a discussion of the spe-
cial case where A is replaced by the self-adjoint operator |A|. Section 3 then considers
the more general case where 0 ∈ σ(A∗ A) (but 0 is not an eigenvalue of A). After estab-
lishing the appropriate extension of the unitary equivalence of the generator G A,0 and the
supersymmetric self-adjoint Dirac-type operator Q A,0 (away from its nullspace) in this case,
we provide a detailed study of the domain of the generator G A,0. Abstract damped linear
wave equations, assuming A∗ A ≥ ε IH for some ε > 0, are studied in Sect. 4. In this
section we also compute the resolvent of Q|A|,R in terms of the quadratic operator pencil
M(z) = |A|2 − i z R − z2 IH1 , dom(M(z)) = dom

(|A|2) , z ∈ C, and relate the spectrum of
Q|A|,R with that of the pencil M(·). This section once more derives the unitary equivalence
results between Q|A|,R and G A,R and similarly, between Q A,R (away from its nullspace) and
G A,R . We also briefly revisit classical solutions for the abstract first-order and second-order
Cauchy problems. Section 4 concludes with a detailed discussion of the example where the
damping term R = 2F(|A|) ≥ 0 is an appropriate function of |A|. Employing the spectral
theorem for the self-adjoint operator |A|, the semigroup growth bound for eG A,2F(|A|)t , t ≥ 0,
is explicitly computed and shown to coincide with the corresponding spectral bound for the
underlying generator G A,2F(|A|) and hence also with that of −i Q|A|,2F(|A|). The most general
case of abstract damped wave equations where 0 ∈ σ(A∗ A) (but 0 is not an eigenvalue of A)
is considered in Sect. 5. Again, we compute the resolvent of Q|A|,R in terms of the quadratic
operator pencil M(z) = |A|2 − i z R − z2 IH1 , dom(M(z)) = dom

(|A|2) , z ∈ C, and relate
the spectrum of Q|A|,R with that of the pencil M(·). In addition, we once more derive the
unitary equivalence results between Q|A|,R and G A,R and similarly, between Q A,R (away
from its nullspace) and G A,R . Section 5 concludes with a derivation of a family conserved
quantities for the abstract wave equation in the absence of damping. In Sect. 6, we prove
equipartition of energy for the supersymmetric self-adjoint Dirac-type operator Q = Q A,0.
Appendix A summarizes well-known results on supersymmetric Dirac-type operators used
throughout the bulk of this manuscript, and Appendix B studies adjoints and closures of
products of linear operators.

Concluding this introduction, we briefly summarize some of the notation used in this
paper. Let H be a separable complex Hilbert space, (·, ·)H the scalar product in H (linear
in the second factor), and IH the identity operator in H. Next, let T be a linear operator
mapping (a subspace of) a Hilbert space into another, with dom(T ), ran(T ), and ker(T )
denoting the domain, range, and kernel (i.e., null space) of T , respectively. The closure of
a closable operator S in H is denoted by S. The spectrum, essential spectrum, point spec-
trum, discrete spectrum, and resolvent set of a closed linear operator in H will be denoted by
σ(·), σess(·), σp(·), σd(·), and ρ(·), respectively. The Banach space of bounded linear opera-
tors in H is denoted by B(H); the analogous notation B(H1,H2) will be used for bounded
operators between two Hilbert spaces H1 and H2. The norm in H1 ⊕ H2 is defined as usual
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634 F. Gesztesy et al.

by ‖ f ‖H1⊕H2 =
[
‖ f1‖2

H1
+ ‖ f2‖2

H2

]1/2
for f = ( f1 f2)


 ∈ H1 ⊕H2. The symbols s-lim

(resp., w-lim) denote the strong (resp., weak) limits either in the context of Hilbert space
vectors or in the context of bounded operators between two Hilbert spaces. Finally, PM
denotes the orthogonal projection onto a closed, linear subspace M of H.

2 Abstract linear wave equations in the absence of damping.
The case A∗ A ≥ ε IH for some ε > 0

In this section we consider self-adjoint realizations of i G A,0 modeling abstract linear wave
equations in the absence of damping and study their unitary equivalence to self-adjoint super-
symmetric Dirac-type operators.

To set the stage, we first introduce the following assumptions used throughout this section.

Hypothesis 2.1 Let H j , j = 1, 2, be complex separable Hilbert spaces. Assume that A :
dom(A) ⊆ H1 → H2 is a densely defined, closed, linear operator such that

A∗ A ≥ ε IH1 (2.1)

for some ε > 0.

To illustrate the implications of Hypothesis 2.1, we briefly digress a bit. Let T : dom(T ) ⊆
H1 → H2 be a densely defined, closed, linear operator. We recall the definition of the self-
adjoint operator |T | = (T ∗T )1/2 in H1 and note that

dom(|T |) = dom(T ), ker(|T |) = ker(T ∗T ) = ker(T ), ran(|T |) = ran(T ∗), (2.2)

‖|T | f ‖H1 = ‖T f ‖H2 , f ∈ dom(T ). (2.3)

The latter fact immediately follows from the polar decomposition of T (cf. (A.5)–(A.11)).
Thus, Hypothesis 2.1 is equivalent to

|A| ≥ ε1/2 IH1 , (2.4)

and hence equivalent to

|A|−1 ∈ B(H1), or equivalently, to 0 ∈ ρ(|A|). (2.5)

In particular, it implies that

ker(A) = {0}. (2.6)

Since A is closed and |A| ≥ ε1/2 IH1 , the norm ‖ · ‖A on the subspace dom(A) of H1

defined by

‖ f ‖A = ‖A f ‖H2 , f ∈ dom(A), (2.7)

and the graph norm � · �A on dom(A) defined by

� f �A = ‖A f ‖H2 + ‖ f ‖H1

(
or alternatively, by

[‖A f ‖2
H2

+ ‖ f ‖2
H1

]1/2)
,

f ∈ dom(A), (2.8)

are equivalent norms on dom(A). In particular, one verifies that

ε

1 + ε

[‖A f ‖H2 + ‖ f ‖H1

] ≤ ‖ f ‖A ≤ [‖A f ‖H2 + ‖ f ‖H1

]
, f ∈ dom(A). (2.9)
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Abstract wave equations and Dirac-type operators 635

Associated with the norm ‖ · ‖A, we also introduce the corresponding scalar product ( · , · )A

on dom(A) by

( f, g)A = (A f, Ag)H2 , f, g ∈ dom(A). (2.10)

Consequently, equipping the linear space dom(A)with the scalar product ( · , · )A, one arrives
at a Hilbert space denoted by HA,

HA = (dom(A); ( · , · )A) ⊆ H1. (2.11)

We emphasize that while Hypothesis 2.1 implies |A|−1 ∈ B(H1), it does not imply that
A is boundedly invertible on all of H1 (mapping into H2), as one can see from the following
typical example.

Example 2.2 Consider the operator B in the Hilbert space L2([0, 1]; dx) defined by

B f = −i f ′, f ∈ dom(B) = {
g ∈ L2([0, 1]; dx) | g ∈ AC([0, 1]);

g(0) = g(1) = 0; g′ ∈ L2([0, 1]; dx)
}
. (2.12)

Then B is symmetric, its adjoint is given by

B∗ f = −i f ′,
f ∈ dom(B∗) = {g ∈ L2([0, 1]; dx) | g ∈ AC([0, 1]); g′ ∈ L2([0, 1]; dx)

}
, (2.13)

and the deficiency indices n±(B) of B are given by

n±(B) = 1. (2.14)

Consequently,

σ(B) = C, (2.15)

in particular, B is not boundedly invertible on L2([0, 1]; dx). On the other hand,

B∗ B f = − f ′′, dom(B∗ B) = {g ∈ L2([0, 1]; dx)
∣∣ g, g′ ∈ AC([0, 1]);

g(0) = g(1) = 0; g′′ ∈ L2([0, 1]; dx)
}
, (2.16)

(implying also g′ ∈ L2([0, 1]; dx)) and hence

|B| ≥ π IL2([0,1];dx), |B|−1 ∈ B (L2([0, 1]; dx)
)
. (2.17)

In fact, one has |B|−1 ∈ Bp
(
L2([0, 1]; dx)

)
for all p> 1. (Here, Bp

(
L2([0, 1]; dx)

)
, p> 0,

denotes the �p(N)-based trace ideals of L2([0, 1]; dx).)

In this context, we note that by (2.2) and (2.3), one has of course

HA = (dom(A); ( · , · )A) = H|A| = (dom(|A|); ( · , · )|A|
) ⊆ H1, (2.18)

which is of some significance since under Hypothesis 2.1 we always have

0 < ε−1/2 IH1 ≤ |A|−1 ∈ B(H1), (2.19)

while in general (cf. Example 2.2), A is not boundedly invertible on all of H1 (mapping into
H2).

The following result is well known; but for convenience, we provide its short proof.

Lemma 2.3 Assume Hypothesis 2.1. Then ran(A) is a closed linear subspace of H2.
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Proof Let {gn}n∈N ⊂ ran(A) be a Cauchy sequence, that is, gn = A fn, n ∈ N, for some
sequence { fn}n∈N ⊂ dom(A), and hence suppose that limn→∞ ‖gn − g‖H2 = 0 for some
g ∈ H2. Since by (2.9),

‖gn − gm‖H2 = ‖A fn − A fm‖H2 = ‖ fn − fm‖A

≥ ε

1 + ε

[‖A( fn − fm)‖H2 + ‖ fn − fm‖H1

]
, m, n ∈ N, (2.20)

{ fn}n∈N and {A fn}n∈N are Cauchy sequences in H1 and H2, respectively. In particular, there
exists f ∈ H1 such that limn→∞ ‖ fn − f ‖H1 = 0. Since A is closed, one infers f ∈ dom(A)
and g = s-limn→∞ A fn = A f , and hence ran(A) is closed in H2. ��

Given Lemma 2.3, we can now introduce the Hilbert space

KA = ran(A) = ran(A) = ker(A∗)⊥ ⊆ H2, (2.21)

and the associated projection operator PKA in H2,

PKA = [IH2 − Pker(A∗)]. (2.22)

Next, we state the following elementary result.

Lemma 2.4 Assume Hypothesis 2.1 and introduce the operator

Ã :
{HA → KA,

f �→ A f.
(2.23)

Then

Ã ∈ B(HA,KA) is unitary, (2.24)

and hence,

(
Ã
)−1 :

{KA → HA,

g �→ A−1g,

(
Ã
)−1 ∈ B(KA,HA) is unitary. (2.25)

Proof First, we note that ker
(

Ã
) = ker(A) = {0}. Next, one infers that

∥∥ Ã f
∥∥KA

= ‖A f ‖H2 = ‖ f ‖A = ‖ f ‖HA , f ∈ dom(A), (2.26)

and hence, Ã is isometric. Since ran
(

Ã
) = ran(A) = KA, Ã is unitary. ��

Lemma 2.5 Assume Hypothesis 2.1 and introduce the 2 × 2 block matrix operator

UÃ =
(

0 IH1

−i Ã 0

)
: HA ⊕ H1 → H1 ⊕ KA. (2.27)

Then,

UÃ ∈ B(HA ⊕ H1,H1 ⊕ KA) is unitary, (2.28)

and hence,

U−1
Ã

=
(

0 i
(

Ã
)−1

IH1 0

)
∈ B(H1 ⊕ KA,HA ⊕ H1) is unitary. (2.29)
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Abstract wave equations and Dirac-type operators 637

Proof Assuming f ∈ HA and g ∈ H1, one infers that
∥∥∥UÃ( f g)


∥∥∥2

H1⊕KA
=
∥∥∥UÃ( f g)


∥∥∥2

H1⊕H2
=
∥∥∥(g − i A f )


∥∥∥2

H1⊕H2

= ‖g‖2
H1

+ ‖A f ‖2
H2

=
∥∥∥( f g)
‖2

HA⊕H1
. (2.30)

Thus, ker
(
UÃ

) = {0} ⊕ ker
(

Ã
) = {0}, and hence Ã is isometric. Since ran

(
UÃ

) = H1 ⊕
KA,UÃ is unitary. In addition, UÃU−1

Ã
= IH1⊕KA and U−1

Ã
UÃ = IHA⊕H1 follow from

(2.27), (2.29), and Lemma 2.4. ��
Next, we explicitly introduce the continuous embedding operator ιA effecting HA ↪→ H1

by

ιA :
{HA → H1,

f �→ f,
(2.31)

such that

dom(ιA) = HA, ran(ιA) = dom(A) ⊆ H1. (2.32)

Then (2.4) implies

ιA ∈ B(HA,H1), ‖ιA‖B(HA,H1) ≤ ε−1/2. (2.33)

In addition, we consider

JA = ι−1
A :

{H1 ⊇ dom(A) → HA,

f �→ f.
(2.34)

We briefly summarize some properties of JA.

Lemma 2.6 Assume Hypothesis 2.1. Then JA is densely defined, closed, and bijective. More-
over, JA is bounded if and only if A is bounded, in particular, JA ∈ B(H1,HA) if and only
if A ∈ B(H1,H2).

Proof Since JA is injective and J−1
A = ιA ∈ B(HA,H1) is closed, so is JA (cf. [85, p. 89]).

Boundedness of JA is then equivalent to the existence of C ∈ (0,∞) such that

‖JA f ‖HA = ‖ f ‖HA = ‖A f ‖H2 ≤ C‖ f ‖H1 , f ∈ dom(A), (2.35)

which is equivalent to A being bounded. ��
With the introduction of ιA and JA = ι−1

A , one obtains

Ã = A ιA, A = Ã ι−1
A = Ã JA (2.36)

and

dom(A∗ AιA) = dom
(

A∗ Ã
) = JA dom(A∗ A). (2.37)

Moreover, the following result holds.

Lemma 2.7 Assume Hypothesis 2.1. Then(
A∗ Ã

)∗ = (A∗ A ιA
)∗ = JA, J ∗

A = A∗ Ã = A∗ A ιA. (2.38)
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Proof For brevity, we denote T = A∗ Ã = A∗ A ιA. Then T ∗ is given by

dom(T ∗) = { f ∈ H1 | there exists g ∈ HA : ( f, T h)H1 = (g, h)HA

for all h ∈ dom(T )},
T ∗ f = g, (2.39)

where

dom(T ) = {h ∈ HA | A ιAh ∈ dom(A∗)}. (2.40)

Given h ∈ dom(T ) and g ∈ HA as in dom(T ∗) in (2.39), one concludes

(g, h)HA = (AιAg, AιAh)H2 = (ιAg, A∗ AιAh)H1 = ( f, T h)H1 = ( f, A∗ AιAh)H1 ,

(2.41)

that is,

f = ιAg = ιAT ∗ f, f ∈ dom(A), (2.42)

since ran(A∗ A) = H. Thus,

dom(T ∗) = dom(A) and T ∗ = ι−1
A = JA. (2.43)

Consequently,

J ∗
A = T = T (2.44)

since T = A∗ A ιA is closed as A∗ A is closed in H, (A∗ A)−1 ∈ B(H1), and ιA ∈ B(HA,H1)

(cf. [59, p. 164]). ��

Assuming Hypothesis 2.1, we next introduce the operator G A,0 in HA ⊕ H1 by

G A,0 =
(

0 JA

−J ∗
A 0

)
=
(

0 JA

−A∗ Ã 0

)
,

dom(G A,0) = dom
(

A∗ Ã
)⊕ dom(A) ⊆ HA ⊕ H1, (2.45)

where

dom
(

A∗ Ã
) = { f ∈ HA

∣∣ Ã f ∈ dom(A∗)
}
. (2.46)

In particular, one infers

G A,0 =
(

0 JA

−A∗ A ιA 0

)
=
(

0 IHA

−A∗ A 0

)(
ιA 0
0 JA

)
. (2.47)

We recall that the Hilbert space HA ⊕ H1 in connection with G A,0 is sometimes called the
energy space.

In addition, still assuming Hypothesis 2.1, we introduce the supersymmetric Dirac-type
operator Q A,0 in H1 ⊕ H2 by

Q A,0 =
(

0 A∗
A 0

)
, dom(Q A,0) = dom(A)⊕ dom(A∗) ⊆ H1 ⊕ H2. (2.48)
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Abstract wave equations and Dirac-type operators 639

As discussed in Appendix A, Q A,0 is self-adjoint in H1⊕H2. Moreover, (A.28) and ker(A) =
{0} yield

Q A,0[IH1⊕H2 − Pker(Q A,0)] =
(

0 A∗
A 0

)(
IH − Pker(A) 0

0 IH − Pker(A∗)

)

=
(

0 A∗[IH − Pker(A∗)]
A 0

)
=
(

0 A∗ PKA

A 0

)
. (2.49)

Clearly,

Q A,0[IH1⊕H2 − Pker(Q A,0)] = [IH1⊕H2 − Pker(Q A,0)]Q A,0

= [IH1⊕H2 − Pker(Q A,0)]Q A,0[IH1⊕H2 − Pker(Q A,0)]
(2.50)

is self-adjoint in H1 ⊕ H2, with H1 ⊕ KA a reducing (i.e., invariant) subspace for
Q A,0[IH1⊕H2 − Pker(Q A,0)]. In this context we also note that

[IH − Pker(A∗)]A = PKA A = A. (2.51)

At this point we are in position to formulate our first principal result and establish the fol-
lowing remarkable connection between the generator G A,0 and the abstract supersymmetric
Dirac-type operator Q A,0.

Theorem 2.8 Assume Hypothesis 2.1. Then

Q A,0[IH1⊕H2 − Pker(Q A,0)] = UÃ i G A,0U−1
Ã
. (2.52)

In particular, the operator i G A,0 is self-adjoint in the energy space HA ⊕ H1, and hence,
G A,0 generates a unitary group eG A,0t , t ∈ R, in HA ⊕ H1. Moreover, G A,0 is unitarily
equivalent to −G A,0.

Proof Self-adjointness of i G A,0 is an immediate consequence of J ∗
A = A∗ Ã in Lemma 2.7

and the first equality in (2.45), that is,

G A,0 =
(

0 JA

−A∗ Ã 0

)
=
(

0 JA

−J ∗
A 0

)
(2.53)

in HA ⊕ H1 and the fact that JA is closed by Lemma 2.6.
Employing the fact that dom(G A,0) = dom

(
A∗ Ã

) ⊕ dom(A) ⊆ HA ⊕ H1, one first
obtains

UÃ dom(G A,0)=
(

0 IH1

−i Ã 0

){(
f
g

)
∈ HA ⊕ H1

∣∣ f ∈ dom
(

A∗ Ã
)
, g ∈ dom(A)

}

=
{(

g − i Ã f
)
 ∈ H1 ⊕ KA

∣∣ f ∈ dom
(

Ã
)
, Ã f ∈ dom(A∗), g ∈ dom(A)

}
= dom(A)⊕ {h ∈ KA | h ∈ dom(A∗)}
= dom(A)⊕ dom(A∗[IH2 − Pker(A∗)])
= dom(A)⊕ dom(A∗ PKA )

= dom(Q A,0[IH1⊕H2 − Pker(Q A,0)]). (2.54)
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Next, one computes for ( f g)
 ∈ H1 ⊕ KA such that U−1
Ã
( f g)
 ∈ dom(G A,0) =

dom
(

A∗ Ã
)⊕ dom(A),

U−1
Ã

(
f
g

)
=
(−i

(
Ã
)−1

g
f

)
∈ dom(G A,0) = dom

(
A∗ Ã

)⊕ dom(A)

if and only if f ∈ dom(A),
(

Ã
)−1

g ∈ dom
(

A∗ Ã
)
, g ∈ KA = ran

(
Ã
)

if and only if f ∈ dom(A), g ∈ KA, g ∈ dom(A∗)
if and only if f ∈ dom(A), g ∈ dom(A∗ PKA ) = dom(A∗[IH2 − Pker(A∗)]), (2.55)

where we used the fact that KA = PKA H2 = [IH2 − Pker(A∗)]H2 reduces A∗. Thus,

UÃi G A,0U−1
Ã

= i

(
0 IH1

−i Ã 0

)(
0 JA

−A∗ Ã 0

)(
0 i

(
Ã
)−1

IH1 0

)

= i

(
0 IH1

−i Ã 0

)(
JA 0
0 −i A∗ PKA

)

=
(

0 A∗ PKA

Ã JA 0

)
=
(

0 A∗ PKA

Ã ι−1
A 0

)

=
(

0 A∗ PKA

A 0

)
, (2.56)

using Ã JA = Ã ι−1
A = A by (2.36).

An alternative proof of the self-adjointness of i G A,0 then follows from (2.52) and the
self-adjointness of Q A,0 (cf. (A.2)) and hence that of Q A,0[IH1⊕H2 − Pker(Q A,0)].

Finally, the unitary equivalence of Q A,0 to −Q A,0 in (A.29) together with (A.28),
which implies the unitary equivalence of the operators Q A,0[IH1⊕H2 − Pker(Q A,0)] and
−Q A,0[IH1⊕H2 − Pker(Q A,0)], and (2.52) then prove the unitary equivalence of G A,0 and
−G A,0. ��
Remark 2.9 (i) Given Hypothesis 2.1, the self-adjointness of G A,0 on dom(G A,0) =

dom
(

A∗ Ã
) ⊕ dom(A) in the energy space HA ⊕ H1 is of course well known. We

refer, for instance, to the monographs [20, Sect. VI.3], [29, Sect. 2.7], [71, p. 2, 3],
[72, Sect. X.13]. These sources typically employ a combination of semigroup meth-
ods and the spectral theorem for self-adjoint operators. Our proof of (2.53) closely
follows the pattern displayed in the Klein–Gordon context in [78, Subsect. 5.5.3].
Our proof based on the unitary equivalence to the self-adjoint Dirac-type operator
Q A,0[IH1⊕H2 − Pker(Q A,0)] in H1 ⊕ H2 appears to be a new twist in this context.

(ii) The observation that G A,0 (and more generally, G A,R) in the energy space HA ⊕ H1

is related to a Dirac-type operator in H1 ⊕ H2 has recently been made in the context
of trace formulas for the damped string equation [23]. However, this observation is
not new and has already been made in [61] (under more restricted assumptions of
compactness of A∗ A and self-adjointness and boundedness of R) and [37] and was
subsequently also discussed in [33,39,40,52], and [78, Subsect. 5.5.3]. We have not
been able to find the precise unitary equivalence result (2.52) in Theorem 2.8 in the
literature. The fact that G A,0 and −G A,0 are similar operators has been noted in [20,
p. 382].

Still assuming the basic Hypothesis 2.1, we now briefly summarize the basic results
derived thus far if A and A∗ in the factorization A∗ A are both systematically replaced by
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|A| using the fact that A∗ A = |A|2. This case is of considerable interest and used in practice
as 0 < ε−1/2 IH1 ≤ |A|−1 ∈ B(H1), whereas A is in general not boundedly invertible as
discussed in Example 2.2. Since this is a special case of the discussion thus far, we now focus
on some of the simplifications that arise in this context and present the results without proofs
as the latter parallel those that have already been presented in great detail.

We start by noting that in this special case

H|A| = HA, (2.57)

ι|A| = ιA, (2.58)

J|A| = JA, (2.59)

K|A| = ran(|A|) = ker(|A|)⊥ = H1. (2.60)

In addition1,

|̃A| :
{H|A| → H1,

f �→ |A| f,

(|̃A|)−1 :
{ H1 → H|A|,

g �→ |A|−1g,
(2.61)

|̃A| ∈ B(H|A|,H1),
(|̃A|)−1 ∈ B(H1,H|A|) are both unitary, (2.62)

U|̃A| =
(

0 IH1

−i |̃A| 0

)
∈ B(H|A| ⊕ H1,H1 ⊕ H1) is unitary, (2.63)

U−1
|̃A| =

(
0 i

(|̃A|)−1

IH1 0

)
∈ B(H1 ⊕ H1,H|A| ⊕ H1) is unitary, (2.64)

J ∗|A| = |A|2ι|A| = A∗ AιA = J ∗
A, (2.65)

|̃A| = |A|ιA,
(|̃A|)−1 = JA|A|−1, (2.66)

G |A|,0 =
(

0 J|A|
−|A|2ι|A| 0

)
=
(

0 JA

−|A|2ιA 0

)
=
(

0 JA

−A∗ AιA 0

)
= G A,0, (2.67)

dom(G |A|,0) = dom
(|A|2ιA

)⊕ dom(A) = dom(G A,0) ⊆ H|A| ⊕ H1, (2.68)

Q|A|,0 =
(

0 |A|
|A| 0

)
, dom(Q|A|,0) = dom(|A|)⊕ dom(|A|) ⊆ H1 ⊕ H1. (2.69)

Consequently, one obtains as in Theorem 2.8 that

Q|A|,0 = U|̃A| i G A,0U−1
|̃A| , dom(Q|A|,0) = U|̃A| dom(G |A|,0). (2.70)

We emphasize that Q|A|,0 in (2.70) does not involve any additional projection as opposed
to Q A,0[IH1⊕H2 − Pker(Q A,0)] in (2.52). Still, the two operators are of course unitarily equiv-
alent. Indeed, equation (2.70) implies

Q|A|,0 =
[
U|̃A|U

−1
Ã

]
Q A,0[IH1⊕H2 − Pker(Q A,0)]

[
U|̃A|U

−1
Ã

]−1
, (2.71)

where

U|̃A|U
−1
Ã

=
(

IH1 0

0 |̃A| ( Ã)−1

)
=
(

IH1 0
0 |A|A−1

)
=
(

IH1 0
0 (VA)

∗
)

=
(

IH1 0
0 VA∗

)
∈ B(H1 ⊕ KA,H1 ⊕ H1) is unitary, (2.72)

1 We emphasize that |̃A| as defined in (2.61) differs of course from
∣∣ Ã∣∣ = (( Ã)∗ Ã

)1/2
(noting the different

order of operations). In fact, since Ã as defined in (2.23) is unitary, one has
∣∣ Ã∣∣ = IHA

.
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using, (2.2), (A.5)–(A.11), and employing the fact that the initial set of VA∗ coincides with
ran(A) = KA.

We note that the (2.70) is a special case of a result observed by Huang [54] in connection
with his Proposition 3.1 (the latter also includes a damping term R, see also Theorem 4.4).

3 Abstract linear wave equations in the absence of damping.
The case inf(σ (A∗ A)) = 0

In this section we indicate how to extend the results of the previous section to the case
inf(σ (A∗ A)) = 0. This case will to a large extend parallel the case A∗ A ≥ ε IH1 for some
ε > 0, and hence, we will mainly focus on the differences between these two situations.

Our basic hypothesis throughout this section now reads as follows.

Hypothesis 3.1 Let H j , j = 1, 2, be complex separable Hilbert spaces. Assume that A :
H1 ⊇ dom(A) → H2 is a densely defined, closed, linear operator satisfying

ker(A) = {0} (3.1)

and

inf(σ (A∗ A)) = 0. (3.2)

As in the previous case, we can equip dom(A)with the norm ‖ · ‖A, but since the stronger
Hypothesis 2.1 is no longer assumed, the resulting space will in general not be complete.
Hence, we denote by HA its completion,

HA = (dom(A); (·, ·)A), ( f, g)A = (A f, Ag)H2 , f, g ∈ dom(A) ⊆ H1. (3.3)

In general (cf. Example 5.8),

HA � H1 and H1 � HA. (3.4)

Moreover, Lemma 2.3 will also fail in general, and consequently, we now define

KA = ran(A) = ker(A∗)⊥ ⊆ H2. (3.5)

Next, Lemma 2.4 also requires some modifications.

Lemma 3.2 Assume Hypothesis 3.1 and introduce the operator

A0 :
{HA ⊇ dom(A) → KA,

f �→ A f.
(3.6)

Then, there exists a (unique) unitary extension Ã = A0 ∈ B(HA,KA) of A0.

Proof As in the proof of Lemma 2.4, one infers that A0 is isometric. Since ran(A0) =
ran(A) ⊆ KA is dense, there is a unique unitary extension Ã of A0 given by the closure A0

of A0. ��
Consequently, Lemma 2.5 extends without further modifications to the present setting.

Lemma 3.3 Assume Hypothesis 3.1 and introduce the 2 × 2 block matrix operator

UÃ =
(

0 IH1

−i Ã 0

)
: HA ⊕ H1 → H1 ⊕ KA. (3.7)
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Then

UÃ ∈ B(HA ⊕ H1,H1 ⊕ KA) is unitary, (3.8)

and hence,

U−1
Ã

=
(

0 i
(

Ã
)−1

IH1 0

)
∈ B(H1 ⊕ KA,HA ⊕ H1) is unitary. (3.9)

We can also introduce the embedding operator ιA effecting the embedding HA ⊇
dom(A) ↪→ H1 by

ιA :
{HA ⊇ dom(A) → H1,

f �→ f,
(3.10)

such that

dom(ιA) = dom(A) ⊆ HA, ran(ιA) = dom(A) ⊆ H1. (3.11)

In particular, we note that ιA is no longer a bounded operator unless Hypothesis 2.1 holds.
In addition, we consider

JA = ι−1
A :

{H1 ⊇ dom(A) → HA,

f �→ f.
(3.12)

Both ιA and JA are densely defined, closed, and bijective.
With the introduction of ιA and JA = ι−1

A , one obtains

A0 = AιA, Ã = A ιA, A = Ã ι−1
A = Ã JA, (3.13)

and the analog of Lemma 2.7 holds.

Lemma 3.4 Assume Hypothesis 3.1. Then(
A∗ Ã

)∗ = JA, J ∗
A = A∗ Ã. (3.14)

Proof Since Ã is unitary and A is closed, one computes (cf. [85, Exercise 4.18])
(

A∗ Ã
)∗ = ( Ã)∗ A = ( Ã)−1

A = (A ιA)−1
A = (A ιA)−1 A = JA A−1 A. (3.15)

In addition, since dom(JA A−1) = ran(A), one can drop the closure in the last equation which
finally yields

(
A∗ Ã

)∗ = JA A−1 A = JA.

Hence, one also obtains J ∗
A = (

A∗ Ã
)∗∗ = A∗ Ã = A∗ Ã since A∗ Ã is closed as Ã is

unitary and A∗ is closed. ��
Assuming Hypothesis 3.1, we again introduce the operator G A,0 in HA ⊕ H1 by

G A,0 =
(

0 JA

−J ∗
A 0

)
=
(

0 JA

−A∗ Ã 0

)
,

dom(G A,0) = dom
(

A∗ Ã
)⊕ dom(A) ⊆ HA ⊕ H1, (3.16)

and also introduce the supersymmetric Dirac-type operator Q A,0 in H1 ⊕ H2 by

Q A,0 =
(

0 A∗
A 0

)
, dom(Q A,0) = dom(A)⊕ dom(A∗) ⊆ H1 ⊕ H2. (3.17)

As discussed in Appendix A, Q A,0 is self-adjoint in H1 ⊕ H2.
The analog of Theorem 2.8 then reads as follows.
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Theorem 3.5 Assume Hypothesis 3.1. Then

Q A,0[IH1⊕H2 − Pker(Q A,0)] = UÃ i G A,0U−1
Ã
. (3.18)

In particular, the operator i G A,0 is self-adjoint in the energy space HA ⊕ H1 and hence
generates a unitary group eG A,0t , t ∈ R, in HA ⊕H1. Moreover, G A,0 is unitarily equivalent
to −G A,0.

Next, we further analyze the domain of G A,0, more precisely, the domain of A∗ Ã (cf.
(3.16)), applying some results discussed in Appendix B. Since Ã = A0, and A∗ Ã is known
to be a closed operator (cf. (3.16)), the natural question arises whether or not A∗ Ã = A∗ A0

coincides with the closure A∗ A0 of A∗ A0. This is a somewhat intricate question, an answer
to which is given in Theorem 3.8 below.

We start with the following elementary result.

Lemma 3.6 Suppose S is self-adjoint in the complex separable Hilbert space H with
ker(S) = {0}. Then

dom(S) ∩ ran(S) = dom(S) ∩ dom
(
S−1) is dense in H and a core for S and S−1.

(3.19)

Proof Since ker(S) = {0}, the operator S−1 exists and is self-adjoint (and also ker
(
S−1
) =

{0}). For any g ∈ H, gn = ES([−n,−n−1] ∪ [n−1, n])g ∈ dom(S) ∩ dom
(
S−1
)
, n ∈ N,

and hence

lim
n→∞ ‖gn − g‖H = lim

n→∞ ‖[ES([−n,−n−1] ∪ [n−1, n])− IH]g‖H = 0 (3.20)

proves that dom(S) ∩ dom
(
S−1
) = H. Here, ES(·) denotes the strongly right continuous

family of spectral projections associated with S.
Next, let f ∈ dom(S) and introduce fn = ES((−∞,−n−1] ∪ [n−1,∞)) f ∈ dom(S) ∩

dom
(
S−1
)
, n ∈ N. Then

lim
n→∞ ‖ fn − f ‖H = lim

n→∞ ‖[ES((−∞,−n−1] ∪ [n−1,∞))− IH] f ‖H = 0,

lim
n→∞ ‖S fn − S f ‖H = lim

n→∞ ‖[ES((−∞,−n−1] ∪ [n−1,∞))− IH]S f ‖H = 0 (3.21)

prove that dom(S)∩dom
(
S−1
)

is a core for S since f ∈ dom(S)was arbitrary. By symmetry
between S and S−1, dom(S) ∩ dom

(
S−1
)

is also a core for S−1. ��
The next lemma is of an auxiliary nature and together with Lemma 3.6 the basic ingredient

for the proof of Theorem 3.8 below.

Lemma 3.7 Assume Hypothesis 3.1 and denote by PKA the orthogonal projection onto KA

in H2.

(i) Suppose that dom(A∗ PKA ) ∩ ran(A) = KA, then

A∗ A0 = A∗ PKA

∣∣
dom(A∗ PKA

)∩ran(A) A0. (3.22)

(ii) Assume that ker(A∗) = {0}. Then KA = H2, PKA = IH2 ,

dom(A∗) ∩ ran(A) = H2, (3.23)

dom(A∗) ∩ ran(A) is a core for A∗, (3.24)
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and

A∗ A0 = A∗ A0. (3.25)

In particular, if A is self-adjoint in H1 satisfying (3.1) and (3.2), then (3.23)–(3.25) hold with
H2 = KA = H1.

Proof (i) By general principles, A∗ A0 ⊆ A∗ A0 implies

A∗ A0 ⊆ A∗ A0 = A∗ A0, (3.26)

as the latter is a closed operator (cf. (3.16)). The reverse inclusion is more subtle, though.
Since Ã = A0 is unitary, ran(A0) = ran(A), and A∗ is closed, one can apply

Lemma B.1 (iv) to obtain

(A∗ A0)
∗ = (A∗ PKA A0)

∗ = A∗
0

(
Â∗ PKA

)∗ = A∗
0

(
A∗ PKA

∣∣∣dom(A∗ PKA
)∩ran(A)

)∗
. (3.27)

Using unitarity of A∗
0 = ( A0

)∗
and applying Lemma B.1 (i i), one finally obtains

A∗ A0 = ((A∗ PKA A0)
∗)∗ = A∗ PKA

∣∣
dom(A∗ PKA

)∩ran(A) A0, (3.28)

employing T = (T ∗)∗, whenever T is densely defined and closable.

(ii) Next, one recalls the fact that for any densely defined closed operator T in H1 mapping
into H2, one has (cf. [59, p. 335], [16, Theorem IV.3.2])

ran(T ) = ran(|T ∗|). (3.29)

Equation (3.29) is a consequence of the polar decompositions for T and T ∗, more precisely,
of

T = |T ∗|UT , |T ∗| = T U∗
T , |T ∗| = UT |T |U∗

T , (3.30)

where UT is a partial isometry with initial set ran(|T |) and final set ran(T ) (and hence,
U∗

T is a partial isometry with initial set ran(T ) and final set ran(|T |)). Using the fact that
dom(T ) = dom(|T |) and applying (3.29) to T = A, one concludes from Lemma 3.6 and
the fact that by hypothesis ker(A∗) = ker(|A∗|) = {0} and hence PKA = IH2 ,

dom(A∗) ∩ ran(A) = dom(|A∗|) ∩ ran(|A∗|) is dense in H2 and a core for |A∗|. (3.31)

The polar decomposition for T ∗, T ∗ = U∗
T |T ∗| then immediately yields that

D0 = dom(A∗) ∩ ran(A) = dom(|A∗|) ∩ ran(|A∗|) is a core for A∗. (3.32)

Indeed, if f ∈ dom(A∗) = dom(|A∗|), there exists fn ∈ D0, n ∈ N, such that

lim
n→∞ ‖ fn − f ‖H = 0 and lim

n→∞ ‖|A∗| fn − |A∗| f ‖H = 0, (3.33)

and hence also,

lim
n→∞ ‖A∗ fn − A∗ f ‖H = ‖U∗

A|A∗| fn − U∗
A|A∗| f ‖H = 0, (3.34)

proving that D0 is a core for A∗. Thus, (3.22) then yields

A∗ A0 = A∗|dom(A∗)∩ran(A) A0 = A∗ A0, (3.35)

and hence proves (3.25). ��
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Since H2 = ran(A)⊕ ker(A∗) = KA ⊕ ker(A∗), one can introduce the operator

B :
{H1 ⊇ dom(A) → KA,

f �→ A f,
(3.36)

and then concludes that

ker(B∗) = ker(|B∗|) = ran(B)⊥ = {0}, (3.37)

and that

A = PKA B. (3.38)

Thus, an application of Lemma B.1 (i i) yields

A∗ = B∗ PKA . (3.39)

Moreover, one verifies that

KA = KB , B0 = A0, and hence, B̃ = Ã. (3.40)

Given the preparatory Lemmas 3.6 and 3.7, we finally are in a position to formulate the
following result, a resolution of the question posed in the paragraph preceding Lemma 3.6.

Theorem 3.8 Assume Hypothesis 3.1. Then

A∗ A0 = A∗ A0. (3.41)

Proof Since ker(|B∗|) = {0} and |B∗| are self-adjoint in KB = KA, (3.31) and (3.32) apply
and yield

dom(B∗) ∩ ran(B) = dom(|B∗|) ∩ ran(|B∗|) is dense in KB = KA

and a core for |B∗| and B∗. (3.42)

Equation (3.42) together with (3.40) then yields

A∗ A0 = B∗ PKA A0 = B∗ B0 = B∗ B0 = B∗ B̃ = B∗ PKA B̃ = A∗ B̃ = A∗ Ã

= A∗ A0. (3.43)

Here, we used Lemma 3.7 (i i) (applied with A replaced by B) in the third equality. This
proves (3.41). ��
Remark 3.9 (i) We note that Hen used in Goldstein and Wacker [42] coincides with

H|A| = HA used in the present paper. Moreover, it is noted in [42, Proposition 2.1]
that G |A|,0 (denoted by A in [42]) generates a strongly continuous unitary group. In
addition, some properties of the domain G |A|,0, amounting to the validity of (3.25)
(with A replaced by |A| and hence also A∗ replaced by |A|), are mentioned without
proof. The last part of Lemma 3.7 and of course Theorem 3.8 now explicitly provide
such a proof.

(ii) In connection with the operator G A,0 in (3.16) and the second-order Cauchy prob-
lem (ACP2) considered in the next Sect. 4, we recall that J ∗

A = A∗ Ã = A∗ AιA =
A∗ A0 = A∗ A0 = A∗ AιA as just shown in Theorem 3.8. In the simpler situation where
A∗ A ≥ ε IH1 for some ε > 0, one notes (cf. Lemma 2.7) that J ∗ = A∗ Ã = A∗ AιA.
The actual choice of A in the factorization of the self-adjoint operator S ≥ 0 into
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S = A∗ A is of course highly non-unique. In particular, the self-adjoint factoriza-
tion S = S1/2S1/2 (i.e., A = A∗ = |A| = S1/2) is always possible, but may not
be the most natural one as the following standard example shows. Let S = −	 on
dom(S) = H2(Rn) be the usual self-adjoint Laplacian in H1 = L2 (Rn; dn x) , n ∈ N

(with Hm(Rn),m ∈ N, the standard Sobolev spaces on R
n). Then

S = (−	)1/2(−	)1/2 = ∇∗∇, (3.44)

with the last factorization being more natural for some purposes. Here, dom(∇) =
H1(Rn),H2 = [L2 (Rn; dn x)

]n
, and ∇∗ = −div(·) with dom(∇∗) = [H1(Rn)

]n
.

(iii) We finally note that given the results (3.36)–(3.40) and (3.42), the result (3.22) in
Lemma 3.7 (i) can be improved as follows and underscores the preliminary nature of
the latter. Since ran(A) = ran(B) and A∗ = B∗ PKA , and hence also

A∗ = A∗ PKA = B∗ PKA , (3.45)

one concludes from (3.42) that

dom(A∗ PKA ) ∩ ran(A) = dom(B∗ PKA ) ∩ ran(B)

= dom(B∗) ∩ ran(B) = KB = KA. (3.46)

Thus, Lemma 3.7 (i) applies and (3.22) can be amended to read

A∗ A0 = A∗ PKA

∣∣
dom(A∗ PKA

)∩ran(A) A0 = A∗|dom(A∗)∩ran(A) A0. (3.47)

Of course, Theorem 3.8 further improves on (3.47) and yields the final and optimal
result (3.41).

4 Abstract linear damped wave equations. The case A∗ A ≥ ε IH for some ε > 0

In this section we now introduce abstract damped wave equations employing appropriate
perturbation techniques for Dirac-type operators.

We first treat the case A∗ A ≥ ε IH1 for some ε > 0 and hence introduce the following
assumptions.

Hypothesis 4.1 Let H j , j = 1, 2, be complex separable Hilbert spaces.

(i) Assume that A : dom(A) ⊆ H1 → H2 is a densely defined, closed, linear operator
such that

A∗ A ≥ ε IH1 (4.1)

for some ε > 0.

(ii) Let R be a densely defined, closable operator in H1 satisfying

dom(R) ⊇ dom(A). (4.2)

We emphasize that closability of R and the assumption (4.2) imply

R(|A| − z IH1)
−1 ∈ B(H1), z ∈ ρ(|A|) (4.3)

(see, e.g., [59, p. 191]).
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In the following, we intend to introduce the operator i G A,R in HA ⊕ H1 and study its
properties by utilizing its unitary equivalence to the Dirac-type operator Q|A|,R in H1 ⊕ H1.

We start by introducing Q|A|,R in H1 ⊕ H1 assuming Hypothesis 4.1.

Q|A|,R =
(−i R |A|

|A| 0

)
, dom(Q|A|,R) = dom(|A|)⊕ dom(|A|) ⊆ H1 ⊕ H1. (4.4)

Next, we recall that an operator T in the complex separable Hilbert space H is called
accretive if

Re(( f, T f )H) ≥ 0, f ∈ dom(T ). (4.5)

If in addition T is closed and ran(T + α IH) is dense in H for some α > 0 , then T is called
m-accretive. Moreover (cf. [45, Proposition C.7.2], [59, p. 279])

T is m − accretive if and only if (4.6)

(−∞, 0) ⊂ ρ(T ) and ‖(T − z IH)−1‖ � −[Re(z)]−1 for Re(z) < 0. (4.7)

In particular, an m-accretive operator is equivalent to a closed, densely defined, maximal
accretive operator. Finally, T is m-accretive if and only if T ∗ is.(We note that one also
calls T (m-) dissipative whenever −T is (m-)accretive. However, since this definition is not
universally accepted in the literature, we shall not adopt it here.)

For the following, it is convenient to introduce the quadratic operator pencil M(z) in H1,

M(z) = |A|2 − i z R − z2 IH1 , dom(M(z)) = dom
(|A|2) , z ∈ C. (4.8)

Lemma 4.2 Assume Hypothesis 4.1.

(i) Then M(z), z ∈ C, is a densely defined, closed operator in H1.

(ii) If in addition R∗ satisfies

dom(R∗) ⊇ dom(A), (4.9)

then

M(z)∗ = |A|2 + i z R∗ − z2 IH1 , dom(M(z)∗) = dom
(|A|2) , z ∈ C. (4.10)

Proof Since by hypothesis R is bounded with respect to |A|, it is relatively bounded with
relative bound equal to zero with respect to |A|p for any p > 1 (cf. [85, Theorem 9.11 (a)]).
Thus, for each z ∈ C,M(z) is a closed operator in H1 by a Kato–Rellich-type result (cf.
[59, Theorem IV.1.1], [85, Theorem 5.5]). Since by (4.9) also R∗ is relatively bounded with
relative bound equal to zero with respect to |A|p for any p > 1, one also obtains (4.10) by a
Kato–Rellich-type argument discussed in [85, p. 111]. ��

The spectrum and resolvent set of M(·), denoted by σ(M(·)) and ρ(M(·)), respectively,
are then defined by

σ(M(·)) = {λ ∈ C | 0 ∈ σ(M(λ))}, (4.11)

ρ(M(·)) = {z ∈ C | 0 ∈ ρ(M(z))} = {z ∈ C | M(z)−1 ∈ B(H1)}
= C\σ(M(·)). (4.12)
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Theorem 4.3 Assume Hypothesis 4.1. Then Q|A|,R is injective and closed, and

(Q|A|,R − z IH1⊕H1)
−1 =

(
zM(z)−1 |A|−1 + M(z)−1(i z R + z2 IH1)|A|−1

|A|M(z)−1 |A|M(z)−1(i R + z IH1)|A|−1

)
,

z ∈ ρ(Q|A|,R) = {ζ ∈ C | M(ζ )−1 ∈ B(H1)} = ρ(M(·)), (4.13)

σ(Q|A|,R) = σ(M(·)). (4.14)

In particular,

Q−1
|A|,R =

(
0 |A|−1

|A|−1 i |A|−1 R|A|−1

)
∈ B(H1 ⊕ H1), (4.15)

and hence

0 ∈ ρ(Q|A|,R). (4.16)

Suppose in addition that R is accretive. Then also i Q|A|,R is accretive and −i Q|A|,R gen-
erates a contraction semigroup in H1 ⊕ H1, denoted by exp(−i Q|A|,R t), t ≥ 0.

Proof To prove injectivity of Q|A|,R , assume f, g ∈ dom(|A|) and Q|A|,R( f g)
 = 0.
Then, −i R f + |A|g = 0 and |A| f = 0 imply f = 0 since ker(A) = ker(|A|) = {0} by
(4.1) and hence also |A|g = 0, implying g = 0 as well. That Q|A|,R is closed in H1 ⊕H1 fol-
lows from an application of [79, Corollary 2.2.11 (i i)]. (Alternatively, one can first establish
(4.15) directly and then use again the fact that since Q|A|,R is injective, Q−1

|A|,R ∈ B(H1 ⊕H1)

implies closedness of Q−1
|A|,R and hence that of Q|A|,R by [85, p. 81].)

Denoting temporarily the right-hand side of (4.13) by S|A|,R(z), one notes that S|A|,R(z) ∈
B(H1 ⊕ H1), z ∈ ρ(M(·)), by (4.1) and (4.3). A simple computation then yields that

(Q|A|,R − z IH1⊕H1) S|A|,R(z) = IH1⊕H1 ,

S|A|,R(z) (Q|A|,R − z IH1⊕H1) = IH1⊕H1

∣∣dom(|A|)⊕dom(|A|),
z ∈ {ζ ∈ C | M(ζ )−1 ∈ B(H1)} = ρ(M(·)), (4.17)

implying

ρ(M(·)) ⊆ ρ(Q|A|,R). (4.18)

Conversely, let z ∈ ρ(Q|A|,R). Then the resolvent of Q|A|,R is necessarily of the 2 × 2 block
operator form with respect to H1 ⊕ H2,

(Q|A|,R − z IH1⊕H2)
−1 =

(
S1,1(z) S1,2(z)
S2,1(z) S2,2(z)

)
, z ∈ ρ(Q|A|,R), (4.19)

where S j,k(z) ∈ B(Hk,H j ), j, k ∈ {1, 2}, z ∈ ρ(Q|A|,R). Thus,(
IH1 0
0 IH2

)
=
(−i R − z IH1 |A|

|A| −z IH2

)(
S1,1(z) S1,2(z)
S2,1(z) S2,2(z)

)

=
(
(−i R − z IH1)S1,1(z)+ |A|S2,1(z) (−i R − z IH1)S1,2(z)+ |A|S2,2(z)

|A|S1,1(z)− zS2,1(z) |A|S1,2(z)− zS2,2(z)

)
,

z ∈ ρ(Q|A|,R), (4.20)

in particular,

S2,1(z) = z−1|A|S1,1(z), z ∈ ρ(Q|A|,R)\{0}, (4.21)

123



650 F. Gesztesy et al.

and hence

z−1 (|A|2 − i z R − z2 IH1

)
S1,1(z) = IH1 , z ∈ ρ(Q|A|,R)\{0}. (4.22)

Thus, z−1S1,1(z) is a bounded right inverse of M(z), z ∈ ρ(Q|A|,R)\{0}. An analogous
computation yields

z−1S1,1(z)
(|A|2 − i z R − z2 IH1

) ∣∣
dom(|A|2) = IH1

∣∣
dom(|A|2) , z ∈ ρ(Q|A|,R)\{0}, (4.23)

and hence z−1S1,1(z) is also a bounded left inverse of M(z). Thus,

ρ(Q|A|,R)\{0} ⊆ ρ(M(·)). (4.24)

Since by hypothesis (4.1), 0 ∈ ρ(Q|A|,R) ∩ ρ(M(·)), one concludes ρ(Q|A|,R) = ρ(M(·))
and hence (4.13)–(4.16).

Finally, assuming f, g ∈ dom(|A|), one computes

Re

((
( f g)
, i Q|A|,R ( f g)


)
H1⊕H1

)
= Re

(
( f, R f )H1

) ≥ 0, (4.25)

since |A| is self-adjoint. This proves that i Q|A|,R is accretive. Equation (4.16) yields a suf-
ficiently small open disk with center at 0 in the resolvent set of −i Q|A|,R , and this fact
combined with the Lumer–Phillips Theorem [63] (cf. [20, Theorem II.3.15]) then proves that
−i Q|A|,R generates a contraction semigroup. ��

We note that block operator matrices and their inverses, and more specifically, spectral
properties of 2 × 2 block operator matrices have been studied extensively in the literature.
We refer, for instance, to [4,19], [20, Sect. VI.6], [46,60,65–67,75], [79, Ch. 2], [80,83], and
[87].

Still assuming Hypothesis 4.1, we next introduce the operator G A,R in HA ⊕ H1 by

G A,R =
(

0 JA

−J ∗
A −R

)
=
(

0 JA

−A∗ Ã −R

)
,

dom(G A,R) = dom
(

A∗ Ã
)⊕ dom(A) ⊆ HA ⊕ H1. (4.26)

In particular, one notes that

G A,R = G |A|,R . (4.27)

Theorem 4.4 Assume Hypothesis 4.1. Then

Q|A|,R = U|̃A| i G A,RU−1
|̃A| . (4.28)

In particular, the operator G A,R is densely defined and closed in the energy space HA ⊕H1.
If in addition R is accretive, then also −G A,R is accretive and G A,R generates a contrac-

tion semigroup in HA ⊕ H1, denoted by exp(G A,R t), t ≥ 0.

Proof To prove (4.28), one can closely follow the proof of Theorem 2.8 in the special case
R = 0. In particular, since we will use Q|A|,R (instead of Q A,R), this permits us to replace
the pair (A, A∗) by (|A|, |A|) and hence replace the projection Pker(Q A,0) by 0 (cf. (2.69),
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(2.70)). Alternatively, one can also argue as follows (cf. (2.63), (2.64), and (2.67)–(2.69)).

U−1
|̃A| dom(Q|A|,R) =

(
0 i

(|̃A|)−1

IH1 0

)
dom(|A|)⊕ dom(|A|)

=
(

i
(|̃A|)−1

dom(|A|)
dom(|A|)

)
=
(

i JA|A|−1 dom(|A|)
dom(|A|)

)

=
(

i JA(A∗ A)−1/2 dom
(
(A∗ A)1/2

)
dom(A)

)

=
(

i JA dom(A∗ A)
dom(A)

)
=
(

i dom(A∗ AιA)
dom(A)

)
=
(

i dom
(

A∗ Ã
)

dom(A)

)

= dom(G A,R), (4.29)

where we used (2.37) in the next to last step. Analogously to (2.56), one then obtains

U|̃A|i G A,RU−1
|̃A| = i

(
0 IH1

−i |̃A| 0

)(
0 JA

−A∗ Ã −R

)(
0 i

(|̃A|)−1

IH1 0

)

= i

(
0 IH1

−i |̃A| 0

)(
JA 0

−R −i |A|2ιA
(|̃A|)−1

)

= i

(
0 IH1

−i |̃A| 0

)(
JA 0
−R −i |A|

)

=
( −i R |A|

|̃A|JA 0

)
=
(−i R |A|

|A| 0

)

= Q|A|,R, (4.30)

using (2.66) in the next to last step.
Closedness of G A,R in HA ⊕ H1 then follows from (4.30) and that of Q|A|,R (cf. The-

orem 4.3). Similarly, if R is accretive, then the contraction semigroup property of G A,R

follows from the one of −i Q|A|,R in Theorem 4.3, using (4.30) again. ��
We note again that the unitary equivalence in (4.28) has been observed by Huang [54,

Proposition 3.1]. While the contraction semigroup result for G A,R in Theorem 4.4 is well
known (see, e.g., [20, Sect. VI.3]), we presented it in some detail to illustrate the usefulness
of the unitary equivalence relation with the Dirac-type operator Q|A|,R , which leads to a
rather simple proof.

We also mention the analog of the result (4.28) when using A and A∗ in place of |A|.
Introducing the operator Q A,R in H1 ⊕ H2 by

Q A,R =
(−i R A∗

A 0

)
, dom(Q A,R) = dom(A)⊕ dom(A∗) ⊆ H1 ⊕ H2 (4.31)

one obtains the following result.

Theorem 4.5 Assume Hypothesis 4.1. Then

Q A,R
(
IH1 ⊕ [IH2 − Pker(A∗)]

) = UÃ i G A,RU−1
Ã
. (4.32)

Proof It suffices to combine Theorem 2.8, (2.49), (A.28), and

UÃ

(
0 0
0 −i R

)
U−1

Ã
=
(−i R 0

0 0

)
. (4.33)

��
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Theorem 4.5 appears to be a new result.
Next, we briefly recall the notion of classical solutions of first-order and second-order

Cauchy problems. First, let G be a densely defined, closed, linear operator in a Hilbert space
H. Then, the abstract Cauchy problem (ACP) associated with G, by definition, is the initial
value problem (cf., e.g., [20, Sect. II.6], [22, Ch. I], [29, Sect. II.1])

ẋ(t) = Gx(t), t ≥ 0,

x(0) = x0 ∈ H. (4.34)

Here, we denote ẋ(t) = ( d
dt x
)
(t).

By definition, a classical solution of the ACP (4.34) is then a map x : [0,∞) → H which
satisfies.

x ∈ C1([0,∞); H),
x(t) ∈ dom(G), t ≥ 0,

x satisfies (4.34). (4.35)

In particular, if G is the generator of a strongly continuous semigroup T (t) = eGt , t ≥ 0, in
H, then for any x0 ∈ dom(G), the unique classical solution x = x(t) of (4.34) is given by

x(t) = eGt x0, t ≥ 0, x0 ∈ dom(G). (4.36)

Moreover, the classical solution of (4.34) exists if and only if x0 ∈ dom(G).
Similarly, let R and S be densely defined, closed, linear operators in H. Then, the abstract

second-order Cauchy problem (ACP2) associated with R and S is by definition the initial
value problem (cf., e.g., [12,17,18], [20, Sect. VI.3], [22, Chs. II, III, VIII], [29, Sect. II.7],
[88]),

ü(t)+ Ru̇(t)+ Su(t) = 0, t ≥ 0,

u(0) = u0 ∈ H, u̇(0) = u1 ∈ H. (4.37)

By definition, a classical solution of the ACP2 (4.37) is then a map u : [0,∞) → H
which satisfies.

u ∈ C2([0,∞); H),
u(t) ∈ dom(S), t ≥ 0, and Su ∈ C([0,∞); H),
u̇(t) ∈ dom(R), t ≥ 0, and Ru̇ ∈ C([0,∞); H),
u satisfies (4.37). (4.38)

Corollary 4.6 Assume Hypothesis 4.1, and suppose that R is accretive. In addition, let(
y0

z0

)
∈ dom(G A,R) = dom(A∗ AιA)⊕ dom(A) ⊆ HA ⊕ H1. (4.39)

Then

Y (t) =
(

y(t)
z(t)

)
= eG A,Rt

(
y0

z0

)
, t ≥ 0, (4.40)

is the unique classical solution of the ACP,

Ẏ (t) = G A,RY (t), t ≥ 0,

Y (0) =
(

y0

z0

)
, (4.41)
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associated with G A,R, and

u(t) = ιA y(t), t ≥ 0, (4.42)

is the unique classical solution of the ACP2,

ü(t)+ Ru̇(t)+ A∗ Au(t) = 0, t ≥ 0,

u(0) = ιA y0, u̇(0) = z0, (4.43)

associated with R and A∗ A.

Proof One only needs to verify (4.42), (4.43), and uniqueness of u. From (4.40), one infers

y(·) ∈ C1([0,∞); HA), y(t) ∈ dom(J ∗
A) = dom(A∗ AιA),

z(t) ∈ dom(JA) = dom(A), t ≥ 0, with ẏ = JAz, (4.44)

and

z(·) ∈ C1([0,∞); H1) with ż = −A∗ AιA y − Rz. (4.45)

Hence, by (4.42), one obtains

u(·) = ιA y(·) ∈ C1([0,∞); H1) with u̇ = ιA ẏ = ιA JAz = z, (4.46)

since ιA ∈ B(HA,H1). Moreover, this shows that u̇(·) ∈ C1([0,∞); H1), implying

u(·) ∈ C2([0,∞); H1) and ü = ż = −A∗ AιA y − Rz = −A∗ Au − Ru̇. (4.47)

Consequently, u(·) = ιA y(·) is a classical solution of (4.43).
Finally, uniqueness of u(·) is shown as in [20, Prop. VI.3.2]. First of all, one notes that

Ãy(·) = Au(·) ∈ C1([0,∞); H2), implying Ã ẏ(·) = Au̇(·) ∈ C([0,∞); H2). Hence, one
has

Ru̇(·) = [R(|A| + IH1)
−1] (|A| + IH1)u̇(·) ∈ C([0,∞); H1), (4.48)

which in turn implies

A∗ Au(·) = −ü(·)− Ru̇(·) ∈ C([0,∞); H1). (4.49)

Now suppose that u(·) satisfies (4.43) with (y0, z0) = (0, 0). Then∫ t

0
ds

(
JAu(s)
u̇(s)

)
=
(

JA
∫ t

0 ds u(s)
u(t)

)
∈ dom(A∗ AιA)⊕ dom(A), t ≥ 0, (4.50)

and

G A,R

(
JA
∫ t

0 ds u(s)
u(t)

)
=
(

JAu(t)
−A∗ A

∫ t
0 ds u(s)− Ru(t)

)

=
(

JAu(t)
− ∫ t

0 ds A∗ Au(s)− ∫ t
0 ds Ru̇(s)

)

=
(

JAu(t)
u̇(t)

)
, t ≥ 0. (4.51)

Thus,

(
JAu(·)
u̇(·)

)
is a mild solution (cf., e.g., [20, Ch. II.6]) of Ẏ (·) = G A,RY (·) satisfying

Y (0) = 0. But then, Y (t) = 0, t ≥ 0 (cf. [20, Proposition VI.3.2]), and hence, u(t) = 0, t ≥ 0
(cf. [20, Prop. II.6.4]). ��
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Again, Corollary 4.6 is well known (see, e.g., [20, Sect. VI.3]); for completeness, and due
to its importance, we presented its proof in some detail.

Remark 4.7 In the special case R = 0, and assuming Hypothesis 4.1, the self-adjointness
of i G A,0 in HA ⊕ H1 then yields the unitary group eG A,0t , t ∈ R, in HA ⊕ H1. Explicitly,
using

J ∗
A JA = A∗ A, JA J ∗

A = JA A∗ A ιA = ι−1
A A∗ A ιA, (4.52)

eG A,0t in the energy space HA ⊕ H1, is of the form

eG A,0t =
(

JA 0
0 IH1

)(
cos(|A|t) |A|−1| sin(|A|t)

−|A| sin(|A|t) cos(|A|t)
)(

ιA 0
0 IH1

)

=
(

JA cos(|A|t) ιA JA|A|−1| sin(|A|t)
−|A| sin(|A|t) ιA cos(|A|t)

)
, t ∈ R, (4.53)

using the spectral theorem to define appropriate functions of the self-adjoint nonnegative
operator |A| = (A∗ A)1/2 in H1. By (4.28), eG A,0t in HA ⊕ H1 is unitarily equivalent to
e−i Q|A|,0 in H1 ⊕ H1 and explicitly given by

e−i Q|A|,0t =
(

cos(|A|t) −i sin(|A|t)
−i sin(|A|t) cos(|A|t)

)
, t ∈ R. (4.54)

While we primarily focused on (dissipative) damping operators satisfying Hypothe-
sis 4.1 (i i), we emphasize that a variety of different conditions on R have also been studied
in the literature. We refer, for instance, to [2,3,5,10,11,19], [20, Sect. VI.3], [22, Ch. VIII],
[43,50–57,81,83,84,86].

We continue with an illustrative example in which R is assumed to commute with |A|.

Example 4.8 Assume Hypothesis 4.1 and consider the special case where R is an appropriate
function of |A|, that is, R = 2F(|A|) ≥ 0. Abbreviating


(|A|) = [|A|2 − F(|A|)2]1/2 (4.55)

one then obtains

eG A,Rt =
(

JA 0

0 IH1

)
e−F(|A|)t

×

⎛
⎜⎜⎜⎜⎜⎝

[
cos(
(|A|)t) 
(|A|)−1 sin(
(|A|)t)

+F(|A|)
(|A|)−1 sin(
(|A|)t)]
−|A|2
(|A|)−1 sin(
(|A|)t) [

cos(
(|A|)t)
−F(|A|)
(|A|)−1 sin(
(|A|)t)]

⎞
⎟⎟⎟⎟⎟⎠

×
(
ιA 0

0 IH1

)

= e−F(|A|)t
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×

⎛
⎜⎜⎜⎜⎜⎝

JA
[
cos(
(|A|)t) JA
(|A|)−1 sin(
(|A|)t)

+F(|A|)
(|A|)−1 sin(
(|A|)t)] ιA
−|A|2
(|A|)−1 sin(
(|A|)t)ιA

[
cos(
(|A|)t)

−F(|A|)
(|A|)−1 sin(
(|A|)t)]

⎞
⎟⎟⎟⎟⎟⎠
,

t ≥ 0. (4.56)

We note that cos(
(|A|)t) and 
(|A|)−1 sin(
(|A|)t) are in fact functions of 
(|A|)2, and
hence, the precise specification of the square root branch in (4.55) does not enter in (4.56).
In addition, using the spectral theorem for 
(|A|), one obtains that


(|A|)−1 sin(
(|A|)t) = f (
(|A|)) =
∫

[0,∞)

f
([
λ2 − F(λ)2

]1/2)
d E|A|(λ) ∈ B(H1)

(4.57)

is well defined without assuming that 
(|A|) is boundedly invertible in H1 by choosing

f (μ) =
{

sin(μt)/μ, μ > 0,
t, μ = 0.

(4.58)

Next, we intend to exploit the unitary equivalence between G A,R in HA ⊕ H1 and the
Dirac-type operator Q|A|,R in H1 ⊕H1 in (4.28) and thus we now turn to e−i t Q|A|,R . Noticing
that

e
−i

(−2ia 1
1 0

)
t

= e−at e
−i

(−ia 1
1 ia

)
t

= e−at
(

cos(bt)− ab−1 sin(bt) −ib−1 sin(bt)
−ib−1 sin(bt) cos(bt)+ ab−1 sin(bt)

)
,

a ∈ R, b = (1 − a2)1/2, t ≥ 0, (4.59)

one obtains

e−i Q|A|,Rt = e−F(|A|)t

×

⎛
⎜⎜⎜⎝

cos(
(|A|)t) −i |A|
(|A|)−1 sin(
(|A|)t)
−F(|A|)
(|A|)−1 sin(
(|A|)t)
−i |A|
(|A|)−1 sin(
(|A|)t) cos(
(|A|)t)

+F(|A|)
(|A|)−1 sin(
(|A|)t)

⎞
⎟⎟⎟⎠

=
∫

[0,∞)

e−F(λ)t

×

⎛
⎜⎜⎝

cos(
(λ)t) −iλ
(λ)−1 sin(
(λ)t)
−F(λ)
(λ)−1 sin(
(λ)t)
−iλ
(λ)−1 sin(
(λ)t) cos(
(λ)t)

+F(λ)
(λ)−1 sin(
(λ)t)

⎞
⎟⎟⎠ d E|A|(λ),

t ≥ 0. (4.60)
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For the norm of the semigroup of eG A,Rt , t ≥ 0, one thus obtains (cf. [6, Sect. 5.3])
∥∥∥eG A,2F(|A|)t

∥∥∥B(HA⊕H1)
=
∥∥∥e−i Q|A|,Rt

∥∥∥H1⊕H1

= E|A|- ess supλ∈σ(|A|) e−F(λ)t

×

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

cos(
(λ)t) −iλ
(λ)−1 sin(
(λ)t)
−F(λ)
(λ)−1 sin(
(λ)t)
−iλ
(λ)−1 sin(
(λ)t) cos(
(λ)t)

+F(λ)
(λ)−1 sin(
(λ)t)

⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥
C2

. (4.61)

Denoting temporarily the 2 × 2 matrix under the norm in (4.61) by M(λ), λ ∈ σ(|A|), to
compute the norm of M(λ) one computes the square root of the larger of the two eigenvalues
of M(λ)∗M(λ), that is,

σ(M(λ)∗M(λ)) = {s1(M(λ))
2, s2(M(λ))

2} , 0 ≤ s1(M(λ)) ≤ s2(M(λ)), (4.62)

with s j (M(λ)), j = 1, 2, the singular values of M(λ), and

‖M(λ)‖C2 = s2(M(λ)). (4.63)

An explicit computation yields

s j (M(λ)) =
⎧⎨
⎩
[

1 + F(λ)2 sin2
([λ2 − F(λ)2]1/2t

)
[λ2 − F(λ)2]

]1/2

+(−1) j F(λ)
∣∣sin2

([λ2 − F(λ)2]1/2t
)∣∣

[λ2 − F(λ)2]1/2

⎫⎬
⎭ , j = 1, 2, λ ∈ σ(|A|).

(4.64)

Combining (4.61), (4.63), and (4.64), one finally obtains
∥∥∥eG A,2F(A)t

∥∥∥B(HA⊕H1)
=
∥∥∥e−i Q|A|,Rt

∥∥∥H1⊕H1

= E|A|- ess supλ∈σ(|A|) e−F(λ)t

⎧⎨
⎩
[

1 + F(λ)2 sin2
([λ2 − F(λ)2]1/2t

)
[λ2 − F(λ)2]

]1/2

+ F(λ)
∣∣sin2

([λ2 − F(λ)2]1/2t
)∣∣

[λ2 − F(λ)2]1/2

⎫⎬
⎭ (4.65)

≤ C

{
e−ω(G A,2F(A))t , E|A|

({
λ ∈ σ(|A|) ∣∣ F(λ)2 = λ2

}) = 0,
te−ω(G A,2F(A))t , E|A|

({
λ ∈ σ(|A|) ∣∣ F(λ)2 = λ2

})
> 0,

t ≥ 0, (4.66)

where

ω(G A,2F(A)) = E|A|- ess infλ∈σ(|A|)
[

F(λ)− [(F(λ)2 − λ2)+
]1/2]

, (4.67)

and C ≥ 0 is an appropriate constant. Here,

x+ =
{

x, x ≥ 0,
0, x ≤ 0.

(4.68)
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The projection operator-valued measure E|A|(·) in (4.61), (4.65)–(4.67) can be replaced by
an equivalent scalar control measure ρ|A|(·). For instance, one can choose

dρ|A|(·) = d‖E|A|(·)g1‖2
H1
, g1 =

∑
j∈N

2− jψ1, j , (4.69)

with {ψ1, j } j∈N a complete orthonormal system in H1.
In particular, −ω(G A,2F(|A|)) represents the semigroup growth bound (or type) of

eG A,2F(|A|)t , t ≥ 0 (cf., e.g., [20, Definition I.5.6]). Moreover, alluding to the spectral theorem
for Q|A|,2F(|A|),−ω(G A,2F(|A|)) coincides with the spectral bound (cf., e.g., [20, Definition
II.1.12]) of G A,2F(|A|) (and hence that of −i Q|A|,2F(|A|)).

In this commutative context, we also refer to [47] where matrix multiplication operators
generating one-parameter semigroups are studied.

Remark 4.9 We note that the special example where R = 2F(A) = |A|α, α ∈ [0, 1], has
been discussed in [8] and [54], and in the case α < 0 in [69]. The case α ∈ R is studied
in [21]. In particular, Huang [54, Corollary 3.6] estimated the semigroup growth bound for
eG A,Rt , t ≥ 0, from above using a combination of Gearhart’s theorem, the unitary equiva-
lence (4.28), and certain norm estimates. Since he does not rely on the spectral theorem, his
bound differs from the exact result in (4.67) in the case R = |A|α, α ∈ [0, 1]. On the other
hand, his technique also yields an upper bound in cases where R and |A| do not commute.

5 Abstract linear damped wave equations. The case inf(σ (A∗ A)) = 0

The principal aim of this section is to relax Hypothesis 4.1 and remove the hypothesis that
A∗ A is strictly positive definite.

Our basic hypothesis for this section reads as follows.

Hypothesis 5.1 Let H j , j = 1, 2, be complex separable Hilbert spaces.

(i) Assume that A : dom(A) ⊆ H1 → H2 is a densely defined, closed, linear operator
satisfying

ker(A) = {0} (5.1)

and

inf(σ (A∗ A)) = 0. (5.2)

(ii) Let R be a densely defined, closable operator in H1 satisfying

dom(R) ∩ dom(R∗) ⊇ dom(A). (5.3)

As in the previous section, we start by introducing Q|A|,R in H1 ⊕ H1 assuming Hypoth-
esis 5.1.

Q|A|,R =
(−i R |A|

|A| 0

)
, dom(Q|A|,R) = dom(|A|)⊕ dom(|A|) ⊆ H1 ⊕ H1, (5.4)

and the quadratic operator pencil M(·) in H1,

M(z) = |A|2 − i z R − z2 IH1 , dom(M(z)) = dom
(|A|2) , z ∈ C. (5.5)
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We note that even though the pencil M(·) has unbounded coefficients, replacing M(·) by

M(·) (|A|2 + IH
)−1

reduces matters to a pencil with bounded coefficients, in particular, [64,
Lemma 20.1] applies to the spectrum of M(·) in this context.

Lemma 5.2 Assume Hypothesis 5.1.

(i) Then M(z), z ∈ C, is a densely defined, closed operator in H1.

(ii) In addition,

M(z)∗ = |A|2 + i z R∗ − z2 IH1 , dom(M(z)∗) = dom
(|A|2) , z ∈ C. (5.6)

(iii) Let z ∈ ρ(M(·)), then

|A|M(z)−1 = |A|M(z)−1 ∈ B(H1), M(z)−1|A| = [|A|(M(z)∗)−1]∗ ∈ B(H1),

|A|M(z)−1|A| ∈ B(H1). (5.7)

Proof The first two items can be shown as in Lemma 4.2, and so we focus on the proof
of item (i i i). The fact that |A|M(z)−1 and |A|(M(z)∗)−1 are bounded operators on H1 is
immediate by (5.3) and (5.6). Similarly,

M(z)−1|A| = [|A|(M(z)∗)−1]∗ ∈ B(H1). (5.8)

For the third operator in (5.7), one first observes that |A|2 M(z)−1 ∈ B(H1) by the closed
graph theorem, implying |A|2|M(z)−1| ∈ B(H1). By [72, Theorem X.18 (a)] (alternatively,
by Heinz’s inequality, [85, Theorem 9.4(b)]) also |A||M(z)|−1/2 ∈ B(H1). Consequently,
one also obtains |M(z)|−1/2|A| = (|A||M(z)|−1/2)∗ ∈ B(H1). Replacing M(z) by M(z)∗
(cf. (5.6)), one also concludes that |A||M(z)∗|−1/2 ∈ B(H1). Next, using the generalized
polar decomposition for M(z)−1 (cf. [25]),

M(z)−1 = |M(z)∗|−1/2V|M(z)|−1 |M(z)|−1/2, (5.9)

(with V|M(z)|−1 the partial isometry in H1 in the standard polar decomposition of M(z)−1,

M(z)−1 = V|M(z)|−1 |M(z)|−1), one infers that

|A|M(z)−1|A| = |A||(M(z)−1)∗|1/2V|M(z)|−1 |M(z)−1|1/2|A| ∈ B(H1). (5.10)

��
Next, Theorem 4.3 requires some modifications.

Theorem 5.3 Assume Hypothesis 5.1. Then Q|A|,R is injective and closed, and

(Q|A|,R − z IH1⊕H1)
−1 =

(
zM(z)−1 M(z)−1|A|

|A|M(z)−1 z−1|A|M(z)−1|A| − z−1 IH1

)
, (5.11)

z ∈ ρ(Q|A|,R)\{0} = {ζ ∈ C
∣∣M(ζ )−1 ∈ B(H1)

} = ρ(M(·)),
σ (Q|A|,R) ∪ {0} = σ(M(·)). (5.12)

Suppose in addition that R is accretive. Then, iλ ∈ ρ(M(·)) for all λ > 0 and also i Q|A|,R
are accretive. Moreover, −i Q|A|,R then generates a contraction semigroup in H1 ⊕ H1,
denoted by exp(−i Q|A|,R t), t ≥ 0.
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Proof Injectivity and closedness of Q|A|,R follow as in the proof of Theorem 4.3.
Next, one recalls that 0 ∈ σ(M(·)) since M(0) = |A|2 and 0 ∈ σ(|A|) (cf. (5.2)).

Temporarily denoting the right-hand side of (5.11) by T|A|,R(z) for z ∈ ρ(M(·)), one con-
cludes that T|A|,R(z) ∈ B(H1 ⊕ H1) by Lemma 5.2 (i i i). That T|A|,R(z) = (Q|A|,R −
z IH1⊕H1)

−1 can now be checked directly. This proves ρ(M(·)) ⊆ ρ(Q|A|,R). Conversely,
if z ∈ ρ(Q|A|,R)\{0}, the approach used in (4.19)–(4.24) also works in the present more
general context and hence yields ρ(Q|A|,R)\{0} ⊆ ρ(M(·)). This proves (5.11) and (5.12).

If R is accretive, then so is i Q|A|,R . Next, we rewrite M(i λ), λ > 0 in (5.5) as

M(i λ) = |A|2 + λR + λ2 IH1

= λ
(|A|2 + IH1

)1/2 [(|A|2 + IH1

)−1/2
R
(|A|2 + IH1

)−1/2 + λ−1 IH1

]

× (|A|2 + IH1

)1/2
, λ > 0. (5.13)

Since
(|A|2 + IH1

)−1/2
R
(|A|2 + IH1

)−1/2 ∈ B(H1), and accretivity of R implies accre-

tivity of
(|A|2 + IH1

)−1/2
R
(|A|2 + IH1

)−1/2
, one concludes that in fact,

(|A|2 + IH1

)−1/2
R
(|A|2 + IH1

)−1/2
is m − accretive (5.14)

(cf. [59, p. 279], [70]) and hence

[(|A|2 + IH1

)−1/2
R
(|A|2 + IH1

)−1/2 + λ−1 IH1

]−1 ∈ B(H1), λ > 0. (5.15)

Equation (5.15) implies

M(i λ)−1 ∈ B(H1), λ > 0. (5.16)

Equation (5.11) then yields (Q|A|,R − i λ)−1 ∈ B(H1 ⊕ H2), λ > 0, and this fact combined
with the Lumer–Phillips Theorem [63] (cf. [20, Theorem II.3.15]) then again proves that
−i Q|A|,R generates a contraction semigroup. ��
Remark 5.4 (i) Without additional restrictions on R, it is not possible to decide whether

or not 0 ∈ σ(Q|A|,R) (although one always has 0 ∈ σ(M(·))).

(ii) An alternative argument for (5.16) can be formulated as follows. An application of
Cauchy’s inequality yields

‖M(i λ) f ‖H1‖ f ‖H1 ≥ |( f,M(i λ) f )H1 | ≥ Re(( f,M(i λ) f )H1)

≥ λRe(( f, R f )H1)+ λ2‖ f ‖2
H1

≥ λ2‖ f ‖2
H1
, λ ≥ 0, f ∈ dom

(|A|2) . (5.17)

In particular, ‖M(i λ) f ‖H1 ≥ λ2‖ f ‖H1 yields that M(i λ) is injective for all λ > 0.
The analogous argument proves that also M(i λ)∗ is injective for all λ > 0. Thus,

ker(M(i λ)∗) = ran(M(i λ))⊥ = {0}, λ > 0, (5.18)

implies that M(i λ), λ > 0, is a bijection which in turn yields (5.16) since M(iλ) and
hence M(iλ)−1 are closed in H1.

(iii) If, in addition, R is bounded with respect to A with relative bound less than one, that
is, there exist constants 0 ≤ a < 1 and b ≥ 0 such that

‖R f ‖H1 ≤ a‖|A| f ‖H1 + b‖ f ‖H1 , f ∈ dom(|A|) (5.19)
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(here, we used that ‖A f ‖H1 = ‖|A| f ‖H1 , f ∈ dom(A) = dom(|A|), using the polar
decomposition for A and |A|), one concludes that there exists c > 0 such that∥∥R(|A|2 + μ2)−1g

∥∥H1
≤ a

∥∥|A|(|A|2 + μ2)−1g
∥∥H1

+ b
∥∥(|A|2 + μ2)−1g

∥∥H1

≤ aμ−1 + bμ−2 ≤ cμ−1, μ > 0, g ∈ H1. (5.20)

In particular, one can choose 0 < c < 1 for 0 < μ sufficiently large. This then yields

M(i λ)−1 = (|A|2 + λR + λ2 IH1)
−1

= (|A|2 + λ2 IH1)
−1 [IH1 + λR(|A|2 + λ2 IH1)

−1]−1 ∈ B(H1)

for 0 < λ sufficiently large, (5.21)

since then λ
∥∥R(|A|2 + λ2)−1

∥∥B(H1)
≤ c < 1. (One observes that accretivity of R was not

used in arriving at (5.21).) Together with accretivity of R, this again permits the applica-
tion of the Lumer–Phillips Theorem to the effect that −i Q|A|,R is generating a contraction
semigroup.

The following remark is not explicitly used in this paper, but its perturbation theoretic con-

text is relevant when considering Q|A|,R =
(−i R |A|

|A| 0

)
as an operator sum of Q|A|,0 =(

0 |A|
|A| 0

)
and

(−i R 0
0 0

)
and invoking the notion of off-diagonal dominance as dis-

cussed, for instance, in [79, Sect.2.2].

Remark 5.5 Suppose S is m-accretive (resp., self-adjoint) in H and T is accretive (resp., sym-
metric) in H with dom(T ) ⊇ dom(S), and assume that there exist constants 0 ≤ a < 1, b ≥ 0
such that

‖T f ‖H ≤ a‖S f ‖H + b‖ f ‖H, f ∈ dom(S). (5.22)

Then, S + T defined on dom(S + T ) = dom(S) is m-accretive (resp., self-adjoint) in H; in
particular, S + T is closed on dom(S) in H (cf., e.g., [20, Sect. III.2], [29, Sect. 1.6], [59,
Sects. IV.1, V.4]).

The choice T = −S shows that one cannot permit a = 1 in (5.22) as the zero operator is
not closed on dom(S) if the latter is only dense in H. Moreover, if a > 1, then S + T need
not be m-accretive on dom(S) as the following simple example shows. Consider

S0 f = f ′, f ∈ dom(S0) = H1
0 ((0,∞)) = {g ∈ L2([0,∞); dx) | g ∈ AC([0, R])

for all R > 0; g(0) = 0; g′ ∈ L2([0,∞); dx)
}
. (5.23)

Then, S0 is m-accretive and generates the semigroup(
e−S0t f

)
(x) = f∗(x − t), f ∈ L2([0,∞); dx), t ≥ 0, (5.24)

in L2([0,∞); dx), where f∗ denotes the extension of f to R such that f∗(x) vanishes for
a.e. x < 0. The adjoint semigroup is given by(

e−S∗
0 t f
)
(x) = f (x + t), f ∈ L2([0,∞); dx), t ≥ 0, (5.25)

with generator

S∗
0 f = − f ′, f ∈ dom(S∗

0 ) = H1((0,∞)) = {g ∈ L2([0,∞); dx) | g ∈ AC([0, R])
for all R > 0; g′ ∈ L2([0,∞); dx)

}
. (5.26)
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In particular, S∗
0 ⊇ −S0. Next, consider Ta = aS∗

0 , a > 0. Then for 0 < a < 1, S0 + Ta =
(1 − a)S0 is m-accretive in L2([0,∞); dx), but for a > 1, S0 + Ta = −(a − 1)S0 is closed
but not m-accretive in L2([0,∞); dx).

Still assuming Hypothesis 5.1, we next introduce the operator G A,R in HA ⊕ H1 by

G A,R =
(

0 JA

−J ∗
A −R

)
=
(

0 JA

−A∗ Ã −R

)
,

dom(G A,R) = dom
(

A∗ Ã
)⊕ dom(A) ⊆ HA ⊕ H1. (5.27)

The same proof as for Theorem 4.4 also yields the following result.

Theorem 5.6 Assume Hypothesis 5.1. Then

Q|A|,R = U|̃A| i G A,RU−1
|̃A| . (5.28)

In particular, the operator G A,R is densely defined and closed in the energy space HA ⊕H1.
If in addition R is accretive, then iλ ∈ ρ(M(·)) for some λ > 0, and also −G |A|,R is accre-

tive and G |A|,R generates a contraction semigroup in HA⊕H1, denoted by exp(G |A|,R t), t ≥
0.

We also mention the analog of the result (5.28) when replacing |A| by A.

Theorem 5.7 Assume Hypothesis 5.1. Then

Q A,R
(
IH1 ⊕ [IH2 − Pker(A∗)]

) = UÃ i G A,RU−1
Ã
. (5.29)

We continue with an illustrative example.

Example 5.8 Considering the prototypical example of a nonnegative operator A ≥ 0 in a Hil-
bert space H, with ker(A) = {0}, one can, without loss of generality, restrict one’s attention
to the case of H = L2([0,∞); dρ) (with ρ a Borel measure on [0,∞) satisfying ρ({0}) = 0)
and A being the operator of multiplication with the independent variable so that

σ(A) = supp(dρ) (5.30)

(with supp(·) denoting the topological, i.e., smallest closed, support ). For example, one
could simply choose Lebesgue measure dρ(λ) = dλ on [0,∞). Introducing the weighted
L2-spaces

H(n) = L2 ([0,∞); λ2ndρ(λ)
)
, n ∈ N0, (5.31)

one verifies that

H = H(0), HA = H(1), dom
(

An) = H(0) ∩ H(n), n ∈ N,

dom
(

AÃ
) = H(1) ∩ H(2). (5.32)

Moreover, one notes that there will be elements in HA\H if and only if inf(σ (A)) = 0,
since otherwise the natural imbedding ιA would be continuous by the closed graph theorem.
Similarly, there will be elements in H\HA if and only if A is unbounded (i.e., if and only if
sup(σ (A)) = ∞).

Next, one checks that the unique classical solution of the ACP

Ẏ (t) = G A,0Y (t), t ≥ 0,

Y (0) =
(

y0

z0

)
∈ dom(G A,0), (5.33)
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is given by

Y (t) = eG A,0t Y (0), t ≥ 0, (5.34)

with

eG A,0t =
(

cos(tλ) λ−1 sin(tλ)
−λ sin(tλ) cos(tλ)

)
, t ≥ 0. (5.35)

Similarly, the classical solution of ACP2

ü(t)+ A2u(t) = 0, t ≥ 0,

u(0) = u0 ∈ dom
(

A2) , u̇(0) = u1 ∈ dom(A), (5.36)

is given by

u(t, λ) = cos(tλ)u0(λ)+ λ−1 sin(tλ)u1(λ), t ≥ 0, λ ≥ 0. (5.37)

Hence, if one chooses Y (0) ∈ H(0) ⊕ H(1) with support in (0, 1) (such that automatically,
Y (0) ∈ H(1) ⊕ H(2)), then the first component of Y (t) will solve ACP2 if and only if
y0 ∈ H(0). In particular, there are classical solutions of ACP which to not correspond to
classical solutions of ACP2 if inf(σ (A)) = 0.

Concerning conserved quantities in connection with the abstract wave equations, we now
mention the following result.

Lemma 5.9 Let H j , j = 1, 2, be complex separable Hilbert spaces and assume that A :
dom(A) ⊆ H1 → H2 is a densely defined, closed, linear operator. Let B : dom(B) ⊆ H1 →
H1 be some closed operator which commutes with |A| in the sense that B|A| ⊆ |A|B. In
addition, let R be a densely defined, closable operator in H1 satisfying dom(R) ⊇ dom(A).
Suppose u is a classical solution of

ü + Ru̇ + A∗ Au = 0, (5.38)

such that B|A|u(·) ∈ C1([0,∞); H1), Bu̇(·) ∈ C1([0,∞); H1) and Ru̇(·) ∈ dom(B). Then

d

dt

[‖Bu̇‖2
H1

+ ‖ABu‖2
H1

] = −2 Re(Bu̇, B Ru̇)H1 . (5.39)

In particular, the right-hand side of (5.39) vanishes if R = 0, that is, in the absence of

damping, and hence
[
‖Bu̇‖2

H1
+ ‖ABu‖2

H1

]
represents a family of conserved quantities for

ü + A∗ Au = 0.

Proof One computes

d

dt

[‖Bu̇‖2
H1

+ ‖ABu‖2
H1

] = d

dt

[‖Bu̇‖2
H1

+ ‖|A|Bu‖2
H1

]
= 2 Re

(
(Bu̇, Bü)H1 + (|A|Bu, |A|Bu̇)H1

)
= 2 Re

(
(Bu̇, B[−Ru̇ − |A|2u])H1 + (Bu, |A|2 Bu̇)H1

)
= 2 Re

(−(Bu̇, B Ru̇)H1 − (Bu̇, [B|A|2 − |A|2 B]u)H1

)
= −2 Re

(
(Bu̇, B Ru̇)H1

)
. (5.40)

��

123



Abstract wave equations and Dirac-type operators 663

One observes that the special case B = IH1 in (5.39) is usually associated with the energy
of the abstract wave equation ü + A∗ Au = 0 (resp., ü + Ru̇ + A∗ Au = 0). Typical examples
for B would be B = |A|α, α ∈ [0, 1].
Remark 5.10 More generally, let α ∈ R if B∗ B ≥ ε IH1 for some ε > 0 and α ≥ 0 if
inf(σ (B∗ B)) = 0. Assuming that u satisfies

ü + Ru̇ + [(B∗ B)2 + C∗C(B∗ B)α
]

u = 0, (5.41)

and assuming additional appropriate conditions on u, u̇, R, B,C , one obtains

d

dt

[‖|B|α u̇‖2
H1

+ ‖|B|α+2u‖2
H1

+ ‖|C ||B|2αu‖2
H1

]
= −2 Re(|B|αRu̇, |B|α u̇)H1 . (5.42)

Again, the right-hand side of (5.42) vanishes if R = 0, that is, in the absence of damping.
A situation equivalent to the special case α = 1 has recently been studied in [62] in

the concrete context of plate equations. In this connection we recall that ‖|C ||B|2αu‖2
H1

=
‖C |B|2αu‖2

H1
, etc.

Sketch of proof of (5.42).

d

dt

[‖|B|α u̇‖2
H1

+ ‖|B|α+2u‖2
H1

+ ‖|C ||B|2αu‖2
H1

]
= 2 Re

(
(|B|α ü, |B|α u̇)H1 + (|B|α+2u̇, |B|α+2u)H1

+(|C ||B|2α u̇, |C ||B|2αu)H1

)
= 2 Re

(
(|B|α[−Ru̇ − |B|4u − |C |2|B|2αu], |B|α u̇)H1

+(|B|α+2u̇, |B|α+2u)H1 + (|C ||B|2α u̇, |C ||B|2αu)H1

)
= 2 Re

(−(|B|α u̇, |B|αRu̇)H1 − (|B|α|C |2|B|2αu, |B|α u̇)H1

+(|C ||B|2α u̇, |C ||B|2αu)H1

)
= −2 Re(|B|αRu̇, |B|α u̇)H1 . (5.43)

6 Equipartition of energy for supersymmetric Dirac-type operators and abstract
wave equations

In this section we briefly revisit the notion of asymptotic equipartition for abstract wave
equations (in the absence of damping) and show that it implies the same phenomenon for a
class of supersymmetric Dirac-type operators.

We start with our basic hypothesis.

Hypothesis 6.1 Let H j , j = 1, 2, be complex separable Hilbert spaces and assume that
A : dom(A) ⊆ H1 → H2 is a densely defined, closed, linear operator.

Assuming Hypothesis 6.1, we introduce the supersymmetric Dirac operator (also known
as “supercharge”) by

Q =
(

0 A∗
A 0

)
, dom(Q) = dom(A)⊕ dom(A∗) ⊆ H1 ⊕ H2. (6.1)

(For simplicity, we now use the simplifying notation Q rather than the symbol Q A,0 in
previous sections.) As discussed in Appendix A, Q is self-adjoint in H1 ⊕ H1.
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A number of Dirac operators, including the free one (i.e., one without electromagnetic
potentials), one with a Lorentz scalar potential, one describing electrons in a magnetic field,
one describing neutrons in an electric field, and the one modeling particles with anomalous
electric moment in a magnetic field can all be put in this form (cf. [78, Section 5.5] for
details).

The solution of the corresponding time-dependent Dirac equation

i
d

dt
�(t) = Q�(t), �(t) = (ψ1(t), ψ2(t))


 ∈ dom(Q), t ∈ R, (6.2)

is given by

�(t) = e−i Qt�(0), t ∈ R, (6.3)

with e−i Qt , t ∈ R, a unitary group in H1 ⊕ H2.
One of the principal aims in this section is to prove the following result.

Theorem 6.2 Assume Hypothesis 6.1. Suppose �(t) = e−i Qt�(0) with
�(t) = (ψ1(t), ψ2(t))
, t ∈ R, and �(0) ∈ H1 ⊕ H2 arbitrary. Then, the following
assertions

(i)–(iv) are equivalent.

(i) limt→±∞ ‖ψ j (t)‖2
H j

= ‖�(0)‖2
H1⊕H2

/2, j = 1, 2.

(ii) w-limt→∞ e−i Qt = 0.

(iii) w-limt→∞ e−i |A|t = 0.

(iv) w-limt→∞ cos(|A|t) = 0.

Similarly,

lim
t→±∞

1

t

t∫
0

ds ‖ψ j (s)‖2
H j

= 1

2
‖�(0)‖2

H1⊕H2
, j = 1, 2,

if and only if 0 is not an eigenvalue of Q. (6.4)

Proof First of all, one notes that neither (i)–(iv) nor (6.4) can hold if 0 is an eigenvalue of
Q. Hence, we assume without loss of generality that

ker(Q) = ker(A)⊕ ker(A∗) = {0}. (6.5)

Moreover, since
(
e−i Qt

)∗ = ei Qt , it suffices to study the limit t → ∞ in Theo-
rem 6.2 (i) and (6.4). Next, we recall (A.2)–(A.9), (A.30), (A.31), the polar decomposition
A = VA|A|, A∗ = (VA)

∗|A∗| where, due to our assumption ker(A) = ker(A∗) = {0} and
hence, VA ∈ B(H1,H2) is unitary. In addition, we use the notation H1 = A∗ A, H2 = AA∗
(cf. Appendix A for details). Then, by the spectral theorem applied to Q,

e−i Qt = cos(|Q|t)− i sin(|Q|t)VQ, t ∈ R, (6.6)

and by (A.31), one obtains

e−i Qt =
(

cos(|A|t) −i sin(|A|t)(VA)
∗

−i sin(|A∗|t)VA cos(|A∗|t)
)
, t ∈ R. (6.7)
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Taking scalar products of e−i Qt with vectors of the type ( f, 0)
 and (0, g)
, then shows that

w-lim
t→∞ e−i Qt = 0

if and only if

{
w-limt→∞ cos(|A|t) = 0, w-limt→∞ cos(|A∗|t) = 0,
w-limt→∞ sin(|A|t) = 0, w-limt→∞ sin(|A∗|t) = 0.

(6.8)

However, since
(
e−i |T |t)∗ = ei |T |t for any densely defined closed operator T , one actually

infers that

w-lim
t→∞ e−i Qt = 0 if and only if

{
w-lim
t→∞ cos(|A|t) = 0, w-lim

t→∞ cos(|A∗|t) = 0
}

(6.9)

if and only if
{

w-lim
t→∞ e−i |A|t = 0, w-lim

t→∞ e−i |A∗|t = 0
}
. (6.10)

Finally, since H1 = A∗ A and H2 = A∗ A are unitarily equivalent (recalling (A.16) and the
fact that Pker(A) = Pker(A∗) = 0), this actually yields that

w-lim
t→∞ e−i Qt = 0 if and only if w-lim

t→∞ e−i |A|t = 0 if and only if w-lim
t→∞ cos(|A|t) = 0.

(6.11)

Given �(0) = (ψ1, ψ2)

 ∈ H1 ⊕ H2, one then computes

‖ψ1(t)‖2
H1

= ‖ cos(|A|t)ψ1 − i sin(|A|t)(VA)
∗ψ2‖2

H1

= 1

4

∥∥∥[ei |A|t + e−i |A|t]ψ1 +
[
ei |A|t − e−i |A|t] (VA)

∗ψ2

∥∥∥2

H1

= 1

4

∥∥∥[e2i |A|t + IH1

]
ψ1 +

[
e2i |A|t − IH1

]
(VA)

∗ψ2

∥∥∥2

H1

= 1

4

∥∥∥[ψ1 − (VA)
∗ψ2] + e2i |A|t [ψ1 + (VA)

∗ψ2]
∥∥∥2

H1

= 1

4
‖[ψ1 − (VA)

∗ψ2]‖H1 + 1

4

∥∥∥e2i |A|t [ψ1 + (VA)
∗ψ2]

∥∥∥2

H1

+1

2
Re

((
[ψ1 − (VA)

∗ψ2], e2i |A|t [ψ1 + (VA)
∗ψ2]

)
H1

)

= 1

2

(‖ψ1‖2
H1

+ ‖(VA)
∗ψ2‖2

H1

)

+1

2
Re

((
[ψ1 − (VA)

∗ψ2], e2i |A|t [ψ1 + (VA)
∗ψ2]

)
H1

)

= 1

2

(‖ψ1‖2
H1

+ ‖ψ2‖2
H2

)+ 1

2
Re

((
[ψ1 − (VA)

∗ψ2], e2i |A|t [ψ1 + (VA)
∗ψ2]

)
H1

)

= 1

2
‖�(0)‖2

H1⊕H2
+ 1

2
Re

((
[ψ1 − (VA)

∗ψ2], e2i |A|t [ψ1 + (VA)
∗ψ2]

)
H1

)
. (6.12)

Thus, w-limt→∞ e−i |A|t = 0 yields limt→∞ ‖ψ1(t)‖2
H1

= 1
2‖�(0)‖2

H1⊕H2
, and hence also

limt→∞ ‖ψ2(t)‖2
H2

= 1
2‖�(0)‖2

H1⊕H2
, since e−i Qt , t ∈ R, is unitary on H1 ⊕ H2.

Conversely, choose ϕ,ψ ∈ H1 and set ψ1 = (ψ + ϕ)/2 and ψ2 = VA(ϕ − ψ)/2. Then,
(6.12) shows that limt→∞ ‖ψ1(t)‖2

H1
= 1

2‖�(0)‖2
H1⊕H2

implies

lim
t→∞ Re

((
ψ, e2i |A|tϕ

)
H1

)
= 0, ψ, ϕ ∈ H1. (6.13)
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In particular,

lim
t→∞ Re

((
ψ, e2i |A|tψ

)
H1

)
= lim

t→∞(ψ, cos(2|A|t)ψ)H1 = 0, ψ ∈ H1. (6.14)

By polarization for sesquilinear forms, this is equivalent to

lim
t→∞(ψ, cos(2|A|t)ϕ)H1 = 0, ψ, ϕ ∈ H1, (6.15)

and thus by (6.11) also to

lim
t→∞

(
�, ei Qt�

)
H1⊕H2

= 0, � ∈ H1 ⊕ H2, (6.16)

proving the equivalence of (i)–(iv).
Applying von Neumann’s mean ergodic theorem in the weak sense (cf., e.g., [13, Corollary

5.2], [29, Theorem 1.8.20]) to (6.12) yields the Cesàro limit

lim
t→±∞

1

t

t∫
0

ds ‖ψ1(s)‖2
H1

= 1

2
‖�(0)‖2

H1⊕H2

+1

2
Re

⎛
⎝ lim

t→±∞
1

t

t∫
0

ds
(
[ψ1 − (VA)

∗ψ2], e2i |A|s[ψ1 + (VA)
∗ψ2]

)
H1

⎞
⎠

= 1

2
‖�(0)‖2

H1⊕H2
+ 1

2
Re
(([ψ1 − (VA)

∗ψ2], E|A|({0})[ψ1 + (VA)
∗ψ2]

)
H1

)

= 1

2
‖�(0)‖2

H1⊕H2
(6.17)

if E|A|({0}) = 0. (Here, we used the notation ES(·) for the strongly right continuous spectral
family associated with the self-adjoint operator S.) Conversely, choose again ϕ,ψ ∈ H1 and
set ψ1 = (ψ + ϕ)/2 and ψ2 = VA(ϕ − ψ)/2. Then, (6.12) shows that

lim
t→∞

1

t

t∫
0

ds ‖ψ1(s)‖2
H1

= 1

2
‖�(0)‖2

H1⊕H2
(6.18)

implies

Re

⎛
⎝ lim

t→∞
1

t

t∫
0

ds
(
ψ, e2i |A|sϕ

)
H1

⎞
⎠ = 0, ψ, ϕ ∈ H1. (6.19)

In particular,

Re

⎛
⎝ lim

t→∞
1

t

s∫
0

ds
(
ψ, e2i |A|sψ

)
H1

⎞
⎠ = lim

t→∞
1

t

t∫
0

ds (ψ, cos(2|A|s)ψ)H1 = 0,

ψ ∈ H1. (6.20)

By polarization for sesquilinear forms, this is equivalent to

lim
t→∞

1

t

t∫
0

ds (ψ, cos(2|A|s)ϕ)H1 = 0, ψ, ϕ ∈ H1. (6.21)
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Since generally, as a corollary of von Neumann’s weak ergodic theorem (cf. [34])

lim
t→∞

1

t

t∫
0

ds (ψ, cos(|A|s)ϕ)H1 = (ψ, E|A|({0})ϕ)H1 , ψ, ϕ ∈ H1, (6.22)

(6.21) yields E|A|({0}) = 0. The same computation withψ1(·) replaced byψ2(·) then proves
that

lim
t→∞

1

t

t∫
0

ds ‖ψ2(s)‖2
H2

= 1

2
‖�(0)‖2

H1⊕H2
if and only if E|A∗|({0}) = 0, (6.23)

proving (6.4) (cf. (A.24)). ��
We note that

e−i |Q|t = cos(|Q|t)− i sin(|Q|t) =
(

e−i |A|t 0
0 e−i |A∗|t

)
, t ∈ R, (6.24)

and hence, (6.11) also yields that

if ker(Q) = {0}, then w-lim
t→∞ e−i Qt = 0 if and only if w-lim

t→∞ e−i |Q|t = 0. (6.25)

Remark 6.3 The proof of Theorem 6.2 is similar in spirit to the proof for equipartition of
energy for abstract wave equations [9] (see also [27,28], [29, Theorems 7.12 and 7.13],
[31,33,35–37,39–41,74], and the references therein). In fact, since the two problems are
unitarly equivalent, one follows from the other. For the benefit of the reader, we decided to
provide the proof in the context of supersymmetric Dirac-type operators.

For completeness, we finally recall the corresponding result concerning the asymptotic
equipartition for abstract wave equations in the absence of damping, which motivated the
derivation of Theorem 6.2.

Consider the initial value problem

ü(t)+ A∗ Au(t) = 0, t ∈ R,

u(0) = f0 ∈ dom(A∗ A), u̇(0) = f1 ∈ dom(A). (6.26)

Introducing kinetic and potential energies, Ku(t) and Pu(t), associated with a (strong) solu-
tion u(·) of (6.26) at time t ∈ R,

Ku(t) = ‖u̇(t)‖2
H1
, Pu(t) = ‖Au‖2

H1
= ‖|A|u‖2

H1
, t ∈ R, (6.27)

one recalls conservation of the total energy (cf. Lemma 5.9)

Ku(t)+ Pu(t) = Ku(0)+ Pu(0), t ∈ R. (6.28)

Moreover, the initial value problem (6.26) is said to admit asymptotic equipartition of energy
if

lim
t→±∞ Ku(t) = lim

t→±∞ Pu(t) = 1

2
[Ku(0)+ Pu(0)]. (6.29)

Asymptotic equipartition of energy has extensively been discussed in the literature, and we
refer, for instance, to [1,27,28,30–41], and [74]. In particular, the following theorem appeared
in Goldstein [29, Theorems 7.12 and 7.13].
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Theorem 6.4 Assume Hypothesis 6.1 and let u(·) : R → H1 be a solution of (6.26). Then,
the following assertions (i) and (i i) are equivalent.

(i) limt→±∞ Ku(t) = limt→±∞ Pu(t) = [Ku(0)+ Pu(0)]/2.

(ii) w-limt→∞ e−i |A|t = 0.

Similarly,

lim
t→±∞

1

t

t∫
0

ds Ku(s) = lim
t→±∞

1

t

t∫
0

ds Pu(s) = 1

2
[Ku(0)+ Pu(0)]

if and only if 0 is not an eigenvalue of A. (6.30)
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Appendix A: Supersymmetric Dirac-type operators in a nutshell

In this appendix we briefly summarize some results on supersymmetric Dirac-type operators
and commutation methods due to [14,24,77], and [78, Ch. 5] (see also [46]).

The standing assumption in this appendix will be the following.

Hypothesis A.1 Let H j , j = 1, 2, be separable complex Hilbert spaces and

T : H1 ⊇ dom(T ) → H2 (A.1)

be a densely defined closed linear operator.

We define the self-adjoint Dirac-type operator in H1 ⊕ H2 by

Q =
(

0 T ∗
T 0

)
, dom(Q) = dom(T )⊕ dom(T ∗). (A.2)

Operators of the type Q play a role in supersymmetric quantum mechanics (see, e.g., the
extensive list of references in [7]). Then,

Q2 =
(

T ∗T 0
0 T T ∗

)
(A.3)

and for notational purposes we also introduce

H1 = T ∗T in H1, H2 = T T ∗ in H2. (A.4)

In the following, we also need the polar decomposition of T and T ∗, that is, the representations

T = VT |T | = |T ∗|VT = VT T ∗VT on dom(T ) = dom(|T |), (A.5)

T ∗ = VT ∗ |T ∗| = |T |VT ∗ = VT ∗ T VT ∗ on dom(T ∗) = dom(|T ∗|), (A.6)

|T | = VT ∗ T = T ∗VT = VT ∗ |T ∗|VT on dom(|T |), (A.7)

|T ∗| = VT T ∗ = T VT ∗ = VT |T |VT ∗ on dom(|T ∗|), (A.8)
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where

|T | = (T ∗T )1/2, |T ∗| = (T T ∗)1/2, (A.9)

VT ∗ = (VT )
∗, (A.10)

and

VT ∗ VT = Pran(|T |) = Pran(T ∗) , VT VT ∗ = Pran(|T ∗|) = Pran(T ). (A.11)

In particular, VT is a partial isometry with initial set ran(|T |) and final set ran(T ), and hence,
VT ∗ is a partial isometry with initial set ran(|T ∗|) and final set ran(T ∗). In addition,

VT =
{

T (T ∗T )−1/2 = (T T ∗)−1/2T on (ker(T ))⊥,
0 on ker(T ).

(A.12)

Next, we collect some properties relating H1 and H2.

Theorem A.2 ([14]) Assume Hypothesis A.1 and let φ be a bounded Borel measurable func-
tion on R.

(i) One has

ker(T ) = ker(H1) = (ran(T ∗))⊥, ker(T ∗) = ker(H2) = (ran(T ))⊥, (A.13)

VT Hn/2
1 = Hn/2

2 VT , n ∈ N, VTφ(H1) = φ(H2)VT . (A.14)

(ii) H1 and H2 are essentially isospectral, that is,

σ(H1)\{0} = σ(H2)\{0}, (A.15)

in fact,

T ∗T [IH1 − Pker(T )] is unitarily equivalent to T T ∗[IH2 − Pker(T ∗)]. (A.16)

In addition,

f ∈ dom(H1) and H1 f = λ2 f, λ �= 0,

implies T f ∈ dom(H2) and H2(T f ) = λ2(T f ), (A.17)

g ∈ dom(H2) and H2 g = μ2g, μ �= 0,

implies T ∗g ∈ dom(H1) and H1(T
∗ f ) = μ2(T ∗g), (A.18)

with multiplicities of eigenvalues preserved.

(iii) One has for z ∈ ρ(H1) ∩ ρ(H2),

IH2 + z(H2 − z IH2)
−1 ⊇ T (H1 − z IH1)

−1T ∗, (A.19)

IH1 + z(H1 − z IH1)
−1 ⊇ T ∗(H2 − z IH2)

−1T, (A.20)

and

T ∗φ(H2) ⊇ φ(H1)T
∗, Tφ(H1) ⊇ φ(H2)T, (A.21)

VT ∗φ(H2) ⊇ φ(H1)VT ∗ , VTφ(H1) ⊇ φ(H2)VT . (A.22)
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As noted by E. Nelson (unpublished), Theorem A.2 follows from the spectral theorem
and the elementary identities,

Q = VQ |Q| = |Q|VQ, (A.23)

ker(Q) = ker(|Q|) = ker(Q2) = (ran(Q))⊥ = ker(T )⊕ ker(T ∗), (A.24)

IH1⊕H2 + z(Q2 − z IH1⊕H2)
−1 = Q2(Q2 − z IH1⊕H2)

−1 ⊇ Q(Q2 − z IH1⊕H2)
−1 Q,

z ∈ ρ(Q2), (A.25)

Qφ(Q2) ⊇ φ(Q2)Q, (A.26)

where

VQ =
(

0 (VT )
∗

VT 0

)
=
(

0 VT ∗
VT 0

)
. (A.27)

In particular,

ker(Q) = ker(T )⊕ ker(T ∗), Pker(Q) =
(

Pker(T ) 0
0 Pker(T ∗)

)
, (A.28)

and we also recall that

σ3 Qσ3 = −Q, σ3 =
(

IH1 0
0 −IH2

)
, (A.29)

that is, Q and −Q are unitarily equivalent. (For more details on Nelson’s trick, see also [76,
Sect. 8.4], [78, Subsect. 5.2.3].) We also note that

ψ(|Q|) =
(
ψ(|T |) 0

0 ψ(|T ∗|)
)

(A.30)

for Borel measurable functions ψ on R, and

[Q|Q|−1] =
(

0 (VT )
∗

VT 0

)
= VQ if ker(Q) = {0}. (A.31)

Finally, we recall the following relationships between Q and Hj , j = 1, 2.

Theorem A.3 ([7,77]) Assume Hypothesis A.1.

(i) Introducing the unitary operator U on (ker(Q))⊥ by

U = 2−1/2
(

IH1 (VT )
∗

−VT IH2

)
on (ker(Q))⊥, (A.32)

one infers that

U QU−1 =
( |A| 0

0 −|A∗|
)

on (ker(Q))⊥. (A.33)

(ii) One has

(Q − ζ IH1⊕H2)
−1 =

(
ζ(H1 − ζ 2 IH1)

−1 T ∗(H2 − ζ 2 IH2)
−1

T (H1 − ζ 2 IH1)
−1 ζ(H2 − ζ 2 IH2)

−1

)
,

ζ 2 ∈ ρ(H1) ∩ ρ(H2). (A.34)
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(iii) In addition, (
f1

f2

)
∈ dom(Q) and Q

(
f1

f2

)
= η

(
f1

f2

)
, η �= 0,

implies f j ∈ dom(Hj ) and Hj f j = η2 f j , j = 1, 2. (A.35)

Conversely,

f ∈ dom(H1) and H1 f = λ2 f, λ �= 0,

implies

(
f

λ−1T f

)
∈ dom(Q) and Q

(
f

λ−1T f

)
= λ

(
f

λ−1T f

)
. (A.36)

Similarly,

g ∈ dom(H2) and H2 g = μ2g, μ �= 0,

implies

(
μ−1T ∗g

g

)
∈ dom(Q) and Q

(
μ−1T ∗g

g

)
= μ

(
μ−1T ∗g

g

)
. (A.37)

Appendix B: Adjoints and closures of operator products

The purpose of this appendix is to describe some situations in which equality holds between
(T S)∗ and S∗T ∗ and similarly, describe relations between (T S) and T S.

We recall that if C : H ⊇ dom(C) → H′ is a closed operator (with H and H′ com-
plex, separable Hilbert spaces), then a linear subspace D of dom(C) is called a core for C if
C |D = C .

Lemma B.1 Let H,H′,H′′ be complex, separable Hilbert spaces, and introduce the linear
operators

S : H ⊇ dom(S) → H′, T : H′ ⊇ dom(T ) → H′′. (B.1)

(i) Assume that T and T S are densely defined. Then S is densely defined and

(T S)∗ ⊇ S∗T ∗. (B.2)

(ii) Suppose that S is densely defined and T ∈ B(H′,H′′). Then

(T S)∗ = S∗T ∗. (B.3)

(iii) Assume that T and T S are densely defined. In addition, suppose that S is injective
(i.e., ker(S) = {0}) and S−1 ∈ B(H′,H). Then S is densely defined and

(T S)∗ = S∗T ∗. (B.4)

(iv) Suppose that T S is densely defined, assume that dom(T ) ∩ ran(S) = H′, and intro-
duce

T̂ = T |dom(T )∩ran(S). (B.5)

Moreover, assume that S is injective and that S−1 is a bounded operator. Then
dom(S) = H, ran(S) = H′, S−1 ∈ B(H′,H), and

(T S)∗ = (T̂ S
)∗ = S∗ (T̂ )∗ ⊇ S∗T ∗. (B.6)
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Suppose, in addition, that T is closable. Then

(T S)∗ = S∗T ∗ if and only if dom(T ) ∩ ran(S) is a core for T . (B.7)

(v) Assume that S and T are densely defined, suppose S is closed, and assume in addition
that ran(S) has finite codimension (i.e., dim

(
ran(S)⊥

)
< ∞). Then T S is densely

defined and

(T S)∗ = S∗T ∗. (B.8)

Proof We refer to [85, Theorem 4.19 (a)] for a proof of item (i).
Item (i i) is a classical result, see, for instance, [15, Lemma X.II.1.6] and [85, Theorem

4.19 (b)].
Item (i i i) is mentioned in [85, Exercise 4.18] and is a special case of item (iv) to be

proven next.
To prove item (iv), one can argue as follows. Since S is injective, dom(S−1) = ran(S)

is dense in H′, and S−1 is a bounded operator, S−1 is closable and hence dom
(

S−1
)

=
dom(S−1) = H′ (cf. [85, Theorem 5.2]). Thus, S−1 ∈ B(H′,H) by the closed graph theo-
rem.

The fact that T S = T̂ S, T̂ ⊆ T (implying T ∗ ⊆ ( T̂
)∗

), and generally, S, T̂ , T̂ S all being
densely defined implies that

(
T̂ S
)∗ ⊇ S∗ ( T̂

)∗
(cf. item (i)), (B.6) will follow once one

proves that
(

T̂ S
)∗ ⊆ S∗ ( T̂

)∗
. For this purpose, let f ∈ dom

((
T̂ S
)∗)

and g ∈ dom
(

T̂ S
)
,

then
(

f, T̂ Sg
)
H′′ =

((
T̂ S
)∗

f, g
)

H
=
((

T̂ S
)∗

f, S−1Sg
)

H
=
((

T̂ S
)∗

f, S−1Sg
)

H

=
((

S−1
)∗ (

T̂ S
)∗

f, Sg
)

H′ . (B.9)

Thus,

∣∣( f, T̂ Sg
)
H′′
∣∣ ≤ ∥∥∥(S−1

)∗ (
T̂ S
)∗

f
∥∥∥H′ ‖Sg‖H′ . (B.10)

Since dom
(
T̂ S
) = S−1 dom

(
T̂
)
, one obtains that as g runs through all of dom

(
T̂ S
)
, Sg

runs through all of dom
(
T̂
)
. Hence, (B.10) implies that f ∈ dom

((
T̂
)∗)

and thus (B.9)

yields
((

T̂
)∗

f, Sg
)

H′ =
((

S−1
)∗ (

T̂ S
)∗

f, Sg
)

H′ . (B.11)

Since (as a consequence of the hypothesis dom(T ) ∩ ran(S) = H′), ran(S) = H′, (B.11)
implies

(
T̂
)∗

f =
(

S−1
)∗ (

T̂ S
)∗

f = (S−1
)∗ (

T̂ S
)∗

f = (S∗)−1
(
T̂ S
)∗

f. (B.12)

Here, we used that
(

A
)∗ = A∗ if A is densely defined and closable (cf. [85, Theorem 5.3 (c)])

and that
(
B−1

)∗ = (B∗)−1 if B is injective and densely defined with dense range (implying
injectivity of B∗, cf. [85, Theorem 4.17 (b)]). Equation (B.12) yields S∗ (T̂ )∗ f = (T̂ S

)∗
f

and hence
(
T̂ S
)∗ ⊆ S∗ (T̂ )∗.
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Next, assume in addition that T is closable (and hence
(
T
)∗ = T ∗). Then, if dom(T ) ∩

ran(S) is a core for T , T̂ = T yields
(
T̂
)∗ =

(
T̂
)∗ = (T )∗ = T ∗, (B.13)

and hence, (B.6) implies (T S)∗ = S∗T ∗. Conversely, suppose that
(
T̂
)∗ = T ∗. Then,

T̂ =
((

T̂
)∗)∗ = (T ∗)∗ = T (B.14)

proves that dom(T ) ∩ ran(S) is a core for T .
For a proof of item (v), we refer to [44,48,49,73], and [82]. In this context we note that
ran(S) is closed in H′ (since S is assumed to be closed and dim

(
ran(S)⊥

)
< ∞, cf. [26,

Corollary IV.1.13]) and hence does not have to be assumed to be closed, and similarly, it is
not necessary to assume that T is closed as is done in some references. ��

We note again that Lemma B.1 (iv) is a refinement of [85, Exercise 4.18], listed as item
(i i i) in Lemma B.1; it may be of independent interest.

For additional results guaranteeing (T S)∗ = S∗T ∗ (including the Banach space setting),
we refer, for instance, to [44,48,49,58,68], and [82] (in particular, the case of non-densely
defined operators is discussed in detail in [68]).

Next, we briefly consider situations which relate ST with S T (much less appears to have
been studied in this context).

Lemma B.2 Let H,H′,H′′ be complex, separable Hilbert spaces, and introduce the linear
operators

S : H ⊇ dom(S) → H′, T : H′ ⊇ dom(T ) → H′′. (B.15)

(i) Assume that S is bounded, S ∈ B(H,H′), and that T is closed. Then T S is closed,
implying that T S is closable and that

T S ⊆ T S. (B.16)

(ii) Assume that S is injective with S−1 bounded and S−1 ∈ B(H′,H). Furthermore,
suppose T |dom(T )∩ran(S) is closable and

T |dom(T )∩ran(S) ⊆ T |dom(T )∩ran(S). (B.17)

In addition, assume that T S is closable. Then

T S ⊆ T S. (B.18)

Proof For the purpose of proving item (i), we suppose that { fn}n∈N ⊂ dom(T S) such that
s-limn→∞ fn = f ∈ H and T S fn = h ∈ H′′. By the definition of dom(T S), this implies
that { fn}n∈N ⊂ dom(S), and since S ∈ B(H,H′), one concludes that s-limn∈N S fn = S f ∈
H′. Since s-limn→∞ T (S fn) = s-limn→∞ T S fn = h, closedness of T implies that S f ∈
dom(T ) and s-limn→∞ T (S fn) = T (S f ), that is, f ∈ dom(T S) and s-limn→∞ T S fn =
T S f . Thus, T S is closed.

Since T S ⊆ T S and the latter is closed, T S is closable and

T S ⊆ T S = T S. (B.19)

To prove item (i i), let f ∈ dom(T S) and g = T S f . Then, h = S f ∈ dom(T )∩ ran(S), and
by assumption (B.17), we can find {hn}n∈N ∈ dom(T )∩ ran(S) such that s-limn→∞ hn = h
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in H′ and s-limn→∞ T hn = T h = g in H′′. Since S−1 is bounded, the sequence fn = S−1hn

converges strongly to S−1h = (S)−1
h = f in H, and by construction, T S fn = T hn, n ∈ N,

satisfies s-limn→∞ T S fn = g. Thus, f ∈ dom(T S) and T S f = g = T S f . ��
We note that closedness of T S in Lemma B.2 (i) has been noted in [20, Proposition B.2].
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