
Annali di Matematica (2009) 188:171–185
DOI 10.1007/s10231-008-0070-9

Supercritical biharmonic equations with power-type
nonlinearity

Alberto Ferrero · Hans-Christoph Grunau ·
Paschalis Karageorgis

Received: 16 November 2007 / Revised: 14 January 2008 / Published online: 26 March 2008
© Springer-Verlag 2008

Abstract We study two different versions of a supercritical biharmonic equation with a
power-type nonlinearity. First, we focus on the equation �2u = |u|p−1u over the whole
space R

n , where n > 4 and p > (n + 4)/(n − 4). Assuming that p < pc, where pc is a
further critical exponent, we show that all regular radial solutions oscillate around an explicit
singular radial solution. As it was already known, on the other hand, no such oscillations
occur in the remaining case p ≥ pc. We also study the Dirichlet problem for the equation
�2u = λ(1 + u)p over the unit ball in R

n , where λ > 0 is an eigenvalue parameter, while
n > 4 and p > (n + 4)/(n − 4) as before. When it comes to the extremal solution associated
to this eigenvalue problem, we show that it is regular as long as p < pc. Finally, we show
that a singular solution exists for some appropriate λ > 0.
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1 Introduction and main results

A lot of research on elliptic reaction diffusion equations

−�u = f (u)
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172 A. Ferrero et al.

of second order has been done and many beautiful and important results have been proved,
where it is impossible to report upon here. However, in the survey article by P.L. Lions
on this subject the question is raised (see [13, Sect. 4.2(c)]) in how far these results may be
generalized to systems of such equations. Accordingly, as a special case one should investigate
polyharmonic reaction diffusion equations

(−�)mu = f (u),

where in the present paper we consider the biharmonic case m = 2 and polynomial nonli-
nearities. In the first part we study qualitative properties of positive entire radial solutions
(defined and regular in the whole space) of

�2u = |u|p−1u in R
n, (1)

where at least p > 1 is assumed. It is well known that, if n ≥ 5, the exponent (n +4)/(n −4)

plays a critical role. In the subcritical range p ∈ (1, (n + 4)/(n − 4)) positive entire radial
solutions to (1) do not exist, see e.g. the testing-function method by Mitidieri and Pohožaev
[16]. Also the case of critical growth p = (n + 4)/(n − 4) is somehow special, see e.g. [20]
and the references therein. Here, we assume supercritical growth, i.e.

n ≥ 5 and p >
n + 4

n − 4
. (2)

In this case, an important role is played by the explicitly known singular solution

us(r) = K 1/(p−1)
0 r−4/(p−1), (3)

where

K0 = 4

p − 1

(
4

p − 1
+ 2

)(
n − 2 − 4

p − 1

)(
n − 4 − 4

p − 1

)
. (4)

It was shown in [5,19] that positive regular entire solutions to (1) exist and in [9] that
asymptotically they behave like the singular solution us:

lim
r→∞

u(r)

us(r)
= 1.

In the analogous second-order problem (i.e. m = 1)

− �u = |u|p−1u in R
n, (5)

where critical growth is given by the exponent (n + 2)/(n − 2), such a result is well known
and goes back to fundamental work of Joseph-Lundgren [11] and Gidas-Spruck [10], see also
the references therein and [17] for subsequent work. The Eq. (5) admits the singular solution
u0(x) = C0|x |−2/(p−1) for some positive constant C0. Here, more detailed information about
the convergence u(r)

u0(r)
→ 1 could be obtained. In [11,21] it is proved that there exists a further

critical exponent p# > n+2
n−2 such that if n+2

n−2 < p < p# then each radial entire solution u
intersects u0 infinitely many times for r → ∞, while if p ≥ p# then no radial entire solution
intersects u0. Further interesting qualitative properties are proved in [8,18], where as in [21]
the focus is on the corresponding parabolic problem. All these results are strongly based on
the use of maximum principles, which are in general not available for higher order equations.
So, it is an interesting question whether the results carry over to biharmonic problems while
suitable new methods have to be found. A first step in this direction was done in [9] where,
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Supercritical biharmonic equations with power-type nonlinearity 173

for n > 12 a further critical exponent pc ∈
(

n+4
n−4 ,∞

)
was introduced being in that interval

the unique solution of the following polynomial equation:

pc · 4

pc − 1
·
(

4

pc − 1
+ 2

)
·
(

n − 2 − 4

pc − 1

)
·
(

n − 4 − 4

pc − 1

)
= n2(n−4)2

16
. (6)

The third author [12] proved in particular that in the “supercritical case”, i.e.

p ≥ pc

the convergence of u
us

→ 1 is monotone, i.e. ∀r : u(r) < us(r). Here, we study the reverse
case:

Theorem 1 Let pc ∈ ((n+4)/(n−4),∞) be the number, which is defined by (6) for n ≥ 13.
We assume that

n + 4

n − 4
< p < pc if n ≥ 13,

n + 4

n − 4
< p < ∞ if 5 ≤ n ≤ 12.

Let r �→ u(r) be a positive radial entire solution to (1). Then, as r → ∞, u(r) oscillates
infinitely many times around the singular solution us(r).

Together with the result of [12] this provides a biharmonic analogue of [21, Proposition 3.7].
The second part of the present paper is devoted to positive solutions of the corresponding

Dirichlet problem ⎧⎨
⎩

�2u = λ(1 + u)p in B,

u > 0 in B,

u = |∇u| = 0 on ∂ B,

(7)

where B ⊂ R
n is the unit ball, λ > 0 is an eigenvalue parameter and again n ≥ 5 and

p > n+4
n−4 . In [7] (see also [2]) it was proved that there exists an extremal parameter λ∗ such

that for λ ∈ [0, λ∗) one has a minimal solution which is regular, while not even a weak
solution does exist for λ > λ∗. On the extremal parameter λ = λ∗, an extremal solution
u∗ ∈ H2

0 (B) ∩ L p(B) exists as monotone limit of the minimal solutions.
For the corresponding second order problem, such results can be found in [3,4,10,11,15,

21]. In that case, however, the starting point was an explicit singular solution for a suitable
eigenvalue parameter λ which turned out to play a fundamental role for the shape of the
corresponding bifurcation diagram, see in particular [4]. When turning to the biharmonic
problem (7) the second boundary condition |∇u| = 0 prevents to find an explicit singular
solution from the singular solution (3) to (1). It is expected that a singular (i.e. unbounded)
solution uσ for a suitable parameter λσ will exist also in the biharmonic Dirichlet problem
(7) and that it will play an important role as far as the shape of the bifurcation diagram for (7)
is concerned. However, in [7] we had to leave open even the existence of a singular solution
which will be proved in the present paper:

Theorem 2 Let n > 4 and p > (n + 4)/(n − 4). Then, there exists a parameter λσ > 0
such that for λ = λσ , problem (7) admits a radial singular solution.

Moreover, in [7] we left open whether the extremal solution u∗ introduced above is sin-
gular (unbounded) or regular (bounded). The corresponding question has been settled for
the exponential nonlinearity by Dávila et al. [6] thereby developing the previous work [1].
Here, taking advantage of an idea in [6], we prove regularity of the extremal solution of the
problem with power-type nonlinearity in the “subcritical” range.
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174 A. Ferrero et al.

Theorem 3 Let pc ∈ ((n+4)/(n−4),∞) be the number, which is defined by (6) for n ≥ 13.
We assume that

n + 4

n − 4
< p < pc if n ≥ 13,

n + 4

n − 4
< p < ∞ if 5 ≤ n ≤ 12.

Let u∗ ∈ H2
0 (B)∩ L p(B) be the extremal radial solution of (7) corresponding to the extremal

parameter λ∗, which is obtained as monotone limit of the minimal regular solutions for
λ ↗ λ∗. Then, u∗ is regular.

The proof of Theorem 1 is given in the following section, while Theorems 2 and 3 are proved
in Sect. 3.

2 Entire solutions: the corresponding autonomous system

In this section, we give the proof of Theorem 1. When studying radial solutions to (1) a
basic idea is to transform (1) into an autonomous system, where the entire singular solution
transforms into an equilibrium point. While this “singular” equilibrium point is stable in the
second-order situation (see [11,15]) it is hyperbolic in the biharmonic case with a three-
dimensional stable and a one-dimensional unstable manifold [9]. In order to study possible
oscillatory properties of entire regular solutions to (1), this stable manifold has to be analyzed
more closely. In this section we will prove that with regard to entire regular solutions one may
reduce to a two-dimensional submanifold of the stable manifold. Crucial for this property is
a backward in time invariance property of a suitable cone in the phase space, i.e. a sort of
comparison principle for a suitably written associated autonomous system, see the proof of
Proposition 1. It was already observed before (see e.g. [14]) that also higher order dynamical
systems may obey a certain form of a comparison principle.

Roughly speaking, this means that the dynamical properties of entire regular solutions
to the biharmonic equation (1) are analogous to the second-order situation and that the
additional directions around the “singular” equilibrium point may be “ignored”. We remark
that the “subcriticality” assumption p < pc is not needed to prove Proposition 1.

As in [9] we set

v(s) := e4s/(p−1)u(es) (s ∈ R), u(r) = r−4/(p−1)v(log r) (r > 0). (8)

According to [9,12], Eq. (1) is then equivalent to

(
∂s − 4

p − 1
+ n − 4

)(
∂s − 4

p − 1
+ n − 2

)(
∂s − 4

p − 1
− 2

)(
∂s − 4

p − 1

)
v(s)

= |v(s)|p−1v(s), (9)

where s ∈ R. In order to write this as an autonomous system, we define

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w1(s) = v(s)

w2(s) =
(
∂s − 4

p−1

)
w1(s)

w3(s) =
(
∂s − 4

p−1 − 2
)

w2(s)

w4(s) =
(
∂s − 4

p−1 + n − 2
)

w3(s).

(10)
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Supercritical biharmonic equations with power-type nonlinearity 175

Equation (9) is equivalent to the following system:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w′
1(s) = 4

p−1w1 + w2,

w′
2(s) =

(
4

p−1 + 2
)

w2 + w3,

w′
3(s) =

(
4

p−1 − (n − 2)
)

w3 + w4,

w′
4(s) = |w1(s)|p−1w1(s) +

(
4

p−1 − (n − 4)
)

w4.

(11)

In order to perform the stability analysis around the singular solution us(r) = K 1/(p−1)
0

r−4/(p−1), i.e. v(s) = K 1/(p−1)
0 , we have to linearize (11) around the vector

w(0) := K 1/(p−1)
0

(
1,− 4

p − 1
,

4

p − 1

(
4

p − 1
+ 2

)
,

(
n − 2 − 4

p − 1

)
4

p − 1

(
4

p − 1
+ 2

))
.

This gives rise to the system w′(s) = M ◦ w(s), where

M :=

⎛
⎜⎜⎜⎝

4
p−1 1 0 0

0 4
p−1 + 2 1 0

0 0 4
p−1 − (n − 2) 1

pK0 0 0 4
p−1 − (n − 4)

⎞
⎟⎟⎟⎠ ,

and the corresponding characteristic polynomial is given by

P(ν) =
(

ν − 4

p − 1
+ n − 4

)(
ν − 4

p − 1
+ n − 2

)

×
(

ν − 4

p − 1
− 2

)(
ν − 4

p − 1

)
− pK0.

According to [9], the eigenvalues are given by

ν1 = N1 +
√

N2 + 4
√

N3

2(p − 1)
, ν2 = N1 −

√
N2 + 4

√
N3

2(p − 1)
,

ν3 = N1 +
√

N2 − 4
√

N3

2(p − 1)
, ν4 = N1 −

√
N2 − 4

√
N3

2(p − 1)
,

where

N1 := −(n − 4)(p − 1) + 8, N2 := (n2 − 4n + 8)(p − 1)2,

N3 := (9n − 34)(n − 2) (p − 1)4 + 8(3n − 8)(n − 6) (p − 1)3

+ (16n2 − 288n + 832) (p − 1)2 − 128(n − 6)(p − 1) + 256.

One has ν1, ν2 ∈ R and ν2 < 0 < ν1. If n ≥ 13 and p ≥ pc, then the other two eigenvalues
are also real and they satisfy ν4 ≤ ν3 < 0. If either 5 ≤ n ≤ 12 or p < pc, on the other
hand, then the other two eigenvalues are not real and they satisfy Reν3 = Reν4 < 0. In any
case, however, one has

ν2 < Re ν4 ≤ Re ν3 < 0 < ν1.
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176 A. Ferrero et al.

For a proof of these facts about the eigenvalues νi , we refer the reader to [9, Proposition 2].
We are now in a position to state the key ingredient in the proof of Theorem 1.

Proposition 1 Let w( . ) be a solution of (11) in the stable manifold of w(0) being tangential
to the eigenvector corresponding to ν2. Then the corresponding solution u of (1) is singular
or even not defined for all r > 0.

In order to prove this proposition we need the following crucial observation regarding the
sign of the components of an eigenvector corresponding to ν2.

Lemma 1 One eigenvector of M corresponding to ν2 is given by t = (t1, t2, t3, t4) with

t1 = 1 > 0,

t2 =
(

ν2 − 4

p − 1

)
< 0,

t3 =
(

ν2 − 2 − 4

p − 1

)(
ν2 − 4

p − 1

)
> 0,

t4 =
(

ν2 + n − 2 − 4

p − 1

)(
ν2 − 2 − 4

p − 1

)(
ν2 − 4

p − 1

)
< 0.

Proof Since ν2 < 0 we only have to show that

0 > ν2 + n − 2 − 4

p − 1
= n

2
− 1

2(p − 1)

√
N2 + 4

√
N3 (12)

the latter being equivalent to proving that

N3 > (n − 2)2(p − 1)4.

Indeed, by using the supercriticality assumption (n − 4)(p − 1) > 8, we have

N3 − (n − 2)2(p − 1)4 = 8(n − 2)(n − 4)(p − 1)4 + 8(3n2 − 26n + 48)(p − 1)3

+ 16(n2 − 18n + 52)(p − 1)2 − 128(n − 6)(p − 1) + 256

= 8p(p + 1)((n − 2)(p − 1) − 4)((n − 4)(p − 1) − 4) > 0.

This proves (12) and hence the lemma. ��
Proof of Proposition 1 Let w( . ) be a solution to (11) being tangential for s → ∞ to the
eigenvector t from the previous lemma. We may assume that w( . ) exists on the whole real
line R because otherwise, nothing is to be proved. We put z1(s) = w1(s) − w

(0)
1 and further

z1(s) = w1(s) − w
(0)
1 = v(s) − K 1/(p−1)

0 ,

z2(s) = w2(s) − w
(0)
2 =

(
∂s − 4

p − 1

)
z1(s),

z3(s) = w3(s) − w
(0)
3 =

(
∂s − 4

p − 1
− 2

)
z2(s),

z4(s) = w4(s) − w
(0)
4 =

(
∂s − 4

p − 1
+ n − 2

)
z3(s),

so that (
∂s − 4

p − 1
+ n − 4

)
z4(s) = |v(s)|p−1v(s) − K p/(p−1)

0

= |w1(s)|p−1w1(s) − |w(0)
1 |p−1w

(0)
1 .
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Supercritical biharmonic equations with power-type nonlinearity 177

Writing this more systematically yields
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z′
1(s) = 4

p−1 z1(s) + z2(s),

z′
2(s) =

(
4

p−1 + 2
)

z2(s) + z3(s),

z′
3(s) =

(
4

p−1 − (n − 2)
)

z3(s) + z4(s),

z′
4(s) = |w1(s)|p−1w1(s) − |w(0)

1 |p−1w
(0)
1 +

(
4

p−1 − (n − 4)
)

z4(s).

(13)

According to whether z( . ) approaches the origin from “above” or “below” we distinguish
two cases.

First case. There exists s0 large enough such that

z1(s0) > 0, z2(s0) < 0, z3(s0) > 0, z4(s0) < 0. (14)

On any interval [s, s0] where z1( . ) = w1( . ) − w
(0)
1 ≥ 0, we must then have

(
∂s + (n − 4) − 4

p − 1

)
z4(s) = |w1(s)|p−1w1(s) − |w(0)

1 |p−1w
(0)
1 ≥ 0.

This makes e

(
(n−4)− 4

p−1

)
s
z4(s) increasing on [s, s0], and so (14) implies that

e

(
(n−4)− 4

p−1

)
s
z4(s) ≤ e

(
(n−4)− 4

p−1

)
s0 z4(s0) < 0

on [s, s0]. In particular, z4(s) < 0 throughout the interval, and we have
(

∂s + (n − 2) − 4

p − 1

)
z3(s) = z4(s) < 0.

This makes e

(
(n−2)− 4

p−1

)
s
z3(s) decreasing on [s, s0], so we similarly find that

e

(
(n−2)− 4

p−1

)
s
z3(s) ≥ e

(
(n−2)− 4

p−1

)
s0 z3(s0) > 0

by (14). Since
(
∂s − 2 − 4

p−1

)
z2(s) = z3(s) > 0, exactly the same argument leads us to

e

(
−2− 4

p−1

)
s
z2(s) ≤ e

(
−2− 4

p−1

)
s0 z2(s0) < 0

by (14), hence
(
∂s − 4

p−1

)
z1(s) = z2(s) < 0 and we finally get

e− 4
p−1 s z1(s) ≥ e− 4

p−1 s0 z1(s0) > 0.

That is, z1(s) > 0 on any interval [s, s0] where z1(s) ≥ 0, so it is impossible for z1(s) to
become 0 at some s < s0. Hence ∀s ≤ s0 : z1(s) > 0. For the original solution this means
that for r ≤ r0, u( . ) lies above the singular solution. This means that u( . ) itself is singular
at r = 0.

Second case. There exists s0 large enough such that

z1(s0) < 0, z2(s0) > 0, z3(s0) < 0, z4(s0) > 0. (15)
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178 A. Ferrero et al.

On any interval [s, s0] where z1( . ) = w1( . ) − w
(0)
1 ≤ 0, we must then have(

∂s + (n − 4) − 4

p − 1

)
z4(s) = |w1(s)|p−1w1(s) − |w(0)

1 |p−1w
(0)
1 ≤ 0.

This makes e

(
(n−4)− 4

p−1

)
s
z4(s) decreasing on [s, s0], and so (15) implies that

e

(
(n−4)− 4

p−1

)
s
z4(s) ≥ e

(
(n−4)− 4

p−1

)
s0 z4(s0) > 0

on [s, s0]. In particular, z4(s) > 0 throughout the interval, and we have(
∂s + (n − 2) − 4

p − 1

)
z3(s) = z4(s) > 0.

This makes e

(
(n−2)− 4

p−1

)
s
z3(s) increasing on [s, s0], so we similarly find that

e

(
(n−2)− 4

p−1

)
s
z3(s) ≤ e

(
(n−2)− 4

p−1

)
s0 z3(s0) < 0 (16)

by (15). Following this approach, as in the first case, we eventually get

z4(s) > 0, z3(s) < 0, z2(s) > 0, z1(s) < 0 (17)

on any interval [s, s0] where z1(s) ≤ 0, so it is impossible for z1(s) to become 0 at some
s < s0. Hence ∀s ≤ s0 : z1(s) < 0, i.e. the corresponding u( . ) is always below the
singular solution. In order to prove that u( . ) itself is singular also in this case, we show that
z1(s) → −∞ for s → −∞. Since ∀s ≤ s0 : z1(s) < 0, we have that (16) holds true for
all s ≤ s0. Referring to [7, Proposition 1] would already show that also v and so u cannot
be bounded. However, here it is quite easy to show this directly. For some suitable constant
δ1 > 0 one has:

∂s

(
e
−
(

2+ 4
p−1

)
s
z2(s)

)
= e

−
(

2+ 4
p−1

)
s
z3(s) ≤ −δ1e−ns

because of (16), and this implies that

e
−
(

2+ 4
p−1

)
s
z2(s) ≥ δ1

n
e−ns − δ1

n
e−ns0 + e

−
(

2+ 4
p−1

)
s0 z2(s0)

≥ δ2e−ns

for some suitable constant δ2 > 0. In particular,

∂s

(
e− 4

p−1 s z1(s)
)

= e− 4
p−1 s z2(s) ≥ δ2e−(n−2)s

and this implies that

e− 4
p−1 s z1(s) ≤ δ2

n − 2

(
e−(n−2)s0 − e−(n−2)s

)
+ e− 4

p−1 s0 z1(s0)

≤ −δ3e−(n−2)s

for some suitable constant δ3 > 0. Thus, we end up with

z1(s) ≤ −δ3e
−
(

n−2− 4
p−1

)
s → −∞ as s → −∞, (18)

so that also in this case, the corresponding solution u of (1) becomes singular at r = 0. ��
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Supercritical biharmonic equations with power-type nonlinearity 179

Proof of Theorem 1 Let r �→ u(r) be a radial entire solution to (1) and let w( . ) be the
corresponding solution to (11). Since either 5 ≤ n ≤ 12 or p < pc by assumption, the
linearized problem around the singular solution w(0) has two real eigenvalues ν1, ν2 and two
nonreal eigenvalues ν3, ν4 with

ν2 < Re ν3 = Re ν4 < 0 < ν1.

By Proposition 1, all trajectories of (11) which lie in the stable manifold of w(0) must be
tangential to the plane w(0) + O S, where

O S := {αx + βy ∈ R
4 : α, β ∈ R}

is the plane spanned by the real vectors x, y, where x + iy, x − iy are eigenvectors for the
nonreal eigenvalues ν3, ν4, respectively. On the other hand, we know by [9, Proposition 4]
that this plane intersects the hyperplane

H :=
{
w = (w1, w2, w3, w4) ∈ R

4 : w1 = K 1/(p−1)
0

}
(19)

transversally, i.e. w(0) + O S � H . In particular, any trajectory w corresponding to an entire
radial solution of (1) must intersect H an infinite number of times, hence w1 attains the value
K 1/(p−1)

0 an infinite number of times. This also means that every radial entire solution u of
(1) must intersect the singular solution us an infinite number of times. ��

3 The Dirichlet problem

If we put r = |x | then the equation in (7) becomes

u(4)(r) + 2(n − 1)

r
u′′′(r) + (n − 1)(n − 3)

r2 u′′(r) − (n − 1)(n − 3)

r3 u′(r) = λ(1 + u)p,

(20)

where r ∈ [0, 1]. If we put

U (x) = 1 + u(x/
4
√

λ) for x ∈ B 4√
λ
(0) (21)

then U solves the equation

�2U = U p in B 4√
λ
(0). (22)

Since Eq. (22) is invariant under the rescaling

Ua(x) = aU (a
p−1

4 x)

i.e. U is a solution of (22) if and only ifUa is a solution of (22), it is not restrictive to concentrate
our attention on solutions U of the Eq. (22) which satisfy the condition U (0) = 1.

Next we define Uγ = Uγ (r) as the unique solution of the initial value problem

U (4)
γ (r) + 2(n − 1)

r
U ′′′

γ (r) + (n − 1)(n − 3)

r2 U ′′
γ (r)− (n − 1)(n − 3)

r3 U ′
γ (r)

= |Uγ (r)|p−1Uγ (r), (23)

Uγ (0) = 1, U ′
γ (0) = U ′′′

γ (0) = 0, U ′′
γ (0) = γ < 0.

We report here the following fundamental result by [9]:
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Lemma 2 [9] Let n > 4 and p > (n + 4)/(n − 4).

(i) There exists a unique γ < 0 such that the solution Uγ of (23) exists on the whole
interval [0,∞), it is positive everywhere, it vanishes at infinity and it satisfies U ′

γ (r) <

0 for any r ∈ (0,∞).
(ii) If γ < γ there exist 0 < R1 < R2 < ∞ such that the solution Uγ of (23) satisfies

Uγ (R1) = 0, limr↑R2 Uγ (r) = −∞ and U ′
γ (r) < 0 for any r ∈ (0, R2).

(iii) If γ > γ there exist 0 < R1 < R2 < ∞ such that the solution Uγ of (23) satis-
fies U ′

γ (r) < 0 for r ∈ (0, R1), U ′
γ (R1) = 0, U ′

γ (r) > 0 for r ∈ (R1, R2) and
limr↑R2 Uγ (r) = +∞.

(iv) If γ1 < γ2 < 0 then the corresponding solutions Uγ1 , Uγ2 of (23) satisfy Uγ1 < Uγ2

and U ′
γ1

< U ′
γ2

as long as they both exist.

Proof See the statement and proof of [9, Theorem 2] and also the statement of [9, Lemma 2].
��

For any γ < 0 let Uγ be the unique local solution of (23). Thanks to Lemma 2(iii), for
γ > γ we may define Rγ as the unique value of r > 0 for which we have U ′

γ (Rγ ) = 0.
The idea in constructing a singular solution to (7) consists in suitably rescaling Uγ ( . ) −

Uγ (Rγ )|BRγ
to B and in finding a suitable subsequence for γ ↓ γ , which locally converges

in B\{0} to a singular solution. A first step is proving Rγ → ∞ for γ ↓ γ . This is done by
contradiction with the help of rescaling arguments and exploiting the strict monotonicity of
the entire regular solution Uγ .

Lemma 3 Let n > 4, p > (n + 4)/(n − 4) and γ as in the statement of Lemma 2. Then the
map γ �→ Rγ is non-increasing on the interval (γ , 0) and

lim
γ↓γ

Rγ = +∞.

Proof The fact that the map γ �→ Rγ is non-increasing on the interval (γ , 0) follows
immediately by Lemma 2 (iii)–(iv) and the definition of Rγ . This shows that the function
γ �→ Rγ admits a limit as γ → γ . Suppose by contradiction that

R := lim
γ↓γ

Rγ < +∞.

Then, by Lemma 2(i), (iv) we have for all γ ∈ (γ , 0) that

Uγ (Rγ ) > Uγ (Rγ ) ≥ Uγ (R) > 0. (24)

Define for any γ ∈ (γ , 0), r ∈ [0, 1] the function

uγ (r) = Uγ (Rγ r)

Uγ (Rγ )
− 1. (25)

Then, uγ solves the Dirichlet problem
{

�2uγ = R4
γ Uγ (Rγ )p−1(1 + uγ )p in B,

uγ = |∇uγ | = 0 on ∂ B.
(26)

Since the function Uγ is decreasing on the interval (0, Rγ ) we find that

Uγ (Rγ ) ≤ Uγ (r) ≤ Uγ (0) = 1 for all r ∈ [0, Rγ ]. (27)
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Then by (24) and (27) we obtain for all γ ∈ (γ , 0) and all r ∈ [0, 1) that

0 ≤ uγ (r) ≤ 1

Uγ (Rγ )
− 1 ≤ 1

Uγ (R)
− 1. (28)

This shows that the set {uγ : γ ∈ (γ , 0)} is bounded in L∞(B) and hence by a bootstrap
argument, from (26) and the fact that R4

γ Uγ (Rγ )p−1 ≤ λ∗ (see the introduction for the

definition of λ∗), we deduce that there exists a sequence γk ↓ γ and a function u ∈ H2
0 (B)∩

C∞(B) such that

uγk → u in C4(B) (29)

as k → ∞. Take any r ∈ [0, R). Since Rγk ↑ R, there exists k = k(r) such that r < Rγk for
any k > k. Hence, for k > k, we may take r/Rγk instead of r in (25) and obtain

Uγk (r) = Uγk (Rγk )
[
uγk

(
r/Rγk

)+ 1
]
. (30)

Since the sequence γk is decreasing, by Lemma 2(iii)–(iv) we infer that Uγk (Rγk ) is non-
increasing. By (24), Uγk (Rγk ) is also bounded from below and hence admits a finite limit.
Thanks to (29) we also have uγk (r/Rγk ) → u(r/R) as k → ∞. Therefore by (30), we deduce
that for any r ∈ [0, R)

U (r) := lim
k→∞ Uγk (r) =

[
lim

k→∞ Uγk (Rγk )

]
· [u(r/R) + 1

]
. (31)

In fact, from (29) and (30) we deduce that Uγk → U in C4([0, R]) for any 0 < R < R.
Since u ∈ H2

0 (B), (31) shows that

lim
r↑R

U
′
(r) = 0. (32)

On the other hand by continuous dependence on the initial conditions it follows

lim
k→∞ Uγk (r) = Uγ (r) for all r ∈ [0, R)

and hence U (r) = Uγ (r) for any r ∈ [0, R). This with (32) implies

lim
r↑R

U ′
γ (r) = 0

which is absurd since U ′
γ (R) < 0 (see Lemma 2 (i)). This completes the proof of the lemma.

��
Lemma 4 Let n > 4 and p > (n + 4)/(n − 4) and let u be a regular solution of (7). Then

u(x) ≤
(

λ∗

λ

)1/(p−1)

|x |−4/(p−1) − 1 for all x ∈ B\{0}.

Proof Let u be a regular solution of (7) for some λ > 0 and define the rescaled function

U (x) = 1

1 + u(0)

[
1 + u

(
x

4
√

λ(1 + u(0))
p−1

4

)]
(33)

so that U satisfies

�2U = U p in BR(0) and U (0) = 1 (34)

where we put R = 4
√

λ(1 + u(0))
p−1

4 .
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Define

M = max
r∈[0,R] r4/(p−1)U (r)

and let R ∈ (0, R] be such that R
4/(p−1)

U (R) = M . If we define

w(r) = U (Rr)

U (R)
− 1

then w solves the problem
⎧⎨
⎩

�2w = R
4
U (R)p−1(1 + w)p in B

w = 0 on ∂ B
w′ ≤ 0 on ∂ B.

This proves that M p−1 = R
4
U (R)p−1 ≤ λ∗ since otherwise by the super-subsolution

method (see [2, Lemma 3.3] for more details) we would obtain a solution of (7) for λ =
R

4
U (R)p−1 > λ∗. This yields for all r ∈ [0, R] that

U (r) ≤ Mr−4/(p−1) ≤ (λ∗)1/(p−1)r−4/(p−1). (35)

Then reversing the identity (33), by (35) we obtain

u(r) = λ−1/(p−1) R4/(p−1)U (Rr) − 1 ≤
(

λ∗

λ

)1/(p−1)

r−4/(p−1) − 1

which completes the proof of the lemma. ��
Proof of Theorem 2 For γ ∈ (γ , 0) consider the corresponding solution Uγ of the Cauchy
problem (23) and the function uγ introduced in (25). If we put λγ = R4

γ Uγ (Rγ )p−1 then by
(26) we have that uγ solves

{
�2uγ = λγ (1 + uγ )p in B,

uγ = |∇uγ | = 0 on ∂ B.
(36)

We show that λγ remains bounded away from zero for γ > γ sufficiently close to γ , which

is defined in Lemma 2. By [9, Theorem 3] we infer that for a fixed ε ∈ (0, K 1/(p−1)
0 ) there

exists a corresponding rε > 0 such that

Uγ (r) > (K 1/(p−1)
0 − ε)r−4/(p−1) for all r > rε. (37)

On the other hand, by Lemma 3, we deduce that there exists γ0 ∈ (γ , 0) such that for any
γ ∈ (γ , γ0) then Rγ > rε . Therefore by Lemma 2(iv) we obtain for all γ ∈ (γ , γ0)

Uγ (Rγ ) > Uγ (Rγ ) > (K 1/(p−1)
0 − ε)R−4/(p−1)

γ

and this yields

∀γ ∈ (γ , γ0) : λγ > (K 1/(p−1)
0 − ε)p−1 =: C. (38)

Combining (38) and Lemma 4 we obtain for all γ ∈ (γ , γ0), x ∈ B\{0}

uγ (x) ≤
(

λ∗

C

)1/(p−1)

|x |−4/(p−1) − 1. (39)
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Since uγ solves (36), by (39) we obtain

∫
B

|�uγ |2dx = λγ

∫
B

(1 + uγ )puγ dx ≤ λ∗
∫
B

(1 + uγ )p+1dx

≤ (λ∗)
2p

p−1

C
p+1
p−1

∫
B

|x |− 4(p+1)
p−1 dx < +∞

since p > (n + 4)/(n − 4). This proves that the set {uγ : γ ∈ (γ , γ0)} is bounded in H2
0 (B)

and hence there exists a sequence γk ↓ γ and a function u ∈ H2
0 (B) such that uγk ⇀ u

in H2
0 (B). Moreover, by (39) and applying Lebesgue’s theorem, u weakly solves (7) for a

suitable λ̃ ≥ C .
It remains to prove that the function u is unbounded. For simplicity, in the rest of the proof

uγk , Uγk , Rγk , λγk will be denoted, respectively, by uk, Uk, Rk, λk .
By compact embedding we have that uk → u in L1(B) and hence we have

lim
r↓0

1

|Br (0)|
∫

Br (0)

u(x)dx = lim
r↓0

⎡
⎢⎣ 1

rn |B| lim
k→∞

∫
Br (0)

uk(x)dx

⎤
⎥⎦

and passing to radial coordinates, by (25) and Lemma 2(iv), we obtain

lim
r↓0

1

|Br (0)|
∫

Br (0)

u(x)dx = lim
r↓0

⎡
⎣−1 + n

rn
lim

k→∞

r∫
0

Uk(Rkρ)

Uk(Rk)
ρn−1dρ

⎤
⎦

= lim
r↓0

⎡
⎣−1 + n

rn
lim

k→∞
1

Rn
k Uk(Rk)

Rkr∫
0

Uk(ρ)ρn−1dρ

⎤
⎦

≥ lim
r↓0

⎡
⎣−1 + n

rn
lim

k→∞
1

Rn
k Uk(Rk)

Rkr∫
0

Uγ (ρ)ρn−1dρ

⎤
⎦ . (40)

By (37) we have that there exist C, R0 > 0 such that

∀ρ ∈ (R0,∞) : Uγ (ρ) > Cρ−4/(p−1). (41)

Hence we have for k > k = k(r)

Rkr∫
0

Uγ (ρ)ρn−1dρ ≥
R0∫

0

Uγ (ρ)ρn−1dρ + C

(
n − 4

p − 1

)−1 (
(Rkr)

n− 4
p−1 − R

n− 4
p−1

0

)
.

(42)

Since p > (n + 4)/(n − 4) > (n + 4)/n and since by (38), λk is bounded away from zero
as k → ∞ then

lim
k→∞ Rn

k Uk(Rk) = lim
k→∞ R

n− 4
p−1

k λ
1

p−1
k = +∞
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and hence by (42) we obtain

lim
k→∞

1

Rn
k Uk(Rk)

Rkr∫
0

Uγ (ρ)ρn−1dρ

≥ lim inf
k→∞

C(
n − 4

p−1

)
Rn

k Uk(Rk)

(
R

n− 4
p−1

k rn− 4
p−1 − R

n− 4
p−1

0

)

= lim inf
k→∞

Crn− 4
p−1(

n − 4
p−1

)
λ

1/(p−1)
k

≥ Crn−4/(p−1)(
n − 4

p−1

)
(λ∗)1/(p−1)

=: C̃rn−4/(p−1). (43)

Inserting (43) in (40) we obtain

lim
r↓0

1

|Br (0)|
∫

Br (0)

u(x)dx ≥ lim
r↓0

(−1 + nC̃r−4/(p−1)) = +∞.

This proves that u /∈ L∞(B). ��
Proof of Theorem 3 We make use of an idea from [6]. Let uλ denote the positive minimal
regular solution of (7) for 0 ≤ λ < λ∗. According to [7, Theorem 2], these are stable so that
one has in particular:

∀ϕ ∈ C∞
0 (B) :

∫
B

(�ϕ(x))2 dx − pλ

∫
B

(1 + uλ(x))p−1ϕ(x)2 dx ≥ 0.

By taking the monotone limit we obtain that

∀ϕ ∈ C∞
0 (B) :

∫
B

(�ϕ(x))2 dx − pλ∗
∫
B

(1 + u∗(x))p−1ϕ(x)2 dx ≥ 0. (44)

We assume now for contradiction that u∗ is singular. Then, according to [7, Theorem 5] we
have the following estimate from below:

u∗(x) >

(
K0

λ∗

)1/(p−1)

|x |−4/(p−1) − 1. (45)

Combining this with (44) yields

∀ϕ ∈ C∞
0 (B) :

∫
B

(�ϕ(x))2 dx ≥ pK0

∫
B

|x |−4ϕ(x)2 dx . (46)

However, under the subcriticality assumptions made we have that pK0 > n2(n − 4)2/16.
This contradicts the optimality of the constant in Hardy’s inequality

∀ϕ ∈ C∞
0 (B) :

∫
B

(�ϕ(x))2 dx ≥ n2(n − 4)2

16

∫
B

|x |−4ϕ(x)2 dx,

so that u∗ has indeed to be regular. ��
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