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Abstract In the present paper we provide a broad survey of the regularity theory for
non-differentiable higher order parabolic systems of the type

∫

�T

u · ϕt − A(z, u, Du, . . . , Dmu) · Dmϕ dz =
∫

�T

m−1∑
k=0

Bk(z, u, Du, . . . , Dmu) · Dkϕ dz.

Initially, we prove a partial regularity result with the method of A-polycaloric approxima-
tion, which is a parabolic analogue of the harmonic approximation lemma of De Giorgi.
Moreover, we prove better estimates for the maximal parabolic Hausdorff-dimension of the
singular set of weak solutions, using fractional parabolic Sobolev spaces. Thereby, we also
consider different situations, which yield a better dimension reduction result, including the
low dimensional case and coefficients A(z, Dmu), independent of the lower order derivatives
of u.
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1 Introduction and statement of the results

Let � be a bounded domain in R
n and �T the parabolic cylinder � × (−T, 0) over �

with T > 0. In the following we consider weak solutions u ∈ L2(−T, 0; W m,2(�; R
N )),

N ,m ≥ 1 of higher order parabolic systems of the form
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62 V. Bögelein

∫

�T

(
u · ϕt − A(z, δu, Dmu) · Dmϕ

)
dz =

∫

�T

B(z, δu, Dmu) · δϕ dz (1.1)

for all ϕ ∈ C∞
0 (�T ; R

N ). Here and in the following we write z = (x, t) ∈ R
n+1, ϕt = ∂tϕ

denotes the derivative with respect to the time-variable t , whence Du, respectively Dku
denote the derivatives with respect to the space-variable x and δu = (u, Du, . . . , Dm−1u)
is the vector of lower order derivatives. We note that Dku = {Dαui }|α|=k

i=1,...,N is an ele-

ment of the vectorspace �k(Rn,RN ) of k-linear functions with values in R
N , which can

be identified with R
N(n+k−1

k ). Throughout the whole paper we shall use the abbreviations
N = N

(n+m−1
m

)
, M = N

(n+m−1
m−1

) =∑m−1
k=0 Mk , where Mk = N

(n+k−1
k

)
, which allows us

to write Dmu ∈ R
N , Dku ∈ R

Mk and δu ∈ R
M .

We consider coefficients A : �T × R
M × R

N → Hom(RN ,R) such that (z, ξ, p) �→
A(z, ξ, p) and (z, ξ, p) �→ ∂p A(z, ξ, p) are continuous on �T × R

M × R
N and B ≡

(B0, . . . , Bm−1) with Bk : �T × R
M × R

N → Hom(RMk ,R) for k = 0, . . . ,m − 1. We
assume the following ellipticity and growth conditions, with 0 < ν ≤ 1 and 1 ≤ L < ∞:

∂p A(z, ξ, p) p̃ · p̃ ≥ ν | p̃|2, (1.2)

|A(z, ξ, p)| ≤ L (1 + |p|), (1.3)

|B(z, ξ, p)| ≤ L (1 + |p|), (1.4)

for all z ∈ �T , ξ ∈ R
M and p, p̃ ∈ R

N . Moreover, considering minimizers of function-
als it is usual to assume growth conditions on the second derivatives of the functional, see
for instance [1]. In the case of elliptic, respectively parabolic systems this corresponds to
a bound on ∂p A. Here, we shall assume ∂p A to be—not necessarily uniformly—bounded.
More precisely, we assume that for given M > 0 there exists κM , such that

|∂p A(z, ξ, p)| ≤ L κM , (1.5)

for all z ∈ �T , ξ ∈ R
M and p ∈ R

N such that |ξ | + |p| ≤ M . With respect to the vari-
ables (z, ξ) we will put only a Hölder-continuity assumption on the coefficients. Since our
parabolic system is of order 2m, the natural parabolic metric in R

n+1 is

dP(z, z0) ≡ 2m
√

|x − x0|2m + |t − t0|, where z = (x, t), z0 = (x0, t0) ∈ R
n+1.

We assume the mapping (z, ξ) �→ A(z,ξ,p)
1+|p| to be—not necessarily uniformly—Hölder con-

tinuous with respect to the parabolic metric dP , with Hölder exponent β ∈ (0, 1), i.e.

|A(z, ξ, p)− A(z0, ξ0, p)| ≤ L θ
(|ξ | + |ξ0|, dP(z, z0)+ |ξ − ξ0|

)
(1 + |p|), (1.6)

for all z, z0 ∈ �T , ξ, ξ0 ∈ R
M and p ∈ R

N with

θ(y, s) ≡ min{1, K (y)sβ},
where K : [0,∞) → [1,∞) is non-decreasing. This will be enough to prove our partial

regularity result, i.e. to show that Dmu is of class Cβ,
β

2m outside a set of L n+1-measure zero,
the so called singular set.

Theorem 1.1 Suppose that u ∈ L2(−T, 0; W m,2(�; R
N )) is a weak solution of the para-

bolic system (1.1) in �T under the assumptions (1.2)–(1.6). Then

Dmu ∈ Cβ,
β

2m
(
�T \�; R

N
)
,

where �T \� is an open subset of �T with full measure, i.e. |�| = 0.
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Higher order parabolic systems 63

To prove regularity results for higher order parabolic systems, there had to be developed
new techniques, in particular to overcome the difficulties arising from the lack of regularity
of the intermediate derivatives Du, . . . , Dm−1u with respect to the time variable t . For non-
differentiable second-order parabolic systems without any a priori regularity assumptions
on the solution, regularity results were initially achieved by Duzaar and Mingione [19] and
Duzaar et al. [20], see also [3] for systems with non-standard growth.

With regard to regularity theory it is essential to have a suitable Cacciopoli inequality
at hand. In order to come along with the non-uniform bound of ∂p A in (1.5) we will need
very fine estimates in the proof. Considering higher order problems, we also have to treat
integrals of intermediate derivatives Du, . . . , Dm−1u. Since the general Poincaré inequality
is not applicable for weak solutions of parabolic systems, we cannot estimate them in terms
of Dmu. Instead, we use an Interpolation-Theorem on the annulus (see Lemma 2.4), which
preserves the right scaling.

After proving that the in terms of Cacciopoli’s inequality rescaled solution is approxi-
mately a solution of a linear system, we can apply the so called A-polycaloric approximation
lemma, which allows us to approximate the weak solution of a non-linear system by a solu-
tion of a linear system with constant coefficients. This is a parabolic analogue of the classical
harmonic approximation lemma of De Giorgi (see [13,35]). The technique has its origin in
Simon’s approach to Allard’s regularity theorem [34,35] and was used to obtain regularity
results for non-linear elliptic, respectively parabolic systems in [16–19]. This technique will
allow us to approximate weak solutions of the original problem with solutions of a linear
parabolic system with constant coefficients. Subsequently, we can exploint good estimates
for solutions of linear systems

The application of the A-polycaloric approximation lemma then leads us—after an itera-
tion procedure—to an excess-decay estimate in points where a certain smallness condition is

fulfilled. In those points we conclude Cβ,
β

2m -regularity of Dmu by an integral characteriza-
tion of Hölder continuous functions due to Campanato and therefore obtain a characterization
of the singular set in Theorem 3.7. But contrary to the elliptic case we cannot directly con-
clude that the singular set has L n+1-measure zero. This is due to the fact that we cannot
apply Poinaré’s inequality to weak solutions of parabolic systems, since they are a priori
only L2-functions with respect to the time variable t . Therefore, we prove a sort of Poincaré
inequality for weak solutions in Lemma 3.12, which exploits the absolute continuity in time
of weighted means of the weak solution.

In the following we denote by � the singular set of u, i.e. we have Dmu ∈ Cβ,
β

2m (�T \
�; R

N ). Then, from Theorem 1.1 we know that � is a set of L n+1-measure zero. But how
“large” can � be? To answer this question we firstly need a quantity to measure the size
of �. For elliptic systems, estimates of the singular set are usually expressed in terms of
its Hausdorff-dimension. To get the analogous results in the case of parabolic systems, one
has to express the estimates in terms of the parabolic Hausdorff-dimension. In our situa-
tion of 2mth order parabolic systems, it is convenient to work with the following parabolic
Hausdorff-dimension

dimP(F) ≡ inf
{
s > 0 : Ps(F) = 0

} = sup
{
s > 0 : Ps(F) = ∞} ,

where F ⊂ R
n+1 and

Ps(F) ≡ lim
ρ↘0

inf

{ ∞∑
i=1

ρs
i : F ⊂

∞⋃
i=1

Qρi (zi ), 0 ≤ ρi < ρ

}
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64 V. Bögelein

denotes the parabolic s-dimensional Hausdorff-measure of F , with s ∈ [0, n + 2m]. Here,
the supremum is taken over all parabolic cylinders of the form Qρi (zi ) = Bρi ×(ti −ρ2m

i , ti ).
In order to prove our dimension reduction result, i.e. to show better estimates for the

Hausdorff-dimension of the singular set, we have to slightly reinforce our assumptions in the
sense that ∂p A is uniformly bounded:

|∂p A(z, ξ, p)| ≤ L , (1.7)

for all z ∈ �T , ξ ∈ R
M and p, p̃ ∈ R

N and

|A(z, ξ, p)− A(z0, ξ0, p)| ≤ L θ̃
(
dP(z, z0)+ |ξ − ξ0|

)
(1 + |p|), (1.8)

for all z, z0 ∈ �T , ξ, ξ0 ∈ R
M and p ∈ R

N , where θ̃ : [0,∞) �→ [0, 1] is a bounded
continuous concave function, such that

θ̃ (s) ≤ sβ, s > 0. (1.9)

Under these slightly stronger assumptions, the result of Theorem 1.1 can be improved to the
following

Theorem 1.2 Let u ∈ L2(−T, 0; W m,2(�; R
N )) be a weak solution of the parabolic system

(1.1) in �T under the assumptions (1.2)–(1.4), (1.7) and (1.8) and let � denote the singular
set of u. Then there exists δ = δ(n,m, N , β, L/ν) > 0, such that

dimP(�) ≤ n + 2m − δ.

Remark 1.3 We can quantify δ in the last theorem by δ = βσ
1+σ , where σ is the exponent

gained from the higher integrability of |Dmu| (see Theorem 4.1). Therefore we see that

lim
β↘0

δ = 0 and lim
L/ν→∞ δ = 0.

The estimate for the singular set from Theorem 1.2 can still be improved for simpler
systems, where the coefficients A do not depend on the intermediate derivatives δu, of the
following type∫

�T

(
u · ϕt − A(z, Dmu) · Dmϕ

)
dz = 0 for all ϕ ∈ C∞

0 (�T ; R
N ). (1.10)

Then, we have

Theorem 1.4 Let u ∈ L2(−T, 0; W m,2(�; R
N )) be a weak solution of the simpler system

(1.10) in�T under the assumptions (1.2), (1.3), (1.7) and (1.8) and denote by� the singular
set of u. Then there exists δ = δ(n,m, N , β, L/ν) > 0, such that

dimP(�) ≤ n + 2m − 2β − δ.

The main idea in proving this kind of dimension reduction results for non-differentiable
systems is to show that Dmu lies in a certain fractional Sobolev-space. The result then follows
from Giusti’s lemma. This method was introduced by Mingione in [30] and [31] for elliptic
systems. Moreover, for elliptic systems, the dimension reduction result could be improved
also in the case that the coefficients depend on u, under the additional assumption that u is
Hölder-continuous with some arbitrary Hölder exponent.

Regarding our parabolic problem, this suggests that we can improve the estimate for the
Hausdorff dimension of the singular set from Theorem 1.2 under the assumption that the
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Higher order parabolic systems 65

solution u and its derivatives up to the order m − 1 are Hölder continuous. Then, it turns
out, that in fact the stronger estimate from Theorem 1.4 holds, although the coefficients A
depend on δu.

Theorem 1.5 Let u ∈ L2(−T, 0; W m,2(�; R
N )) ∩ Cm−1,λ, λ2m (�T ; R

N ) with λ ∈ (0, 1) be
a weak solution to the parabolic system (1.1) in�T under the assumptions (1.2)–(1.4), (1.7)
and (1.8) and denote by � the singular set of u. Then

dimP(�) ≤ n + 2m − 2β.

In the case of homogeneous systems, i.e. B ≡ 0 this inequality is strict, i.e. there exists
δ = δ(n,m, N , β, L/ν) > 0 such that

dimP(�) ≤ n + 2m − 2β − δ.

A main ingredient in the proof is an Interpolation-Theorem which ensures better inte-
grability properties of a function by interpolation between fractional Sobolev spaces and
Hölder spaces. In the elliptic framework, this interpolation result goes back to Campanato
[8, Teorema 3.III]. Therefore, we will first show a parabolic version of this Interpolation-
Theorem (see Theorem 5.7). It will be exploited to improve the fractional differentiability of
Dmu in each step of a finite iteration process in the proof of Lemma 6.9.

Finally, we want to point out the main difficulties appearing in the parabolic case. Since
we only know that weak solutions are L2-functions with respect to t , we cannot estimate
finite differences of Dku, k = 0, . . . ,m −1 in terms of ∂t Dku. Therefore, we have to exploit
the parabolic system in Lemma 6.1 to infer a suitable similar estimate for the L2-norm of
finite differences of Dku. Since this estimate is not good enough for the purpose of Theorem
1.5, we will consider second finite differences in Lemma 6.6, for which we can show better
estimates. These estimates can then be carried over to first finite differences, applying a result
of Domokos [14], used for the treatment of sub-elliptic equations in the Heisenberg-group.
Moreover, additionally to the L2-norm, we will also need estimates for L2+b-norms (b > 0)
of finite differences of Dku. In order to transfer our estimate to a “larger” L p-norm, we will
use the Hardy–Littlewood maximal function and the sharp function in Lemma 6.5.

The assumption concerning the Hölder continuity of Dm−1u in Theorem 1.5 indeed is
fulfilled in particular situations. In small dimensions, i.e. in the case n ≤ 2 for second-order
systems (m = 1), we know due to a result of Campanato [10, Theorem 8.II], that u is
Hölder continuous on a set of full Pn-measure. More precisely, there exists an open subset

�0 ⊂ �T and λ ∈ (0, 1) such that u ∈ Cλ, λ2
(
�0; R

N
)
, where Pn(�T \�0) = 0. This

yields the following

Theorem 1.6 Let n ≤ 2, m = 1 and u ∈ L2(−T, 0; W 1,2(�; R
N )) be a weak solution of the

system (1.1) in �T under the assumptions (1.2)–(1.4), (1.7) and (1.8). Then for the singular
set � of u there holds

dimP(�) ≤ n + 2 − 2β.

In the case of homogeneous systems there there exists δ = δ(n, N, β, L/ν) > 0 such that

dimP(�) ≤ n + 2 − 2β − δ.

The present paper is part of the PhD-Thesis of the author. Our intention is to provide a
broad overview over regularity theory for this kind of nondifferentiable higher order para-
bolic systems. For this reason, and for sake of brevity, we shall concentrate here on those
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66 V. Bögelein

points containing the most important technical innovations of the paper, confining ourself
to giving only a sketch of those proofs that are closer to the ones for second-order systems,
and that can be found scattered in the literature. The full proofs can be nevertheless retrieved
from [5].

2 Notation and preliminary material

As basic sets for our estimates we usually take parabolic cylinders. If not differently men-
tioned we denote Qρ(z0) ≡ Bρ(x0) × (t0 − ρ2m, t0), where z0 = (x0, t0) ∈ R

n+1, ρ > 0
and Bρ(x0) is the open ball in R

n with center x0 and radius ρ. If z0 = 0, we abbreviate
Qρ = Qρ(0) and Bρ = Bρ(0). Moreover, for an integrable function v : Qρ(z0) → R

k ,
k ∈ N we write (v)z0,ρ ≡ −∫Qρ(z0)

v dz for its mean-value on the parabolic cylinder Qρ(z0).
We now summarize some conclusions of our assumptions on the coefficients that will

be used in several points of the paper. From the ellipticity (1.2) of ∂p A we infer that A is
monotone with respect to p, i.e. for all z ∈ �T , ξ ∈ R

M and p, p̃ ∈ R
N there holds

(
A(z, ξ, p)− A(z, ξ, p̃)

) · (p − p̃) ≥ ν |p − p̃|2. (2.1)

Moreover, we will use that θ from (1.6) is a concave function with respect to s and

θ
(|ξ | + |ξ0|, dP(z, z0)+ |ξ − ξ0|

) ≤ K (2|ξ0| + 1)
(
dP(z, z0)+ |ξ − ξ0|

)β
, (2.2)

which can be seen by considering the cases |ξ − ξ0| ≤ 1 (then |ξ | + |ξ0| ≤ 2|ξ0| + 1) and
|ξ − ξ0| > 1 (then the term on the right-hand side is > 1; the one on the left-hand side is
always ≤ 1). We further set

H(s) ≡ K (2s + 1) (1 + s).

Then, combining (1.6) and (2.2) we have

|A(z, ξ, p)− A(z0, ξ0, p)| ≤ L H(M) (dP(z, z0)+ |ξ − ξ0|)β , (2.3)

provided that |ξ0| ≤ M and |p| ≤ M . By virtue of the continuity of ∂p A there exists for
each M > 0 a modulus of continuity ωM : [0,∞) → [0, 1] with lims↘0 ωM (s) = 0 for
all M > 0, such that M �→ ωM (s) is non-deceasing for fixed s ≥ 0 and s �→ ωM (s) is
non-decreasing and s �→ ωM (s)2 is concave for fixed M > 0, with the property that

|∂p A(z, ξ, p)− ∂p A(z0, ξ0, p0)| ≤ 2L κM ωM
(
dP(z, z0)

2 + |ξ − ξ0|2 + |p − p0|2
)

(2.4)
for all z, z0 ∈ �T , ξ, ξ0 ∈ R

M and p, p0 ∈ R
N with |ξ | + |p| ≤ M and |ξ0| + |p0| ≤ M .

2.1 Estimates for polynomials

In order to treat regularity problems for elliptic respectively parabolic systems one usually
needs to control oscillation quantities of the solution to measure in a weak sense its regularity.
In any case polynomials, especially the mean value polynomials and the minimizing polyno-
mials, will play an important role. Now, we will establish the basic facts and estimates used
throughout the paper. The first lemma is an immediate consequence of Taylor’s expansion
[5, Lemma A.2].
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Higher order parabolic systems 67

Lemma 2.1 Let P : R
n → R

N be a polynomial of degree ≤ m and Bρ(x0) ⊂ R
n with

ρ ≤ 1. Then

|δP(x)− δP(x0)| ≤ c(m) ρ
(|δP(x0)| + |Dm P|) for all x ∈ Bρ(x0).

For instance we can attain c(m) = 2m
√

m.

We can represent any polynomial by its mean values on balls, [15]. This representation
allows us to estimate our polynomial in terms of these mean values [5, Lemma A.1].

Lemma 2.2 Let P : R
n → R

N be a polynomial of degree ≤ m and Bρ(x0) ⊂ R
n. Then for

all 0 ≤ k ≤ m − 1 there holds, with (D j P)x0,r = −∫Br (x0)
D j P dy:

|Dk P(x)| ≤ c(n,m)
m∑

j=k

ρ j−k |(D j P)x0,r | for all x ∈ Bρ(x0).

2.2 Technical Lemma

In some places, i.e. in the proof of the Caccioppoli inequality we will “absorb” certain inte-
grals of the right-hand side. For this we will need the following lemma, which is standard
and can be found for instance in [23, p. 161].

Lemma 2.3 Let 0 < ϑ < 1, A, B ≥ 0, α > 0 and let f ≥ 0 be a bounded function
satisfying

f (t) ≤ ϑ f (s)+ A(s − t)α + B

for all 0 < r ≤ t < s ≤ ρ. Then there exists a constant ctech = ctech(α, ϑ), such that

f (r) ≤ ctech
(

A(ρ − r)−α + B
)
.

2.3 Interpolation Lemma

We now state an interpolation lemma for intermediate derivatives on the annulus, similar to
[4, Theorem 4.14]. For our purpose the “right” scaling on the annulus will be essential. We
refer to [5, Lemma B.1] for a detailed proof. Later, we will apply this lemma several times
on the horizontal time slices.

Lemma 2.4 Let Br , BR ⊂ R
n be two balls with the same center and radius r , respectively

R, where 0 < r < R ≤ 1 and let u ∈ W m,p(BR) with p ≥ 1. Then for any 0 ≤ k ≤ m − 1
and 0 < ε ≤ 1 there holds
∫

BR\Br

|Dku|p

(R − r)p(m−k)
dx ≤ ε

∫

BR\Br

|Dmu|p dx + c(n,m, p) ε−
k

m−k

∫

BR\Br

|u|p

(R − r)pm
dx .

2.4 Steklov-means

Since weak solutions u of parabolic systems possess only very weak regularity properties
with respect to the time variable t (i.e. they are not assumed to be weakly differentiable), they
are in principle no admissible test-functions (also disregarding boundary values). In order to
be nevertheless able to test properly, we smooth the function u in the time direction t , using
the so-called Steklov-means. This also enables us to work on the time-slices R

n × {t}, even
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68 V. Bögelein

if u is only an L2-function with respect to t . Given a function f ∈ L1(�T ) and 0 < h < T ,
we define its Steklov-mean by

[ f ]h(x, t) ≡

⎧⎪⎪⎨
⎪⎪⎩

1

h

t+h∫

t

f (x, s) ds, t ∈ (−T,−h),

0, t ∈ (−h, 0),

(2.5)

respectively

[ f ]h̄(x, t) ≡

⎧⎪⎪⎨
⎪⎪⎩

1

h

t∫

t−h

f (x, s) ds, t ∈ (−T + h, 0),

0, t < −T + h.

Then [ f ]h → f and [ f ]h̄ → f as h ↘ 0 a.e. in �T and

∂t [ f ]h(x, t) = 1
h ( f (x, t + h)− f (x, t)) , ∂t [ f ]h̄(x, t) = 1

h ( f (x, t)− f (x, t − h)) .

Moreover, we have

t2∫

t1

∫

�

|[ f ]h |2 dx dt ≤
t2+h∫

t1

∫

�

| f |2 dx dt and

t2∫

t1

∫

�

|[ f ]h̄ |2 dx dt ≤
t2∫

t1−h

∫

�

| f |2 dx dt

(2.6)
for −T ≤ t1 < t2 ≤ −h, respectively for −T + h ≤ t1 < t2 ≤ 0. Rewriting system (1.1)
with Steklov-means [u]h of u, we obtain the following system on the time-slices �× {t}∫

�

∂t [u]h(·, t) · ϕ + [A(·, t, δu(·, t), Dmu(·, t))
]

h · Dmϕdx

= −
∫

�

[
B(·, t, δu(·, t), Dmu(·, t))

]
h · δϕdx (2.7)

for all ϕ ∈ W m,2
0 (�; R

N ) and for a.e. t in (−T, 0).

3 Partial Regularity

3.1 A-polycaloric approximation

Our main tool in proving partial regularity is the lemma of A-polycaloric approximation,
stating that whenever a function u is in a certain sense approximately a solution of a linear
parabolic system, then there exists a solution g of this linear system which is in some sense
“near” to u.

Lemma 3.1 Given ε > 0 there is a constant δ = δ(n, N ,m, ν,�, ε) ∈ (0, 1] with the
following property: Whenever A is a strongly elliptic bilinear form on R

N with ellipticity
constant ν > 0 and upper bound �, i.e. ν|p|2 ≤ A(p, p) and A(p, p̃) ≤ �|p|| p̃| for
p, p̃ ∈ R

N and u ∈ L2(t0 − ρ2m, t0; W m,2(Bρ(x0); R
N )) with

m∑
k=0

∫

Qρ(z0)

∣∣∣∣ Dku

ρm−k

∣∣∣∣
2

dz ≤ 1,
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Higher order parabolic systems 69

is approximately A-polycaloric in the sense that∣∣∣∣
∫

Qρ(z0)

(
u · ϕt − A(Dmu, Dmϕ)

)
dz

∣∣∣∣ ≤ δ sup
Qρ(z0)

|Dmϕ|, for all ϕ ∈ C∞
0 (Qρ(z0); R

N ),

then there exists an A-caloric function g ∈ L2(t0 − ρ2m, t0; W m,2(Bρ(x0); R
N )), i.e.∫

Qρ(z0)

(
g · ϕt − A(Dm g, Dmϕ)

)
dz = 0 for all ϕ ∈ C∞

0 (Qρ(z0); R
N ),

such that

m∑
k=0

∫

Qρ(z0)

∣∣∣∣ Dk g

ρm−k

∣∣∣∣
2

dz ≤ 1 and
m−1∑
k=0

∫

Qρ(z0)

∣∣∣∣Dk(u − g)

ρm−k

∣∣∣∣
2

dz ≤ ε.

Proof We will only sketch the proof and refer the reader to [5, Lemma 3.3], for a detailed
proof. Without loss of generality we may assume that z0 = 0 and ρ = 1. Otherwise we
rescale u to Q1(0) via v(x, t) ≡ ρ−m u(x0 + ρx, t0 + ρ2mt). Thus it is enough to show the
assertion on Q ≡ Q1(0) ≡ B × (−1, 0).

Supposed the conclusion of the lemma were wrong, then there would exist ε > 0 and
a sequence (A j ) j∈N of bilinear forms on R

N with uniform ellipticity constant ν > 0 and
upper bound � and a sequence of functions (v j ) j∈N with v j ∈ L2(−1, 0; W m,2(B; R

N )),
such that

m∑
k=0

∫

Q

|Dkv j |2 dz ≤ 1 and

∣∣∣∣
∫

Q

(
v j · ϕt − A j (D

mv j , Dmϕ)
)

dz

∣∣∣∣ ≤ 1

j
sup

Q
|Dmϕ|

(3.1)
for all ϕ ∈ C∞

0 (Q; R
N ) and j ∈ N, but∫

Q

|v j − g|2 dz > ε (3.2)

for all A j -caloric functions g on Q with
∑m

k=0 −∫Q |Dk g|2 dz ≤ 1. By the uniform bounded-

ness of ‖Dkv j‖L2 for 0 ≤ k ≤ m there exists a subsequence (also labelled with j), a function
v ∈ L2(−1, 0; W m,2(B; R

N )) and a bilinear form A, such that{
Dkv j ⇀ Dkv weakly in L2(Q; R

Mk ) for all 0 ≤ k ≤ m,

A j → A as bilinear forms on R
N .

Since v �→ ∑m
k=0 −∫Q |Dkv|2 dz is weakly lower semicontinuous, we get from (3.1) that∑m

k=0 −∫Q |Dkv|2 dz ≤ 1. Due to the convergence A j → A, the weak convergence of v j

and Dmv j , the uniform boundedness of |Dmv j | in L2(Q) and (3.1), i.e. the fact that v j is
approximately A j -caloric, we can show that v is an A-caloric function on Q, i.e.∫

Q

(
v · ϕt − A(Dmv, Dmϕ)

)
dz = 0 for all ϕ ∈ C∞

0 (Q; R
N ). (3.3)

In order to derive the contradiction in (3.2) we have to show strong convergence of Dkv j to
Dkv in L2(Q; R

Mk ) for 0 ≤ k ≤ m − 1. The compactness argument which is applied in
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this situation in the elliptic case, cannot be used, since v j is possibly not differentiable with
respect to t . Instead, we use a different argument. Exploiting the fact that v j is approximately
A j -caloric, we can show that

lim
h↘0

−h∫

−1

‖Dk (v j (·, t + h)− v j (·, t)
) ‖2

L2(B) dt = 0

uniformly with respect to j for all 0 ≤ k ≤ m − 1. Since we also know that (Dkv j ) j∈N is
uniformly bounded in L1

loc(−1, 0; L2(B)), Theorem 3 in [33] ensures the existence of a subse-
quence (v j ) j∈N (also labelled with j), converging strongly in W m−1,2, i.e. for 0 ≤ k ≤ m −1
there holds

Dkv j → Dkv strongly in L2(Q; R
Mk ).

From (3.3) we know that v is an A-caloric function. In the following we will derive the
contradiction by constructing suitable A j -caloric functions. For this, let w j ∈ C([−1, 0];
L2(B,RN )) ∩ L2(−1, 0; W m,2

0 (B,RN )), ∂tw j ∈ L2(−1, 0; W −m,2(B,RN )) be the weak
solution of the initial value problem:
∫

Q

(
w j · ϕt − A j (D

mw j , Dmϕ)
)

dz = −
∫

Q

A j (D
mv, Dmϕ) dz, for all ϕ ∈ C∞

0 (Q,R
N ),

and w j (·,−1) ≡ 0. Then, testing the system with ϕ = w j , we can infer that

sup
t∈(−1,0)

1

2
‖w j (·, t)‖2

L2(B) + ν

2

∫

Q

|Dmw j |2 dz → 0 as j → ∞. (3.4)

We now define g j ≡ v−w j ∈ L2(−1, 0; W m,2(B; R
N )). Then, g j agrees with v on the para-

bolic boundary (B×{−1})∪(∂B×(−1, 0)) of Q, sincew j vanishes there. Furthermore g j is
A j -caloric and from (3.4) we infer that ‖g j −v‖L2(Q)+‖Dm(g j −v)‖L2(Q) → 0 as j → ∞.
This implies g j → v in L2(−1, 0; W m,2(B; R

N )) and therefore,
∑m

k=0

∫
Q |Dk g j |2 dz is

bounded. Letting g̃ j ≡ g j
b j

, b j ≡ max{1, ∑m
k=0

∫
Q |Dk g j |2 dz} we finally obtain the con-

tradiction, because g̃ j is A j -caloric,
∑m

k=0

∫
Q |Dk g̃ j |2 dz ≤ 1 for all j ∈ N and

∫

Q

|Dk (v − g̃ j
) |2 dz ≤ 2

∫

Q

|Dk (v − g j
) |2 dz + 2

(
1 − 1

b j

)∫

Q

|Dk g j |2 dz → 0

as j → ∞, for 0 ≤ k ≤ m − 1, since Dk g j → Dkv in L2 and b j → 1. This is the desired
contradiction to (3.2), because we also know that Dkv j → Dkv in L2. ��
3.2 Caccioppoli inequality

As usual, the first step in proving partial regularity is a suitable Caccioppoli inequality.

Lemma 3.2 Suppose that u ∈ L2(−T, 0; W m,2(�; R
N )) is a weak solution of (1.1) in

�T under the assumptions (1.2)–(1.6) and let Qρ(z0) � �T , with 0 < ρ ≤ 1. Then for
M > 0, and for all polynomials P : R

n → R
N independent of t of degree ≤ m, fulfilling
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|δP(x)| + |Dm P| ≤ M for x ∈ Bρ(x0) there holds

sup
t∈(t0−(ρ/2)2m ,t0)

∫

Bρ/2(x0)

|u(·, t)− P|2
ρ2m

dx +
∫

Qρ/2(z0)

|Dm(u − P)|2 dz

≤ cCac

∫

Qρ(z0)

|u − P|2
ρ2m

+ ρ2β dz,

where cCac depends on n, ν, L ,M, H(M), κM+1.

Proof Without loss of generality we can assume that z0 = (x0, t0) = 0, i.e. Qρ(z0) = Qρ =
Bρ × (−ρ2m, 0). We choose two cut-off functions η ∈ C∞

0 (Bρ) and ζ ∈ C1(R) with the
properties
{
η ≡ 1 in Bρ/2, 0 ≤ η ≤ 1, |∇η| ≤ c/ρ;
ζ ≡ 1 on

(−(ρ/2)2m,∞) , ζ ≡ 0 on (−∞,−ρ2m), 0 ≤ ζ ≤ 1, 0 ≤ ζ ′ ≤ 2/ρ2m .

Choosing the test-function ϕh = η2ζ 2(uh − �), where uh denotes the Steklov-mean of
u defined in (2.5), in the Steklov-formulation (2.7) of the system, we obtain for a.e. τ ∈
(−ρ2m, 0) that ∫

Bρ

(
∂t uh · ϕh + [A(·, ·, u, Du)]h · Dϕh

)
(·, τ ) dx = 0. (3.5)

Noting that ∂t P ≡ 0, we infer for a.e. t ∈ (−ρ2m, 0) that

t∫

−ρ2m

∫

Bρ

∂t [u]h · ϕh dxdτ =
t∫

−ρ2m

∫

Bρ

(
1

2
∂t
(|[u]h − P|2ζ 2) η − |[u]h − P|2ηζζ ′

)
dxdτ

= 1

2

∫

Bρ

|[u]h(·, t)− P|2ηζ(t)2 dx −
t∫

−ρ2m

∫

Bρ

|[u]h − P|2ηζζ ′ dx dτ.

Therefore, integrating (3.5) over (−ρ2m, t), using the previous identity and passing to the
limit h ↘ 0 yields for a.e. t ∈ (−ρ2m, 0) that

1

2

∫

Bρ

|u(·, t)− P|2ηζ(t)2 dx +
t∫

−ρ2m

∫

Bρ

A(·, δu, Dmu) · Dm(u − P)ηζ 2 dz

=
t∫

−ρ2m

∫

Bρ

(−A(·, δu, Dmu) · lot ζ 2 − B(·, δu, Dmu) · δϕ + |u − P|2ηζζ ′) dz,

where we have denoted dz = dx dτ and ϕ ≡ ηζ 2(u − P) and

Dmϕ = ζ 2
(

Dm(u − P)η +
m−1∑
k=0

(
m

k

)
Dk(u − P)� Dm−kη

︸ ︷︷ ︸
≡lot

)
.
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Furthermore we have
t∫

−ρ2m

∫

Bρ

A(·, δu, Dm P) · Dm(u − P)ηζ 2 dz

=
t∫

−ρ2m

∫

Bρ

(
A(·, δu, Dm P) · Dmϕ − A(·, δu, Dm P) · lot ζ 2) dz

and
t∫

−ρ2m

∫

Bρ

A(0, δP(0), Dm P) · Dmϕ dz = 0.

Combining the previous identities, using the monotonicity (2.1) of A, i.e. that (A(·, δu,
Dmu)− A(·, δu, Dm P)) · Dm(u − P) ≥ ν|Dm(u − P)|2 and noting that η ≡ 1 on Bρ1 we
get for a.e. t ∈ (−ρ2m, 0):

1

2

∫

Bρ1

|u(·, t)− P|2ζ(t)2 dx + ν

t∫

−ρ2m

∫

Bρ1

|Dm(u − P)|2ζ 2 dz

= −
t∫

−ρ2m

∫

Bρ

(
A(·, δu, Dmu)− A(·, δu, Dm P)

) · lot ζ 2 dz

−
t∫

−ρ2m

∫

Bρ

(
A(·, δu, Dm P)− A(·, δP, Dm P)

) · Dmϕ dz

−
t∫

−ρ2m

∫

Bρ

(
A(·, δP, Dm P)− A(0, δP(0), Dm P)

) · Dmϕ dz

−
t∫

−ρ2m

∫

Bρ

B(·, δu, Dmu) · δϕ dz +
t∫

−ρ2m

∫

Bρ

|u − P|2ηζζ ′ dz

= I1 + I2 + I3 + I4 + I5, (3.6)

with the obvious meaning of I1 − I5. We now derive estimates for I1 − I5. Thereby we take
ε ∈ (0, 1].

Estimate for I1. We once again decompose I1 = I1,1 + I1,2 + I1,3, where

I1,1 ≡ −
t∫

−ρ2m

∫

Bρ

(
A(·, δu, Dmu)− A(·, δP, Dmu)

) · lot ζ 2 dz,

I1,2 ≡ −
t∫

−ρ2m

∫

Bρ

(
A(·, δP, Dmu)− A(·, δP, Dm P)

) · lot ζ 2 dz,
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I1,3 ≡ −
t∫

−ρ2m

∫

Bρ

(
A(·, δP, Dm P)− A(·, δu, Dm P)

) · lot ζ 2 dz.

To estimate I1,1 we use (1.6) and the assumption |Dm P| ≤ M . Then, we exploit our assump-
tions on θ , namely, for the term involving 1 + M we use (2.2), (note that |δP(x)| ≤ M for
x ∈ Bρ by assumption and that H(M) = K (2M + 1)(1 + M)) and for the term involving
|Dm(u − P)| we use that θ ≤ 1. Also applying Hölder’s inequality in the last line we infer
that

|I1,1| ≤ L
∫

Qρ2

θ (|δu| + |δP|, |δu − δP|) ((1 + M)+ |Dm(u − P)|) |lot|ζ 2 dz

≤ L
∫

Qρ2

(
(1 + M)K (2M + 1)|δu − δP|β + |Dm(u − P)|) |lot|ζ 2 dz

≤ L

( ∫

Qρ2

(
H(M)2|δu − δP|2β + |Dm(u − P)|2) ζ 2 dz

) 1
2
( ∫

Qρ2

|lot|2ζ 2 dz

) 1
2

.

To estimate I1,2 we decompose Qρ2 = S1 ∪ S2, where S1 ≡ {z ∈ Qρ2 : |Dm(u − P)| ≤ 1},
S2 ≡ {z ∈ Qρ2 : |Dm(u − P)| > 1} and rewrite I1,2 as follows

I1,2 ≤
∫

Qρ2

|A(·, δP, Dmu)− A(·, δP, Dm P)| |lot| ζ 2 dz

=
∫

S1

(. . .) dz +
∫

S2

(. . .) dz ≡ I1,2,1 + I1,2,2,

with the obvious labelling of I1,2,1 and I1,2,2. For I1,2,1 we use (1.5) and Hölder’s inequality
and note that |δP(x)| ≤ M for x ∈ Bρ and that |Dm P + s(Dmu − Dm P)| ≤ M + 1 on S1

to obtain

I1,2,1 ≤
∫

S1

∣∣∣∣
1∫

0

∂A

∂p

(
z, δP, Dm P + s(Dmu − Dm P)

)
(Dmu − Dm P) ds

∣∣∣∣ |lot| ζ 2 dz

≤ L κM+1

∫

S1

|Dm(u − P)| |lot| ζ 2 dz

≤ L κM+1

( ∫

Qρ2

|Dm(u − P)|2ζ 2 dz

) 1
2
( ∫

Qρ2

|lot|2ζ 2 dz

) 1
2

.
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For I2,2 we use the growth condition (1.3) instead of (1.5), the assumption |Dm P| ≤ M , the
fact that |Dm(u − P)| > 1 on S2 and Hölder’s inequality to obtain

I1,2,2 ≤ L
∫

S2

(2 + M + |Dmu|) |lot| ζ 2 dz ≤ 3L (1 + M)
∫

S2

|Dm(u − P)| |lot| ζ 2 dz

≤ 3L (1 + M)

( ∫

Qρ2

|Dm(u − P)|2ζ 2
) 1

2
( ∫

Qρ2

|lot|2ζ 2 dz

) 1
2

.

To estimate I1,3 we use (2.3) (note that |δP(x)| ≤ M and |Dm P| ≤ M) and Hölder’s
inequality

I1,3 ≤ L H(M)

( ∫

Qρ2

|δu − δP|2βζ 2 dz

) 1
2
( ∫

Qρ2

|lot|2ζ 2 dz

) 1
2

.

Together the previous estimates result in

I1 ≤ c L

( ∫

Qρ2

(|Dm(u − P)|2 + |δu − δP|2β) ζ 2 dz

) 1
2
( ∫

Qρ2

|lot|2ζ 2 dz

) 1
2

, (3.7)

where c depends on M, H(M) and κM+1. With Young’s inequality we infer that

I1 ≤ ε

∫

Qρ2

|Dm(u − P)|2ζ 2 dz + c
L2

ε

∫

Qρ2

(|lot|2 + |δu − δP|2β) ζ 2 dz.

Estimate for I2. We use the Hölder-continuity (1.6) of the mapping ξ �→ A(z,ξ,p)
1+|p| in the

form (2.3), (which is applicable since we know |δP(x)| ≤ M for x ∈ Bρ and |Dm P| ≤ M).
Applying Young’s inequality afterwards yields for ε > 0

|I2| ≤ L H(M)
∫

Qρ2

|δ(u − P)|β (|Dm(u − P)| + |lot|) ζ 2 dz

≤ ε

∫

Qρ2

|Dm(u − P)|2ζ 2 dz +
∫

Qρ2

(
|lot|2 + L2 H(M)2

ε
|δ(u − P)|2β

)
ζ 2 dz.

Estimate for I3. Exploiting once again the Hölder-continuity (2.3) of coefficients and the
fact that |δP(x)− δP(0)| ≤ c ρ M for x ∈ Bρ (by Lemma 2.1) we infer that

|I3| ≤ c L H(M) (1 + M)βρβ
∫

Qρ2

(|Dm(u − P)| + |lot|) ζ 2 dz

≤ ε

∫

Qρ2

|Dm(u − P)|2ζ 2 dz + ε

∫

Qρ2

|lot|2ζ 2 dz + c(M, H(M)) L2

ε
ρ2β |Qρ |.
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Estimate for I4. From the growth (1.4) of B and the fact that |Dm P| ≤ M we find that

|I4| ≤ L
∫

Qρ2

(
1 + M + |Dm(u − P)|) |δϕ| dz

≤ ε

∫

Qρ2

|Dm(u − P)|2ζ 2 dz + 2L2

ε

∫

Qρ2

|δ((u − P)η)|2
ρ2 ζ 2 dz + (1 + M)2ρ2 |Qρ |.

Estimate for I5. For I5, we only note that |ζ ′| ≤ 2
ρ2m ≤ 2

(ρ2−ρ1)2m .

We insert the estimates for I1 − I5 into (3.6), take the supremum over t ∈ (−(ρ/2)2m, 0)
in the first term on the left-hand side and take t = 0 in the second-term and note that η ≡ 1
on Bρ1 to infer that

1

2
sup

t∈(−(ρ/2)2m ,0)

∫

Bρ1

|u(·, t)− P|2 dx + ν

∫

Qρ1

|Dm(u − P)|2ζ 2 dz

≤ 3ε
∫

Qρ2

|Dm(u − P)|2ζ 2 dz

+c
∫

Qρ2

(
|lot|2ζ 2 + |δ((u − P)η)|2

ρ2 ζ 2 + |δ(u − P)|2βζ 2 + |u − P|2
(ρ2 − ρ1)2m

)
dz

+c ρ2β |Qρ |,

where c = c(n,m, L ,M, H(M), κM+1, 1/ε). Now we will observe bounds for the terms of
lower order. Firstly we note that the integrand in the subsequent estimate differs from zero
only on the annulus Bρ2\Bρ1 , due to the fact that Dm−kη = 0 on Bρ1 for 0 ≤ k < m. Apply-
ing the Interpolation-Lemma 2.4 “slicewise” on the annulus Bρ2\Bρ1 for a.e. t ∈ (−ρ2m, 0)
we obtain for 0 < µ ≤ 1 that

∫

Qρ2

|lot|2ζ 2 dz ≤ c
m−1∑
k=0

0∫

−ρ2m

∫

Bρ2 \Bρ1

|Dk(u − P)|2
(ρ2 − ρ1)2(m−k)

ζ 2 dz

≤ µ

∫

Qρ2

|Dm(u − P)|2ζ 2 dz + c(n,m, 1/µ)
∫

Qρ2

|u − P|2
(ρ2 − ρ1)2m

dz.

Noting that ρ2 − ρ1 ≤ ρ we get similarly

∫

Qρ2

|δ((u − P)η)|2
ρ2 ζ 2 dz ≤ µ

∫

Qρ2

|Dm(u − P)|2ζ 2 dz + c(n,m, 1/µ)
∫

Qρ2

|u − P|2
(ρ2 − ρ1)2m

dz.

Furthermore we need the following estimate for the terms of lower order which result from
the modulus of continuity of A. Using Young’s inequality and the same arguments as before
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and noting that ρ2 ≤ ρ ≤ 1 and ρ
2β(m−k)

1−β ≤ ρ2β for k ≤ m − 1, we get for 0 < µ ≤ 1

∫

Qρ2

|δ(u − P)|2β dz ≤
m−1∑
k=0

( ∫

Qρ2

|Dk(u − P)|2
ρ2(m−k)

dz + |Qρ | ρ
2β(m−k)

1−β
)

≤ µ

∫

Qρ2

|Dm(u − P)|2 dz + c
∫

Qρ2

|u − P|2
ρ2m

dz + c ρ2β |Qρ |,

where c = c(n,m, 1/µ). Inserting the previous estimates above, choosing in turn µ and ε
small enough and dividing by ν we infer that

sup
t∈(−(ρ/2)2m ,0)

∫

Bρ1

|u(·, t)− P|2 dx +
0∫

−ρ2m

∫

Bρ1

|Dm(u − P)|2ζ 2 dz

≤ 1

2

0∫

−ρ2m

∫

Bρ2

|Dm(u − P)|2ζ 2 dz + c
∫

Qρ

|u − P|2
(ρ2 − ρ1)2m

dz + c ρ2β |Qρ |,

where c = c(n,m, ν, L ,M, H(M), κM+1). Applying Lemma 2.3, we can “absorb” the first
term of the right-hand side. Finally, noting that ζ ≡ 1 on (−(ρ/2)2m, 0) we get the desired
Caccioppoli inequality. ��
Remark 3.3 In the case of simpler systems of the type (1.10), where A does not depend on
δu, the weaker assumption |Dm P| ≤ M on P suffices, since in this case (1.6) has the simpler
form |A(z, p) − A(z0, p)| ≤ L dP(z, z0)

β(1 + |p|) and the terms I1,1, I1,3 and I2 do not
appear in the above proof of the Caccioppoli inequality.

3.3 Linearization

Given a polynomial P : R
n → R

N of degree ≤ m and z0 ∈ �T and a parabolic cylinder
Qρ(z0) � �T with 0 < ρ ≤ 1. We define

φu(z0, ρ, Dm P) ≡
∫

Qρ(z0)

|Dmu − Dm P|2 dz and ψu(z0, ρ, P) ≡
∫

Qρ(z0)

|u − P|2
ρ2m

dz.

The conclusion of the following lemma is, that every weak solution of (1.1), fulfilling a
suitable smallness condition, solves approximately a linear parabolic system. This property
is needed to apply the A-polycaloric approximation lemma later.

Lemma 3.4 Suppose that u ∈ L2(−T, 0; W m,2(�; R
N )) is a weak solution of (1.1) in

�T under the assumptions (1.2)–(1.6) on A. Then for all M > 0, Qρ(z0) � �T , with
ρ ≤ 1, ϕ ∈ C∞

0 (Qρ(z0); R
N ) and each polynomial P : R

n → R
N of degree ≤ m with

|δP(x0)| + |Dm P| ≤ M for x ∈ Bρ(x0) we have
∣∣∣∣
∫

Qρ(z0)

(
(u − P) · ϕt − ∂A

∂p

(
z0, δP(x0), Dm P

)
Dm (u − P) · Dmϕ

)
dz

∣∣∣∣

≤ cEu

(
ωM+1(φu)

√
φu + φu + ψu + ρβ

)
sup

Qρ(z0)

|Dmϕ|,
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where φu ≡ φu(z0, ρ, Dm P) and ψu ≡ ψu(z0, ρ, P) and cEu is of the form cEu =
L c(n,m, H(M), κM+1).

Proof Without loss of generality we may assume that supQρ(z0)
|Dmϕ| ≤ 1 and that z0 =

(x0, t0) = 0. Noting that −∫Qρ
Pϕt dz = 0 (since P does not depend on the time variable t)

and −∫Qρ
A(0, δP(0), Dm P) · Dmϕ dz = 0, we obtain from (1.1)

∫

Qρ

(
(u − P) · ϕt − ∂A

∂p

(
0, δP(0), Dm P

)
Dm (u − P) · Dmϕ

)
dz

=
∫

Qρ

(
A(0, δP(0), Dmu)− A(0, δP(0), Dm P)− ∂A

∂p

(
0, δP(0), Dm P

)
Dm(u−P)

)
· Dmϕdz

+
∫

Qρ

(
A(z, δu, Dmu)− A(z, δP, Dmu)

) · Dmϕ dz

+
∫

Qρ

(
A(z, δP, Dmu)− A(0, δP(0), Dmu)

) · Dmϕ dz +
∫

Qρ

B(z, δu, Dmu) · δϕ dz

= I1 + I2 + I3 + I4,

with the obvious meaning of I1 − I4. In the following we will derive estimates for I1 − I4.
Estimate for I1. In order to use the modulus of continuity ω from (2.4), we decompose

Qρ into S1 ≡ {z ∈ Qρ : |Dm(u − P)| ≤ 1}, S2 ≡ {z ∈ Qρ : |Dm(u − P)| > 1} and write

I1 = 1

|Qρ |
∫

S1

(· · · ) dz + 1

|Qρ |
∫

S2

(· · · ) dz ≡ I1,1 + I1,2.

For the integrand of I1,1 we write

∣∣A (0, δP(0), Dmu
)− A

(
0, δP(0), Dm P

)− ∂p A
(
0, δP(0), Dm P

) · Dm(u − P)
∣∣

≤
1∫

0

∣∣ (∂p A
(
0, δP(0), Dm P + s Dm(u − P)

)−∂p A
(
0, δP(0), Dm P

)) · Dm(u − P)
∣∣ ds

≤ 2L κM+1 ωM+1
(|Dm(u − P)|2) |Dm(u − P)|,

where we have used (2.4), the fact that |δP(0)| + |Dm P + s(Dmu − Dm P)| ≤ M + 1 on
S1 and |δP(0)| + |Dm P| ≤ M + 1. Thus, using Hölder’s inequality and Jensen’s inequality
(note that ω2

M+1 is concave), we get

|I1,1| ≤ 2L κM+1

( ∫

Qρ

ω2
M+1

(|Dm(u − P)|2) dz

) 1
2
( ∫

Qρ

|Dm(u − P)|2 dz

) 1
2

≤ 2L κM+1 ωM+1(φu)
√
φu .
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We estimate the integrand of I1,2 by the use of (1.3) and (1.5), noting again that |δP(0)| +
|Dm P| ≤ M , as well as |Dmu − Dm P| > 1 on S2∣∣A (0, δP(0), Dmu

) − A
(
0, δP(0), Dm P

)− ∂p A
(
0, δP(0), Dm P

) · Dm(u − P)
∣∣

≤ L (1 + |Dmu|)+ L (1 + |Dm P|)+ 2L κM+1 |Dm(u − P)|
≤ 2L (1 + κM+1 + M) |Dm(u − P)|2,

which directly implies

|I1,2| ≤ 2L (1 + κM+1 + M) φu .

Estimate for I2. We use the modulus of continuity (1.6) of the mapping ξ �→ A(z,ξ,p)
1+|p|

and (2.2) and note that |δP(x)| ≤ M on Bρ by assumption. Subsequently we apply Young’s
inequality and the Interpolation-Lemma 2.4 to estimate the integral involving the interme-
diate derivatives |δ(u − P)/ρ|2 in terms of |Dm(u − P)|2 and |(u − P)/ρm |2 and observe
that

|I2| ≤ L K (2M + 1) ρβ
∫

Qρ

∣∣∣∣δ(u − P)

ρ

∣∣∣∣
β (

1 + M + |Dm(u − P)|) dz

≤ 2L H(M)
∫

Qρ

|Dm(u − P)|2 +
∣∣∣∣δ(u − P)

ρ

∣∣∣∣
2

+ ρβ dz

≤ c(n,m) L H(M)
(
φu + ψu + ρβ

)
.

Estimate for I3. We once again use the modulus of continuity (1.6) of the mapping
(z, ξ) �→ A(z,ξ,p)

1+|p| and (2.2), the assumption on P , Lemma 2.1 and Young’s inequality

|I3| ≤ L K (2|δP(0)| + 1)
∫

Qρ

(2ρ + |δP − δP(0)|)β (1 + |Dmu|) dz

≤ 2βρβ L H(M)
∫

Qρ

(
1 + M + |Dm(u − P)|) dz ≤ 4L H(M)2

(
ρβ + φu

)
.

Estimate for I4. From (1.4), the fact that |Dm P| ≤ M , |δϕ| ≤ cρ (note that |Diϕ| ≤
cρm−i for 0 ≤ i ≤ m − 1 since |Dmϕ| ≤ 1) and Young’s inequality we infer that

I4 ≤ L
∫

Qρ

(
1 + |Dmu|) |δϕ| dz ≤ c ρ

∫

Qρ

(
1 + M + |Dm(u − P)|) dz

≤ c(n,m, L ,M) (φu + ρ).

Combining the estimates for I1 − I4 we finally conclude the desired inequality. ��

Remark 3.5 If A does not depend on δu, then the weaker assumption |Dm P| ≤ M for P is
sufficient, because then I I does not appear in the above proof and in the estimates of I and
I I I we do not need any restriction on |δP(x0)|.

Given a function g ∈ L2(−T, 0; W m,2(�; R
N )) and Qσ (z0) � �T with 0 < σ ≤ 1. Then

Pg;z0,σ : R
n → R

N denotes the mean value polynomial of degree ≤ m, which is uniquely
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defined by −∫Qσ (z0)
Dk g dz = −∫Bσ (x0)

Dk Pg;z0,σ dx for all 0 ≤ k ≤ m and we write

ψg(z0, σ ) ≡ ψg(z0, σ, Pg;z0,σ ) ≡ 1

σ 2m

∫

Qσ (z0)

|g − Pg;z0,σ |2 dz,

when using this polynomial.
In order to get suitable excess-estimates for the weak solution u we will exploit good esti-

mates for solutions of linear systems, which are stated in the next lemma, see [7, Chap. 5],
or [5, Lemma 4.5].

Lemma 3.6 Let �T ⊂ R
n+1 and g ∈ L2(−T, 0; W m,2(�; R

N )) be a weak solution of the
linear parabolic system∫

�T

(
g · ϕt − A(Dm g, Dmϕ)

)
dz = 0, for all ϕ ∈ C∞

0 (�T ; R
N ),

where A : R
N × R

N → R is a bilinear form fulfilling

A(p, p) ≥ ν |p|2, A(p, p̃) ≤ � |p|| p̃|,
for all p, p̃ ∈ R

N . Then g is smooth in �T and for Qρ(z0) � �T there holds the following
estimate:

ψg(z0, θρ) ≤ cpa(n, N ,m,�/ν) θ2 ψg(z0, ρ) for all θ ∈ (0, 1
2

)
. (3.8)

3.4 Characterization of regular points

In this Chapter we will establish a first characterization of regular points, i.e. we show that
a regular point cannot lie in the set �0 ∪�2, where �0 and �2 are defined in the statement
of the next theorem. However this characterization does not directly imply that the singular
set has L n+1-measure zero. The Lebesgue theory then in fact ensures that |�2| = 0, but for
�0 we cannot directly conclude this property - in contrary to the elliptic case. The problem
in the parabolic case is that we cannot apply Poincaré’s inequality, since u is a priori only an
L2-function with respect to t . Therefore we will prove a Poincaré type inequality valid for
weak solutions in Chap. 3.5.

Theorem 3.7 Suppose that u ∈ L2(−T, 0; W m,2(�; R
N )) is a weak solution of (1.1) under

the assumptions (1.2)– (1.6). Then

Dmu ∈ Cβ,
β

2m (�T \�; R
N ).

Moreover � ⊂ �0 ∪�2, with

�0 ≡
{

z0 ∈ �T : lim inf
ρ↘0

ρ−2m
∫

Qρ(z0)

∣∣u − P̂u;z0,ρ

∣∣2 dz > 0

}
,

�2 ≡
{

z0 ∈ �T : lim sup
ρ↘0

m∑
k=0

|(Dku)z0,ρ | = ∞
}
,

where P̂u;z0,ρ : R
n → R

N is the unique polynomial of degree ≤ m, minimizing P �→
−∫Qρ(z0)

|u − P|2 dz.
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Remark 3.8 For simpler systems of the type (1.10) with coefficients A(z, Dmu), which are
independent of δu we actually have � ⊂ �0 ∪ �̃2, where �0 is defined above and

�̃2 ≡
{

z0 ∈ �T : lim sup
ρ↘0

|(Dmu)z0;ρ | = ∞
}
.

We will prove the theorem in three steps. In the first step we will use the A-polycaloric
approximation lemma to show that—under certain smallness assumptions—the excess ψ̃u

of u fulfills a suitable growth estimate when we enlarge the cylinder by a constant factor.
Afterwards we iterate this excess estimate by showing that the smallness assumptions are
also fulfilled on the smaller cylinder (under the condition that they are fulfilled on the larger
cylinder). From this we conclude an excess-decay estimate for Dmu, which will finally,
in the third step—using the integral characterization of Hölder continuous functions from
Campanato—provide the Hölder continuity of Dmu, in those points z0, where the smallness
assumptions are fulfilled.

Proof of Theorem 3.7 Let z0 = (x0, t0) ∈ �T with 0 < ρ ≤ 1, such that Qρ(z0) � �T and
let P : R

n → R
N be a polynomial of degree ≤ m. We define

ψ̃u(z0, ρ, P) ≡ ψu(z0, ρ, P)+ ρ2β .

Step 1: Applying the A-polycaloric approximation lemma we show

Lemma 3.9 Given M > 0 and α with β < α < 1, there exist ϑ ∈ (0, 1
4 ) and δ ∈ (0, 1],

depending on n, N ,m, ν,M, H(M), LκM+1 and α, such that if

ω2
M+1

(
ψ̃u(z0, ρ, P̂u;z0,ρ)

)+ ψ̃u(z0, ρ, P̂u;z0,ρ) ≤ 1
2 δ

2

and
3m

√
m
(|δ P̂u;z0,ρ(x0)| + |Dm P̂u;z0,ρ |

) ≤ M, (3.9)

on Qρ(z0) � �T with 0 < ρ ≤ 1. Then there holds

ψ̃u(z0, ϑρ, P̂u;z0,ϑρ) ≤ ϑ2α ψ̃u(z0, ρ, P̂u;z0,ρ)+ c3 ρ
2β,

with c3 ≡ 1+δ−2. There we have denoted by P̂u;z0,ρ and P̂u;z0,ϑρ the polynomials of degree ≤
m minimizing the mapping P �→ −∫Qρ(z0)

|u−P|2 dz, respectively P �→ −∫Qϑρ(z0)
|u−P|2 dz.

For simpler systems of the type (1.10), it is enough to require the weaker assumption
|Dm P̂u;z0,ρ | ≤ M, instead of (3.9).

Proof Without loss of generality we assume that z0 = (x0, t0) = 0 and we abbreviate
P̂ρ ≡ P̂u;0,ρ . We set ψu ≡ ψu

(
0, ρ/2, P̂ρ

)
and ψ̃u ≡ ψ̃u

(
0, ρ, P̂ρ

)
and observe the follow-

ing monotonicity property

ψu = ψu(0, ρ/2, P̂ρ) ≤ 2n+4 ψu(0, ρ, P̂ρ) ≤ 2n+4 ψ̃u . (3.10)

Note that from Lemma 2.1, the fact that ρ ≤ 1 and the assumption (3.9) on the polynomial P̂ρ
we find for x ∈ Bρ that |δ P̂ρ(x)| ≤ |δ P̂ρ(x)− δ P̂ρ(0)| + |δ P̂ρ(0)| ≤ 2m

√
m ρ (|δ P̂ρ(0)| +

|Dm P̂ρ |) + |δ P̂ρ(0)| ≤ 3m
√

m
(|δ P̂ρ(0)| + |Dm P̂ρ |

) ≤ M . This allows us to apply the
Caccioppoli inequality, i.e. Lemma 3.2 with P = P̂ρ to conclude that

φu ≡ φu(0, ρ/2, P̂ρ) ≤ cCac

( ∫

Qρ

|u − P̂ρ |2
ρ2m

dz + ρ2β
)

= cCac ψ̃u . (3.11)
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Applying Lemma 3.4 to the function v ≡ u − P̂ρ on the cylinder Qρ/2 (which again is
permitted since |δ P̂ρ(x)| ≤ M for x ∈ Bρ), using (3.10), (3.11) and the fact thatωM+1(cs) ≤
cωM+1(s) for c ≥ 1 (since s �→ ωM+1(s) is concave and ωM+1(0) = 0) we obtain

∣∣∣∣
∫

Qρ/2

(
v · ϕt − ∂A

∂p

(
0, δ P̂ρ(0), Dm P̂ρ

)
Dmv · Dmϕ

)
dz

∣∣∣∣

≤ c1

(
ωM+1

(
ψ̃u
)√
ψ̃u + ψ̃u + ρβ

)
sup
Qρ/2

|Dmϕ|,

for all ϕ ∈ C∞
0 (Qρ/2; R

N ), where the constant is of the form c1 = L c(n,m, L/ν, M,
H(M), κM+1).

Now we define the bilinear form

A (p, p̃ ) ≡ ∂A

∂p

(
0, δ P̂ρ(0), Dm P̂ρ

)
(p, p̃), with p, p̃ ∈ R

N ,

and from the conditions (1.2) and (1.5) and the fact that |δ P̂ρ(0)| + |Dm P̂ρ | ≤ M by
assumption we find that A (p, p̃) ≤ L κM+1 |p|| p̃|, A (p, p̃) ≥ ν |p|2 for all p, p̃ ∈ R

N ,
i.e. A fulfills the conditions of Lemma 3.1 about A-polycaloric approximation with ν and
� = L κM+1.

For some given ε > 0, which will be chosen later, we determine δ = δ(n, N , m, ν,
L κM+1, ε) ∈ (0, 1], to be the constant from Lemma 3.1. Furthermore we define

w ≡ γ−1v = γ−1(u − P̂ρ), where γ ≡ 4c1

√
ψu(0, ρ, P̂ρ)+ δ−2ρ2β .

Then, for the function w we have
∣∣∣∣
∫

Qρ/2

(
w · ϕt − A (Dmw, Dmϕ)

)
dz

∣∣∣∣≤ 1

4

(
ωM+1

(
ψ̃u
)+
√
ψ̃u + δ

)
sup
Qρ/2

|Dmϕ|

≤
(
ω2

M+1

(
ψ̃u
)+ψ̃u + 1

2
δ2
) 1

2

sup
Qρ/2

|Dmϕ|≤δ sup
Qρ/2

|Dmϕ|

for all ϕ ∈ C∞
0 (Qρ/2; R

N ) provided we assume that ω2
M+1

(
ψ̃u
) + ψ̃u ≤ 1

2 δ
2. Further

applying the Interpolation-Lemma 2.4 and the Caccioppoli inequality, i.e. Lemma 3.2 we
infer that

m∑
k=0

∫

Qρ/2

∣∣∣∣ Dkw

(ρ/2)m−k

∣∣∣∣
2

dz ≤
∫

Qρ/2

2|Dmw|2 + c
∣∣∣ w
ρm

∣∣∣2 dz

≤ (2cCac + c)
ψu + ρ2β

γ 2 ≤ 2cCac + c

16c2
1

≤ 1,

for c1 � 1 big enough, depending on n, m, ν, L , M , H(M) and κM+1.
Therefore, we can apply the Lemma about A-polycaloric approximation (i.e. Lemma 3.1)

to the function w on the cylinder Qρ/2, provided we assume that ω2
M+1

(
ψ̃u
) + ψ̃u ≤ 1

2 δ
2

and condition (3.9) is fulfilled. The application of Lemma 3.1 then ensures the existence of a
function g ∈ L2(−(ρ/2)2m, 0; W m,2(Bρ/2; R

N )), which is A -polycaloric in Qρ/2 and has
the following properties
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m∑
k=0

∫

Qρ/2

∣∣∣∣ Dk g

(ρ/2)m−k

∣∣∣∣
2

dz ≤ 1 and
∫

Qρ/2

∣∣∣∣ w − g

(ρ/2)m

∣∣∣∣
2

dz ≤ ε. (3.12)

Next we use the excess-estimate (3.8) for the A-polycaloric function g in order to get an
estimate for the excess ψ̃u of u. We abbreviate Pθρ/2 ≡ Pg;0,θρ/2 : R

n → R
N for the mean

value polynomial of degree ≤ m with the property that (Dk Pθρ/2)0;θρ/2 = (Dk g)0;θρ/2 for
k = 0, . . . ,m. First, using Lemma 2.2 and (3.12) we get an estimate for the L2-norm of Pρ/2

∫

Qρ/2

|Pρ/2|2 dz ≤ c
m∑

k=0

(ρ
2

)2k
∫

Qρ/2

|(Dk Pρ/2)0;ρ/2|2 dz

≤ c
m∑

k=0

(ρ
2

)2k
∫

Qρ/2

|Dk g|2 dz ≤ c
(ρ

2

)2m
.

Together with the excess-estimate (3.8) for g and the first inequality in (3.12), we get for all
0 < θ < 1

2

(
θρ

2

)−2m ∫

Qθρ/2

∣∣g − Pθρ/2
∣∣2 dz ≤ cpa θ

2
(ρ

2

)−2m
∫

Qρ/2

∣∣g − Pρ/2
∣∣2 dz ≤ cg θ

2,

where cg = cg(n, N ,m, L κM+1/ν). From (3.12) we conclude the following excess estimate
for w
(
θρ

2

)−2m ∫

Qθρ/2

|w − Pθρ/2|2 dz

≤ 2

(
θρ

2

)−2m (
θ−n−4m

∫

Qρ/2

|w − g|2 dz +
∫

Qθρ/2

|g − Pθρ/2|2 dz

)

≤ 2cg
(
θ−n−4m ε + θ2) .

Rescaling to u via w = γ−1(u − P̂ρ) this implies

(
θρ

2

)−2m ∫

Qθρ/2

∣∣u − P̂ρ − γ Pθρ/2
∣∣2 dz ≤ 2cg γ

2 (θ−n−4mε + θ2).

This estimate then also holds for P̂ρ + γ Pθρ/2 replaced by P̂θρ/2, where P̂θρ/2 denotes the
polynomial of degree ≤ m, minimizing the mapping P �→ −∫Qθρ/2

|u − P|2 dz. Using the
definition of γ we infer

(
θρ

2

)−2m ∫

Qθρ/2

|u − P̂θρ/2|2 dz ≤ c2
(
θ−n−4mε + θ2) (ψu(0, ρ, P̂ρ)+ δ−2ρ2β) ,

where c2 is of the form L c(n, N ,m, LκM+1/ν,M, H(M)). Now we choose ε = θn+4m+2

to obtain
ψu
(
0, θρ/2, P̂θρ/2

) ≤ 2c2 θ
2 (ψu(0, ρ, P̂ρ)+ δ−2ρ2β) . (3.13)
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For α with β < α < 1 we choose 0 < θ < 1
2 depending on n, N , m, ν, L , M , H(M), κM+1

andα, such that 21+2αc2 θ
2 ≤ θ2α . This also fixes ε = ε(n, N ,m, ν, L ,M, H(M), κM+1, α)

and δ = δ(n, N , m, ν, L , M , H(M), κM+1, α) ∈ (0, 1]. Putting ϑ ≡ θ
2 in (3.13), we conclude

the first assertion of the lemma.
The second assertion, stating that for simpler systems of the type (1.10), the condition

|Dm P̂u;z0,ρ | ≤ M instead of (3.9) is sufficient, can be concluded from Remarks 3.3 and 3.5
after Lemma 3.2 and Lemma 3.4, as condition (3.9) is only needed in those two points of the
proof. ��

Step 2: We iterate Lemma 3.9 to obtain

Lemma 3.10 Given M > 1 and α with β < α < 1, there exist constants ϑ ∈ (0, 1
4 ), ψ̃0,

ρ0 and c4, depending on n, N , m, ν, L, M, H(M), κM+1 and α, such that for all parabolic
cylinders Qρ(z0) � �T the conditions

(i) 3m
√

m
(|δ P̂ρ(x0)| + |Dm P̂ρ |

) ≤ M,

(i i) ρ ≤ ρ0,

(i i i) ψ̃u(ρ) ≤ ψ̃0

imply

(I ) j ψ̃u(ϑ
jρ) ≤ ϑ2α j ψ̃u(ρ)+ c4 (ϑ

jρ)2β,

(I I ) j 3m
√

m
(|δ P̂ϑ jρ(x0)| + |Dm P̂ϑ jρ |

) ≤ 2M,

for all j ∈ N, where for given 0 < r ≤ 1 we denote by P̂r ≡ P̂u;z0,r the polynomial of
degree ≤ m, minimizing the mapping P �→ −∫Qr (z0)

|u − P|2 dz and ψ̃u(r) ≡ ψ̃u(z0, r, P̂r ).
Furthermore the limit

�z0 ≡ lim
j→∞(D

mu)z0,ϑ jρ

exists and for 0 < r ≤ ρ
2 there holds the estimate

∫

Qr (z0)

|Dmu − �z0 |2 dz ≤ c

((
r

ρ

)2α

ψu(ρ)+ r2β
)
,

where c depends on n, N ,m, ν, L ,M, H(M), κM+1, α and β.

Remark 3.11 For simpler systems of the type (1.10) it is enough to require the weaker
assumption |Dm P̂ρ | ≤ M instead of (i) and |Dm P̂ϑ jρ | ≤ 2M instead of (II) j .

Since the iteration procedure from the previous lemma is quite standard we only sketch
the proof here, see [5, Lemma 4.9]. The lemma can be shown by induction. Initially, with the
help of Lemma 3.9, the assertion is shown in the case j = 1. Subsequently, for fixed j ∈ N

we suppose that (I )k and (I I )k hold k = 1, . . . , j − 1. This enables us to apply Lemma 3.9,
and hence deduce (I ) j and (I I ) j . Thus, having shown the first part of the lemma, we then
consider the sequence ((Dmu)ϑ jρ/2) and show that it is a Cauchy-sequence with limit �z0 .

Step 3: Here we use the integral characterization of Hölder continuous functions due to
Campanato and Da Prato to show the Hölder continuity of Dmu on �T \�.

Given Qρ(z0) ⊂ �T , then P̂u;z0,ρ : R
n → R

N denotes the polynomial of degree ≤ m,
which minimizes the mapping P �→ −∫Qρ(z0)

|u(x, t) − P(x)|2 dx dt . Let z0 = (x0, t0) ∈
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�T \(�0 ∪ �2). Then we can find M0 > 0 and 0 < ρ ≤ ρ0(M0) with Q2ρ(z0) � �T

such that 3m
√

m
(|δ P̂u;z,ρ(x0)| + |Dm P̂u;z,ρ |

)
< M0 and ψ̃u(z0, ρ, P̂u;z0,ρ) < ψ̃0(M0)

holds, where ρ0(M0) and ψ̃0(M0) are the constants from Lemma 3.10. As the mappings
z �→ (Dmu)z,ρ and z �→ ψ̃u(z, ρ, P̂u;z,ρ) are continuous, there is 0 < R ≤ 1

2ρ, such that
3m

√
m
(|δ P̂u;z,ρ(x)| + |Dm P̂u;z0,ρ |

)
< M0 and ψ̃u(z, ρ, P̂u;z,ρ) < ψ̃0(M0) for all z =

(x, t) ∈ Q R(z0). Moreover Qρ(z) ⊂ Q2ρ(z0) ⊂ �T . Therefore we may apply Lemma 3.10
for all z ∈ Q R(z0) and infer that the limit �z = lim j→∞(Dmu)z;ϑ jρ exists, with 0 < ϑ =
ϑ(2M0) <

1
4 and for 0 < r ≤ ρ

2 there holds

∫

Qr (z)

|Dmu − �z |2 dz′ ≤ c

((
r

ρ

)2α

ψu(z, ρ)+ r2β
)
,

where c depends on n, N ,m, ν, L ,M0, H(M0), κM0+1, α and β. This implies (see e.g. [12])
that the Lebesgue representative z �→ �z of Dmu is Hölder continuous on Q R(z0) with
respect to the parabolic metric with Hölder exponent β, which completes the proof of
Theorem 3.7. ��

Until now we have shown a first characterization of the singular set, which—as men-
tioned above—does not directly imply that the singular set is a set of Lebesgue measure zero.
To conclude this assertion we need a Poincaré type inequality, which is proved in the next
chapter.

3.5 Poincaré type inequality for weak solutions

Due to the fact that weak solutions are a priori only L2 functions with respect to the time
variable t , we cannot apply Poincaré’s inequality. To get nevertheless some sort of Poincaré
inequality for weak solutions, we consider the space- and time direction separately. We know
that our weak solution is weakly differentiable with respect to the space variable x . This
allows us to apply Poincaré’s inequality in x-direction. For the time-direction we will exploit
the fact that the weighted means (u)η̃(t)—defined below—of a weak solution u to system
(1.1) are absolutely continuous with respect to the time variable t .

Let v : Qρ(z0) → R
N be integrable on Qρ(z0) � �T . Moreover, let η̃ ∈ C∞

0 (Bρ(x0))

be a non-negative weight-function, with
∫

Bρ
η̃ dx = 1. For a.e. t ∈ (t0 − ρ2m, t0) we define

the weighted mean of v by

(v)η̃(t) ≡
∫

Bρ(x0)

v(·, t) η̃ dx . (3.14)

Lemma 3.12 Given M > 0. Let u ∈ L2(−T, 0; W m,2(�; R
N )) be a weak solution of (1.1) in

�T under the assumptions (1.3)–(1.6). Let Qρ(z0) � �T with 0 < ρ ≤ 1 and Pu;z0,ρ : R
n →

R
N denotes the mean value polynomial of u of degree ≤ m, defined by (Dk Pu;z0,ρ)x0,ρ =

(Dku)x0,ρ for k = 0, . . . ,m. Then, under the condition that |δPu;z0,ρ(x)|+|Dm Pu;z0,ρ | ≤ M
for all x ∈ Bρ(x0) there exists c = c(n, N ,m, L ,M, K (2M + 1), κM+1), such that

∫

Qρ(z0)

|u − Pu;z0,ρ |2 dz ≤ c ρ2m
( ∫

Qρ(z0)

∣∣Dmu − (Dmu)z0,ρ

∣∣2 dz + ρ2β
)
.

Remark 3.13 For simpler systems of the type (1.10) the conclusion also holds if we replace
our condition on Pu;z0,ρ by the weaker condition |Dm Pu;z0,ρ | ≤ M . This is due to the fact
that (1.6) then has the simpler form |A(z, p)− A(z0, p)| ≤ L dP(z, z0)

β(1 + |p|).
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Proof Without loss of generality we assume that z0 = 0 and we abbreviate P ≡ Pu;z0,ρ .
We choose a weight-function η̃ ∈ C∞

0 (Bρ), such that
∫

Bρ
η̃ dx = 1 and ‖D�η̃‖L2(Bρ) ≤

c(n,m)ρ−( n
2 +m) for 0 ≤ � ≤ 2m. For any i ∈ {1 . . . , N } we take ϕ : R

n+1 → R
N with

ϕi = η̃ and ϕ j = 0 for j �= i as test-function in the Steklov-formulation (2.7) of the
system and obtain for the weighted means of [ui ]h , defined in (3.14) (note that [u]h =
([u1]h, . . . , [uN ]h)) for a.e. s, t ∈ (−ρ2m, 0),

([ui ]h)η̃(t)− ([ui ]h)η̃(s) =
t∫

s

∂([ui ]h)η̃

∂τ
dτ

=
t∫

s

∫

Bρ

([Ai (·, δu, Dmu)]h · Dm η̃+[Bi (·, δu, Dmu)]h · δη̃) dx dτ. (3.15)

Letting h ↘ 0, enlarging the domain of integration if necessary and noting that
A(z0, δP(x0), Dm P) is constant, we find

|(ui )η̃(t)− (ui )η̃(s)| ≤
∫

Qρ

∣∣A(·, δu, Dmu)− A(·, δu, Dm P)
∣∣ |Dm η̃| dz,

+
∫

Qρ

∣∣A(·, δu, Dm P)− A(·, δP, Dm P)
∣∣ |Dm η̃| dz

+
∫

Qρ

|A(·, δP, Dm P)− A(z0, δP(x0), Dm P)||Dm η̃| dz

+
∫

Qρ

|B(·, δu, Dmu)| |δη̃| dz

= I1 + I2 + I3 + I4,

with the obvious meaning of I1 − I4.
Estimate for I1. We can treat this term similar to the integral I1 in the proof of the

Caccioppoli inequality, i.e. Lemma 3.2. Proceeding this way (with Dm η̃ instead of lot) we
end up with the following analogue of estimate (3.7):

I1 ≤ L c(M, H(M), κM+1) ‖Dm η̃‖L2(Qρ)

( ∫

Qρ

(|Dm(u − P)|2 + |δu − δP|2β) dz

) 1
2

.

Estimate for I2. Similarly to the estimate of I2 in the proof of the Caccioppoli inequality
(with Dm η̃ instead of Dmϕ) we obtain with the help of (1.6) and Hölder’s inequality that

I2 ≤ L
∫

Qρ

|δu − δP|β |Dm η̃| dz ≤ L ‖Dm η̃‖L2(Qρ)

( ∫

Qρ

|δu − δP|2β dz

) 1
2

.

Estimate for I3. We can once again proceed similar to the estimate of I3 in the proof of
the Caccioppoli inequality (with Dm η̃ instead of Dmϕ) to find that
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I3 ≤ c L (1 + M)βρβ
∫

Qρ

|Dm η̃| dz ≤ c(M, H(M)) L ‖Dm η̃‖L2(Qρ)
ρβ |Qρ |.

Estimate for I4. From the growth assumption (1.4) on B, the fact that |Dm P| ≤ M and
Hölder’s inequality we infer

I4 ≤ L ‖δη̃‖L2(Qρ)

( ∫

Qρ

(
1 + M + |Dm(u − P)|)2 dz

) 1
2

.

Combining the estimates for I1 − I4 and summing over i = 1, . . . , N we arrive at:

|(u)η̃(t)− (u)η̃(s)| ≤ c ‖Dm η̃‖L2(Qρ)

( ∫

Qρ

(|Dm(u − P)|2 + |δu − δP|2β + ρ2β) dz

) 1
2

+c ‖δη̃‖L2(Qρ)

( ∫

Qρ

(|Dm(u − P)|2 + 1
)

dz

) 1
2

,

where c = c(N , L ,M, κM+1).
We get an analogous estimate for the weighted means of Dku, k = 1, . . . ,m, by taking

Dαη̃ instead of η̃ as test-function in (2.7), where α is a multiindex with |α| = k. Then, by inte-
gration by parts (k-times) we find that (Dαu)η̃(t) = (−1)k(u)Dαη̃(t). Replacing η̃ with Dαη̃

in the previous estimate and noting that ‖D�η̃‖L2(Qρ)
= ρm‖D�η̃‖L2(Bρ) ≤ c(n)ρmρ−( n

2 +�)
for 0 ≤ � ≤ 2m we obtain

|(Dku)η̃(t)−(Dku)η̃(s)| ≤ c ρm−k
( ∫

Qρ

|Dm(u − P)|2 +|δ(u − P)|2β dz +ρ2β
) 1

2

, (3.16)

where c = c(n,m, N , L ,M, κM+1).
Moreover, starting once again from (3.15), but using only the bounds (1.3) and (1.4) to

estimate the right-hand side, we find that

|(Dku)η̃(t)− (Dku)η̃(s)|2 ≤ c(n,m, N , L) ρ2(m−k)
∫

Qρ

(
1 + |Dmu|2) dz. (3.17)

Our next goal is to obtain a suitable estimate for the term involving δu − δP in (3.16).
For 0 ≤ j ≤ m − 1 we consider the following decomposition

∫

Qρ

|D j (u − P)|2 dz ≤ 3

⎡
⎢⎣

0∫

−ρ2m

∫

Bρ

∣∣D j (u − P)− (D j (u − P)
)
η̃

∣∣2 dx dt

+
0∫

−ρ2m

∣∣∣∣
0∫

−ρ2m

(
(D j u)η̃(t)− (D j u)η̃(s)

)
ds

∣∣∣∣
2

dt+
∣∣∣∣

0∫

−ρ2m

(D j u)η̃(s) ds − (D j P)η̃

∣∣∣∣
2

⎤
⎥⎦

= 3(J1 + J2 + J3), (3.18)

with the obvious meaning of J1 - J3.
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Estimate for J1. Applying the Poincaré inequality “slicewise” to D j (u− P)(·, t)we infer

J1 ≤ c(n) ρ2

0∫

−ρ2m

∫

Bρ

|D j+1(u − P)|2 dx dt.

Estimate for J3. Here we exploit the fact that −∫Qρ
D j (u − P) dz = 0 to bound J3 in

terms of J1, yielding that

J3 ≤ J1 ≤ c(n) ρ2

0∫

−ρ2m

∫

Bρ

|D j+1(u − P)|2 dx dt.

Estimate for J2. To estimate the second integral we use (3.17) with k = j to find that

J2 ≤ c(n,m, N , L) ρ2(m− j)
∫

Qρ

(
1 + |Dmu|2) dz.

Joining the estimates for J1 − J3 with (3.18) yields for 0 ≤ j ≤ m − 1 that∫

Qρ

|D j (u − P)|2 dz ≤ c ρ2
∫

Qρ

|D j+1(u − P)|2 dz + c ρ2(m− j)
∫

Qρ

(1 + |Dmu|2) dz,

where c = c(n,m, N , L). Starting with j = k and then iterating this estimate for j =
k + 1, . . . ,m − 1, we obtain for 0 ≤ k ≤ m − 1
∫

Qρ

|Dk(u − P)|2 dz ≤ cρ2(m−k)
[ ∫

Qρ

|Dm(u − P)|2 dz +
∫

Qρ

(1 + |Dmu|2) dz

]
, (3.19)

where c = c(n,m, N , L). Summing over k = 0, . . . ,m−1 and noting that Dm P = (Dmu)ρ ,
|Dm P| ≤ M by assumption and ρ2(m−k) ≤ ρ2 since ρ ≤ 1 we find

∫

Qρ

|δu − δP|2 dz ≤ c(n,m, N , L) ρ2
[ ∫

Qρ

|Dmu − (Dmu)ρ |2 dz + 1

]
.

Inserting this estimate in (3.16) (after an application of Hölder’s inequality) and noting
once again that Dm P = (Dmu)ρ , we arrive at

|(Dku)η̃(t)− (Dku)η̃(s)| ≤ c ρm−k
(
ρ2β +

∫

Qρ

∣∣Dmu − (Dmu)ρ
∣∣2 dz

) 1
2

, (3.20)

where c depends on n,m, N , L ,M, K (2M + 1) and κM+1.
Now we are in a position to consider the integral we initially wanted to estimate. For

0 ≤ k ≤ m − 1 we once again use the decomposition from (3.18) and estimate the integrals
J1 and J3 as we did before. But now, for the term J2 we can use the better estimate (3.20)
instead of (3.16) and we finally come up with the desired Poincaré inequality. ��
Remark 3.14 From the proof of the previous lemma, in particular from (3.17), we infer
the following estimate in time for the weighted means of Dku: Suppose that Qρ(z0) �
�T and η̃ ∈ C∞

0 (Bρ(x0)) is a non-negative weight-function with
∫

Bρ(x0)
η̃ dx = 1 and
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‖D�η̃‖L2(Bρ(x0))
≤ cρ−( n

2 +�) for 0 ≤ � ≤ 2m. Then for 0 ≤ k ≤ m and for a.e. s, t ∈
(t0 − ρ2m, t0), the difference in time of the weighted mean of Dku, defined in (3.14) can be
estimated by

|(Dku)η̃(t)− (Dku)η̃(s)|2 ≤ c(n,m, N , L) ρ2(m−k)
∫

Qρ(z0)

(
1 + |Dmu|2) dz.

3.6 Proof of the partial regularity result

The regularity result of Theorem 1.1 finally follows from the next theorem, since we can
conclude from the Lebesgue differentiation theorem that |�1| = 0 (with �1 defined below).

Theorem 3.15 Suppose that u ∈ L2(−T, 0; W m,2(�; R
N )) is a weak solution of (1.1) under

the assumptions (1.2)– (1.6). Then � ⊂ �1 ∪�2, where �2 is as in Theorem 3.7 and

�1 ≡
{

z0 ∈ �T : lim inf
ρ↘0

∫

Qρ(z0)

|Dmu − (Dmu)z0,ρ |2 dz > 0

}
.

For simpler systems of the type (1.10) there even holds � ⊂ �1 ∪ �̃2, where �̃2 is as in
Remark 3.8.

Proof We will show that �T \(�1 ∪�2) ⊂ �T \(�0 ∪�2), where �0 is as in Theorem 3.7.
Then the assertion can be concluded from Theorem 3.7.

Let z0 ∈ �T \(�1 ∪ �2). Then lim supρ↘0(|(δu)z0,ρ | + |(Dmu)z0,ρ |) ≡ M < ∞, and
therefore we find some ρ0 such that |(δu)z0,ρ |+|(Dmu)z0,ρ | ≤ M +1 for all ρ ≤ ρ0. Hence,
with Lemma 2.2, we find for the mean value polynomial Pu;z0,ρ : R

n → R
N of degree ≤ m

of u on Qρ(z0) that |δPu;z0,ρ(x)|+|Dm Pu;z0,ρ | ≤ c (|(δPu;z0,ρ)z0,ρ |+|(Dm Pu;z0,ρ)z0,ρ |) =
c (|(δu)z0,ρ |+ |(Dmu)z0,ρ |) ≤ c(n,m)(M +1) ≡ cM . Therefore we may apply the Poincaré
inequality, i.e. Lemma 3.12) for all ρ ≤ ρ0 and conclude that

ρ−2m
∫

Qρ(z0)

|u − Pu;z0,ρ |2 dz ≤ c

( ∫

Qρ(z0)

∣∣Dmu − (Dmu)z0,ρ

∣∣2 dz + ρ2β
)
,

where c = c(n,m, N , L ,M, K (2cM + 1), κcM ). Since z0 /∈ �1 the first term on the right-
hand side vanishes as ρ ↘ 0. But this estimate certainly also holds for the minimizing
polynomial P̂u;z0,ρ : R

n → R
N and therefore it implies ρ−2m −∫Qρ(z0)

|u − P̂u;z0,ρ |2 dz → 0
as ρ ↘ 0. Hence, we have z0 ∈ �T \(�0 ∪�2) and by Theorem 3.7, z0 is a regular point.

For the second assertion about simpler systems we recall Remark 3.13, which allows us to
replace the condition on Pu;z0,ρ by the weaker condition |(Dmu)z0,ρ | = |Dm Pu;z0,ρ | ≤ M+1
in the proof above. Therefore �T \(�1 ∪ �̃2) ⊂ �T \(�0 ∪ �̃2) and the assertion can be
concluded by Remark 3.8. ��

4 Higher integrability

Up to now, while proving partial regularity of Dmu, there was no higher integrability of
Dmu needed. This tool will become essential when we want to show better estimates for the
Hausdorff-dimension of the singular set in Chap. 6. So here is just the right place to analyze
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higher integrability properties. For that purpose we put our focus on parabolic systems of the
type

∫

�T

(
u · ϕt − A(z, Dmu) · Dmϕ

)
dz =

∫

�T

m∑
i=0

Bi (z, Dmu) · Diϕ dz (4.1)

for all ϕ ∈ C∞
0 (�T ; R

N ), where A : �T × R
N → Hom(RN ,R) and Bi : �T × R

N →
Hom(RMi ,R) for i = 0, . . . ,m with

|Bi (z, p)| ≤ L |p| + bi , for i = 1, . . . ,m − 1 and |Bm(z, p)| ≤ bm, (4.2)

for all z ∈ �T and p ∈ R
N , where bi : �T → R+, i = 1, . . . ,m. Contrary to the rest of

the paper, here, we do not indicate the dependence of the coefficients on the intermediate
derivatives δu, since there is no hypothesis put on the modulus of continuity with respect to
δu, in the sense of (1.8). Moreover, we consider a sligtly more general right-hand side. This
enables us to present the natural scaling with respect to the radius, coming from the fact that
the inhommogeneity counts as a derivative. The main result of this Chapter is the following

Theorem 4.1 Suppose that u ∈ L2(−T, 0; W m,2(�; R
N )) is a weak solution to the par-

abolic system (4.1) under the assumptions (1.2), (1.3), (4.2) and bi ∈ L2(1+σ0)(�T ) with
σ0 > 0 for i = 0, . . . ,m. Then there exists σ = σ(n,m, L/ν) with 0 < σ < σ0, such that
|Dmu| ∈ L2(1+σ)

loc (�T ) and for Q2ρ(z0) � �T there holds

∫

Qρ/2(z0)

|Dmu|2(1+σ) dz ≤ c

( ∫

Q2ρ(z0)

|Dmu|2 dz

)1+σ
+ c + c

∫

Q2ρ(z0)

m∑
i=0

(ρm−i bi )
2(1+σ) dz,

where c = c(n,m, N , L/ν) and limL/ν→∞ σ = 0.

For second-order parabolic systems higher integrability was shown by Giaquinta and
Struwe [25]. Note that higher integrabiliy results and Calderón-Zygmund estimates for more
general p-Laplacean type systems were achieved in [2,28]. As usual, when showing such a
higher integrability result, the main ingredients are a Caccioppoli and a Poincaré inequality.
In the next lemma we state the Caccioppoli inequality, which is suitable for our purpose.
Contrary to Lemma 3.2, it deals with polynomials of degree ≤ m − 1. The proof is simi-
lar—but simpler — since now we can directly use the growth assumption (1.3) to estimate
the terms involving A on the right-hand side, instead of the Hölder continuity assumption
(1.6). For a detailed proof (in the case of more general parabolic p-Laplacean type systems)
we refer to [5, Lemma 7.1].

Lemma 4.2 Suppose that u ∈ L2(−T, 0; W m,2(�; R
N )) is a weak solution of the parabolic

system (1.1) in�T under the assumptions (1.2)–(1.6) and let Qr (z0) � �T , with 0 < r ≤ 1.
Then for all polynomials P : R

n → R
N of degree ≤ m − 1 there holds

sup
t∈(t0−(r/2)2m ,t0)

∫

Br/2(x0)

|u(·, t)− P|2
r2m

dx +
∫

Qr/2(z0)

|Dmu|2 dz

≤ cCac

∫

Qr (z0)

|u − P|2
r2m

+
m∑

i=0

b2
i + 1 dz,

where cCac depends on n,m and L/ν and cCac → ∞ as L/ν → ∞.
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The next lemma is a sort of Poincaré inequality. It can be proved similar to Lemma 3.12
[see in particular (3.19)], i.e. by applying the Poincaré inequality in x-direction and using
estimates for differences in time of weighted means of u, respectively Dku, 0 ≤ k ≤ m − 1.
Therefore we only state the lemma without proof and refer the reader to [5, Lemma 6.4], for
a detailed proof (in the case of more general parabolic p-Laplacean type systems).

Lemma 4.3 Suppose that u ∈ L2(−T, 0; W m,2(�; R
N )) is a weak solution of the parabolic

system (1.1) in�T under the assumptions (1.3)–(1.4) and let Qr (z0) � �T , with 0 < r ≤ 1.
Then for k = 0, . . . ,m − 1 and for all γ ∈ [1, 2] there holds

∫

Qr (z0)

|Dk(u − PQ)|γ dz ≤ c(n,m, N , L , γ ) ργ (m−k)
∫

Qr (z0)

(
|Dmu|γ +

m∑
i=0

bγi + 1

)
dz,

where PQ : R
n → R

N is the mean value polynomial of u of degree ≤ m − 1 defined by
(δPQ)x0,r = (δu)z0,r .

Now, we have collected all the preliminaries in order to prove our higher integrability
result:

Proof of Theorem 4.1 Without loss of generality we can assume that z0 = 0 and ρ = 1.
Otherwise we consider the function v(x, t) = ρ−mu(x0 + ρx, t0 + ρ2mt), which is a solu-
tion of the parabolic system vt +(−1)mdivm Ã(z, Dmv) =∑m

i=0(−1)i divi B̃i (z, Dmv), with
Ã(x, t, p) = A(x0 + ρx, t0 + ρ2mt, p) and B̃i (x, t, p) = ρm−i Bi (x0 + ρx, t0 + ρ2mt, p)
on Q1 and infer the general result by rescaling to Qρ(z0).

Let Q2r (z̃) � Q1 be a parabolic cylinder. We define γ = max{ 2n
n+2m , 1} and apply

Gagliardo-Nirenberg’s inequality [see e.g. [5,29,32], Theorem B.6]:

∫

Qr (z̃)

|u − P|2 dz ≤ c rmγ

t̃∫

t̃−r2m

m∑
k=0

∫

Br (x̃)

|Dk(u − P)|γ
rγ (m−k)

dx

( ∫

Br (x̃)

|u − P| dx

)1− γ

2

dt

≤ c(n,m) rmγ
m∑

k=0

∫

Qr (z̃)

|Dk(u − P)|γ
rγ (m−k)

dz

(
sup

t∈(t̃−r2m ,t̃)

∫

Br (x̃)

|u − P| dx

)1− γ

2

= I1 · (I2)
1− γ

2

with the obvious meaning of I1 and I2.
Estimate of I1. Applying the Poincaré inequality from Lemma 4.3 for each k = 0, . . . ,m,

we infer

I1 ≤ c(n,m, N , L)
∫

Qr (z̃)

(
|Dmu|γ +

m∑
i=0

bγi + 1

)
dz.

Estimate of I2: In turn, we apply the Caccioppoli inequality from Lemma 4.2 and the
Poincaré’s inequality from Lemma 4.3 to find that

I2 ≤ c r2m
∫

Q2r (z̃)

( |u − P|2
r2m

+
m∑

i=0

b2
i + 1

)
dz

≤ c(n,m, N , L/ν) r2m
∫

Q2r (z̃)

(
|Dmu|2 +

m∑
i=0

b2
i + 1

)
dz.

123



Higher order parabolic systems 91

Inserting the estimates for I1 and I2 above, dividing by r2m and using Young’s inequality,
we obtain for ε > 0 that

∫

Qr (z̃)

|u − P|2
r2m

dz ≤ ε

∫

Q2r (z̃)

|Dmu|2 dz + c

( ∫

Qr (z̃)

|Dmu|γ dz

) 2
γ

+ c
∫

Q2r (z̃)

( m∑
i=0

b2
i + 1

)
dz,

where c = c(1/ε, n,m, N , L/ν). We estimate the L2-norm of Dmu, using in turn the
Caccioppoli inequality from Lemma 4.2 and the above estimate with the choice ε = 1

2CCac

∫

Qr/2(z̃)

|Dmu|2 dz ≤ cCac

∫

Qr (z̃)

( |u − P|2
r2m

+
m∑

i=0

b2
i + 1

)
dz

≤ 1

2

∫

Q2r(z̃)

|Dmu|2 dz + c

( ∫

Qr (z̃)

|Dmu|γ dz

) 2
γ

+ c
∫

Q2r (z̃)

( m∑
i=0

b2
i + 1

)
dz,

where c = c(n,m, N , L/ν). This is a Reverse-Hölder inequality, valid for any parabolic
cylinder Qr (z̃) with Q2r (z̃) � Q1. Therefore we can apply Gehring’s Theorem (see e.g.
[23, Chap. V, Proposition 1.1]), which ensures the existence of σ = σ(n,m, N , L/ν), such
that |Dmu| ∈ L2(1+σ)

loc (Q1) and moreover, the asserted estimate holds.
Because the maximal size of σ depends on c and c increases with L/ν, we observe that

σ ↘ 0 as L/ν → ∞. This behavior of σ is described e.g. in [6] and [36], providing an
explicit specification of σ . ��

5 Parabolic fractional Sobolev spaces

5.1 Preliminaries

In the case of differentiable or Lipschitz continuous coefficients one usually applies the dif-
ference quotient method in order to show that Dmu is weakly differentiable with respect to
x and t . Then bounds for the dimension of the singular set can be obtained with the help of
Giusti’s Lemma. Since the considered coefficients A are not assumed to be differentiable or
Lipschitz continuous with respect to (z, ξ), we cannot apply the difference quotient method
here. Instead we use fractional difference quotients, and hence we will show that Dmu lies
in a certain fractional Sobolev space. In this secton the definitions and basic properties about
fractional Sobolev and Nikolskii spaces are given.

Let f : R
n+1 → R

k , k ∈ N. We define the finite differences in space direction τ s
h ( f ) by

(τ s
h f )(x, t) ≡ f (x + hes, t)− f (x, t),

for |h| > 0, x ∈ � with dist(x, ∂�) > |h| and 1 ≤ s ≤ n where {es}1≤s≤n is the standard
basis of R

n . Similarly the finite differences in time direction τh( f ) are defined by

(τh f )(x, t) ≡ f (x, t + h)− f (x, t),
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for |h| > 0 and t ∈ (−T + |h|,−|h|). Then, we have the following estimate: For f ∈
L p(�× (t1, t2 + h)), where � ⊂ R

n , t1 < t2 and h > 0 there holds

t2∫

t1

∫

�

|τh f |p dx dt ≤ 2

t2+h∫

t1

∫

�

| f |p dx dt, (5.1)

and also the analogue for h < 0.
The proof of our dimension reduction result will be based on showing that Dmu admits

better fractional differentiability properties. We now define the class of fractional Sobolev-
spaces, which are suitable for our purpose. Suppose that v ∈ L p(�T ; R

k) with 1 ≤ p < ∞,
k ∈ N. Then, v belongs to the parabolic fractional Sobolev space Wα,γ ; p(�T ; R

k) with
α, γ ∈ (0, 1), if

[v]α,γ ; p;�T ≡
0∫

−T

∫

�

∫

�

|v(x, t)− v(y, t)|p

|x − y|n+αp
dx dy dt

+
∫

�

0∫

−T

0∫

−T

|v(x, t)− v(x, τ )|p

|t − τ |1+γ p
dt dτ dx < ∞.

The local variant, i.e. the space Wα,γ ; p
loc (�T ; R

k) is defined as usual. This means that v ∈
Wα,γ ; p

loc (�T ; R
k), if v ∈ Wα,γ ; p(Q̃; R

k) for all Q̃ � �T .
The well known relation between fractional Sobolev-spaces and Nicolskii-spaces can be

adapted to the parabolic framework (see [5, Lemma 10.9]).

Lemma 5.1 Let v ∈ L p(�T ; R
k), 1 ≤ p < ∞, k ∈ N. Moreover, let BR(x0) � � and

(t1, t2) � (−T, 0).

(i) Suppose that there exist A1, c1 > 0, such that for all 0 < |h| ≤ min{T + t1, |t2|, A1}
there holds

∫

BR(x0)

t2∫

t1

|τhv|p dt dx ≤ c1 |h|pγ for some γ ∈ (0, 1).

Then, there exists c̃1 = c̃1(p, γ, γ̃ , A1, c1, T + t1, |t2|, t2 − t1, ‖v‖L p(BR(x0)×(t1,t2))),
such that

∫

BR(x0)

t2∫

t1

t2∫

t1

|v(x, t)− v(x, τ )|p

|t − τ |1+γ̃ p
dτ dt dx ≤ c̃1 for all γ̃ ∈ (0, γ ).

(ii) Suppose that B3R(x0) � � and that there exist A2 ≥ 1 and c2 ≥ 0, such that for all
0 < |h| ≤ R

A2
and s ∈ {1, . . . , n} there holds

t2∫

t1

∫

B2R(x0)

|τ s
hv|p dx dt ≤ c2 |h|pα for some α ∈ (0, 1).
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Then, there exists c̃2 = c̃2(n, p, R, α, α̃, A2, c2, , ‖v‖L p(BR(x0)×(t1,t2))), such that

t2∫

t1

∫

BR(x0)

∫

BR(x0)

|v(x, t)− v(y, t)|p

|x − y|n+α̃ p
dx dy dt ≤ c̃2 for all α̃ ∈ (0, α).

The next lemma is a Poincaré type inequality for functions lying in a fractional Sobolev
space (see [5, Lemma 10.10]).

Lemma 5.2 Let Qρ(z0) ⊂ R
n+1 be a parabolic cylinder. Suppose that v ∈ W γ,

γ
2m ; p

(Qρ(z0); R
k), with γ ∈ (0, 1), 1 ≤ p < ∞ and k ∈ N. Then there holds:

∫

Qρ(z0)

|v − (v)z0,ρ |p dz ≤ c(n, p) ργ p [v]p
γ,

γ
2m ; p; Qρ(z0)

.

In Chap. 6.1 we will derive the required estimates only for second differences of Dku,
0 ≤ k ≤ m − 1 (i.e. for τh(τh Dku)). With the help of the following lemma we can conclude
from bounds for second differences to similar bounds for first differences. This reasoning
was introduced by Domokos in [14] for the treatment of sub-elliptic equations in the Heisen-
berg-group (see also [22,5, Lemma 10.11]).

Lemma 5.3 Let f ∈ L2(−T, 0), (t1, t2) � (−T, 0), 0 < α < 1 and 0 < h0 <
1
2 min{|t2|,

T + t1}. Suppose that there exists M > 0 such that

t2∫

t1

|τh(τh f )|2 dt ≤ M2 |h|2α ∀ 0 < |h| < h0.

Then

t2∫

t1

|τh f |2 dt ≤ c(α, h0)
(
M2 + ‖ f ‖L2(−T,0)

) |h|2α ∀ 0 < |h| < h0

2
.

The final estimate for our dimension reduction result will be concluded with the help of
the following lemma. The proof is based on a measure theoretical argument, a parabolic
version of the so called Giusti Lemma [5, Lemma 10.13].

Lemma 5.4 Let v ∈ W
γ,

γ
2m ; p

loc (�T ; R
k) with γ ∈ (0, 1), p ≥ 1, k ∈ N. For the sets

A ≡
{

z0 ∈ �T : lim inf
ρ↘0

∫

Qρ(z0)

|v − (v)z0,ρ |p dz > 0

}
,

B ≡
{

z0 ∈ �T : lim sup
ρ↘0

|(v)z0,ρ | = ∞
}

there holds

dimP(A) ≤ n + 2m − γ p and dimP(B) ≤ n + 2m − γ p.
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5.2 Interpolation for parabolic fractional Sobolev spaces

In this chapter we want to establish a parabolic version of an interpolation theorem of S.
Campanato (see [11, Theorem 2.1], [9, Lemma 2.5]). It ensures better integrability proper-
ties of a function by interpolation between parabolic fractional Sobolev spaces and Hölder
spaces. The first version of this interpolation theorem can be found in [8, Teorema 3.III], in
which the interpolation between Sobolev and Hölder spaces is considered.

In this chapter we use parabolic cubes instead of parabolic cylinders. For ρ > 0 and z0 =
(x0, t0) ∈ R

n+1 the associated parabolic cube is denoted by Qρ(z0) ≡ Cρ(x0)×(t0−ρ2m, t0),
where Cρ(x0) ≡ {x ∈ R

n : ‖x − x0‖∞ < ρ} is the euclidean cube of sidelength 2ρ > 0 and
with center x0 ∈ R

n .
The next lemma is an interpolation result between the function spaces L2 and W 1+θ;2

in R
n . It will be applied later on the time-slices. For a proof we refer to [11, Appendix,

Lemma 1], or [5, Lemma 10.14].

Lemma 5.5 Let Cρ(x0) ⊂ R
n, ρ > 0 be a cube and suppose that u ∈ W 1+γ ; 2(Cρ(x0); R

k),
with γ ∈ (0, 1), k ∈ N. Then we have

∫

Cρ(x0)

|Du|2 dx ≤ c[Du]
2

1+γ
γ ; 2; Cρ(x0)

( ∫

Cρ(x0)

|u|2 dx

) γ
1+γ

+ c ρ−2
∫

Cρ(x0)

|u|2 dx,

where c = c(n, γ ).

The next lemma is a parabolic version of Lemma 2 in [11, Appendix].

Lemma 5.6 Let Qρ ≡ Qρ(z0) ⊂ R
n+1, ρ > 0 and suppose that u ∈ L2(t0 − ρ2m, t0;

W 1,2(Cρ(x0); R
k))∩ W

1+γ
2m ; 2(t0 −ρ2m, t0; L2(Cρ(x0); R

k)) and Du ∈ W γ,
γ

2m ;2(Qρ; R
nk),

for some γ ∈ (0, 1), k ∈ N. Then
∫

Qρ

|Du − (Du)Qρ |2 dz ≤ c(n, γ )
(
[Du]γ, γ2m ; 2; Qρ

+ [u]0, 1+γ
2m ; 2; Qρ

) 2
1+γ

×
( ∫

Qρ

|u − (u)Qρ |2 dz

) γ
1+γ
.

Proof Without loss of generality we can assume that z0 = (x0, t0) = 0. Let �ρ : R
n → R

k

be the affine function minimizing � �→ −∫Qρ
|u(x, t)−�(x)|2 dx dt . To bound the considered

integral we firstly exploit the fact that (Du)Qρ minimizes a �→ −∫Qρ
|Du(z) − a|2 dz, for

a ∈ R
nk and apply Lemma 5.5 “slicewise” to D(u − �ρ) (note also that D�ρ is constant)∫

Qρ

|Du − (Du)Qρ |2 dz ≤
∫

Qρ

|Du − D�ρ |2 dz

≤ c

0∫

−ρ2m

[Du(·, t)]
2

1+γ
γ ; 2; Cρ

(∫

Cρ

|u(·, t)− �ρ |2 dx

) γ
1+γ

dt + c ρ−2
∫

Qρ

|u − �ρ |2 dz

≤ c

(
[Du]

2
1+γ
γ,0; 2; Qρ

+ ρ−2
( ∫

Qρ

|u − �ρ |2 dz

) 1
1+γ )( ∫

Qρ

|u − �ρ |2 dz

) γ
1+γ
, (5.2)
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where we have used Hölder’s inequality with respect to t in the second last line. Note that
c = c(n, γ ). To bound the second integral on the in the right-hand side we exploit the
minimality property of �ρ and infer that
∫

Qρ

|u − �ρ |2 dz ≤
∫

Qρ

|u − (u)Qρ − (Du)Qρ · x |2 dz

≤ 2

0∫

−ρ2m

∫

Cρ

∣∣u(x, t)−(u)Cρ (t)−(Du)Qρ · x
∣∣2 dx dt+2|Cρ |

0∫

−ρ2m

|(u)Cρ (t)− (u)Qρ |2 dt

= 2(I1 + I2), (5.3)

with the obvious meaning of I1 and I2. To estimate I1 we apply in turn Poincaré’s inequality
“slicewise” for a.e. t ∈ (−ρ2m, 0) and the Poincaré inequality for fractional Sobolev spaces
from Lemma 5.2 to infer

I1 ≤ c ρ2
∫

Qρ

|Du − (Du)Qρ |2 dz ≤ c(n, γ ) ρ2(1+γ ) [Du]2
γ,

γ
2m ; 2; Qρ

,

For I I we use the fact that |t − s|−1 ≥ ρ−2m for t �= s ∈ (−ρ2m, 0) to obtain

I2 ≤
0∫

−ρ2m

0∫

−ρ2m

∫

Cρ

|u(·, t)− u(·, τ )|2 dx dτ dt

≤ ρ2(1+γ )
∫

Cρ

0∫

−ρ2m

0∫

−ρ2m

|u(·, t)− u(·, τ )|2
|t − τ |1+ 1+γ

m

dτ dt dx = ρ2(1+γ ) [u]2
0, 1+γ

2m ; 2; Qρ
.

Combining the previous bounds for I1 and I2 with (5.3) we arrive at
∫

Qρ

|u − �ρ |2 dz ≤ c(n, γ ) ρ2(1+γ ) ([Du]γ, γ2m ; 2; Qρ
+ [u]0, 1+γ

2m ; 2; Qρ

)2
,

Using this estimate to bound the second integral on the right-hand side of (5.2) and exploiting
once again the minimality property of �ρ we obtain the desired estimate. ��

Now we are in a position to prove the main result of this chapter.

Theorem 5.7 Let Qρ(z0) ⊂ R
n+1 be a parabolic cube and u ∈ L2(t0 − ρ2m, t0; W 1,2

(Cρ(x0); R
k)) ∩ W

1+γ
2m ; 2(t0 − ρ2m, t0; L2(Cρ(x0); R

k)) ∩ Cλ, λ2m (Qρ(z0); R
k) and Du ∈

W γ,
γ

2m ; 2(Qρ(z0); R
nk) with γ ∈ (0, 1), 0 < λ ≤ 1, k ∈ N. Then |Du| ∈ Ls(Qρ(z0)) for all

1 ≤ s < q = 2(n+2m)(1+γ )
n+2m−2λγ with the estimate

∫

Qρ(z0)

|Du − (Du)z0,ρ |s dz ≤ c(n,m, γ, q, s) As |Qρ(z0)|1− s
q .

Proof We consider a family of parabolic cubes (Qρ j (z j )) j∈N, which are pairwise disjoint
and with Qρ j (z j ) ⊂ Qρ(z0) for j ∈ N. We abbreviate Qρ ≡ Qρ(z0) and Q j ≡ Qρ j (z j )
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for j ∈ N. From Hölder’s inequality and Lemma 5.6 we infer for each parabolic cube Q j ,
j ∈ N that

∫

Q j

|Du − (Du)Q j | dz ≤ |Q j | 1
2

( ∫

Q j

|Du − (Du)Q j |2 dz

) 1
2

≤ c |Q j | 1
2

(
[Du]γ, γ2m ; 2; Q j

+ [u]0, 1+γ
2m ; 2; Q j

) 1
1+γ

×
( ∫

Q j

|u − (u)Q j |2 dz

) γ
2(1+γ )

, (5.4)

where c = c(n, γ ). Now we want to exploit the Hölder continuity of u to bound the last
integral on the right-hand side. Let z ∈ Q j . Since distP(z̃, z) ≤ c(n,m)ρ j for z, z̄ ∈ Q j ,
we observe that

|u(z)−(u)Q j |≤
∫

Q j

|u(z)−u(z̃)| dz̃ ≤ (c ρ j )
λ

∫

Q j

|u(z)− u(z̃)|
distP(z, z̃)λ

dz̃ ≤ c(n,m) ρλj [u]λ, λ2m ; Qρ
,

Integrating over Q j and noting that ρ j = (2−n |Q j |)1/(n+2m) we obtain
∫

Q j

|u − (u)Q j |2 dz ≤ c ρ2λ
j |Q j | [u]2

λ, λ2m ;Q j
= c(n,m) |Q j |1+ 2λ

n+2m [u]2
λ, λ2m ;Qρ

.

We will use this estimate to bound the last integral on the right-hand side of (5.4). Therefore,
the resulting exponent of |Q j | is 1

2 + γ
2(1+γ ) (1 + 2λ

n+2m ) = 1 − 1
q , where q is defined in the

statement of the theorem. Hence, we deduce from (5.4) that∫

Q j

|Du − (Du)Q j | dz ≤ c |Q j |1− 1
q A j ,

with

A j ≡
(
[Du]γ, γ2m ; 2; Q j

+ [u]0, 1+γ
2m ; 2; Q j

) 1
1+γ [u]

γ
1+γ
λ, λ2m ; Qρ

,

where c = c(n,m, γ ). Summing over j = 1, . . . ,∞ we infer

∞∑
j=1

|Q j |1−q
( ∫

Q j

|Du − (Du)Q j | dz

)q

≤ c(n,m, γ )q
∞∑
j=1

Aq
j ≤ c(n,m, γ )q Aq ,

where we have also used the fact that q/(1 + γ ) > 1 and

A ≡
(
[u]0, 1+γ

2m ; 2; Qρ
+ [Du]γ, γ2m ; 2; Qρ

) 1
1+γ [u]

γ
1+γ
λ, λ2m ; 2; Qρ

.

Taking the supremum over all families (Q j ) j∈N of disjoint parabolic cubes with Q j ⊂ Qρ

for j ∈ N we conclude that

K q(Du) ≡ sup

{ ∞∑
j=1

|Q j |1−q
( ∫

Q j

|Du − (Du)Q j | dz

)q

: Qρ ⊂
∞⋃
j=1

Q j

}
≤ cq Aq .
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An application of John-Nirenberg’s Theorem in a parabolic version ([27, Lemma 3],
[26, Lemma 2.3], in the elliptic case) then yields for any µ > 0 that

∣∣ {z ∈ Qρ : |Du(z)− (Du)Qρ | > µ
} ∣∣ ≤ c(n,m, γ, q)

(
A

µ

)q

.

For M > 0 we therefore obtain
∫

Qρ

|Du − (Du)Qρ |s dz = s

∞∫

0

µs−1 |{z ∈ Qρ : |Du(z)− (Du)Qρ | > µ}|dµ

= s

M∫

0

. . . dµ+ s

∞∫

M

. . . dµ

≤ Ms |Qρ | + c s

∞∫

M

Aq µs−q−1dµ = Ms |Qρ | + c s

q − s
Aq Ms−q ,

where c = c(n,m, q, γ ). Choosing M = A|Qρ |−
1
q we infer the desired estimate. ��

Remark 5.8 At this stage we want to mention that the result of the previous theorem can also
be applied on parabolic cylinders. But then we end up with a smaller radius. More precisely,
let Qρ(z0) be a parabolic cylinder, such that the assumptions of Theorem 5.7 are fulfilled on
Qρ(z0). Then we can conclude that |Du| ∈ Ls(Qρ/2(z0)) for all 1 ≤ s < q .

6 Dimension reduction

Since the coefficients A of our system are not assumed to be Lipschitz continuous with respect
to (z, δu) we cannot expect to derive estimates for difference quotients of Dmu. The best
we can hope for is to controll the fractional difference quotients of Dmu with denominator

hβ in x-direction, respectively h
β

2m in t-direction, where β is the Hölder exponent of the
coefficients in (1.8). The method to consider fractional difference quotients was developed
by Mingione in [31] and [30] for elliptic systems. In order to derive estimates for the finite
differences in time τh Dmu of Dmu we will have to consider finite differences τh(A) of the
coefficients A. Thereby we will often use the following decomposition

τh
[
A(·, ·, δu(·, ·), Dmu(·, ·))] (x, t)

= A
(
x, t + h, δu(x, t + h), Dmu(x, t + h)

)− A
(
x, t + h, δu(x, t + h), Dmu(x, t)

)
+A

(
x, t + h, δu(x, t + h), Dmu(x, t)

)− A
(
x, t + h, δu(x, t), Dmu(x, t)

)
+A

(
x, t + h, δu(x, t), Dmu(x, t)

)− A
(
x, t, δu(x, t), Dmu(x, t)

)
≡ A (h)+ B(h)+ C (h). (6.1)

Furthermore, we denote

A (h)(x, t) =
1∫

0

∂A

∂p

(
x, t + h, δu(x, t + h), Dmu(x, t)+ ϑτh Dmu(x, t)

)
dϑ

·τh(D
mu)(x, t)

≡ Ã (h) · τh(D
mu)(x, t), (6.2)
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with the obvious meaning of Ã (h). The conditions (1.2) and (1.7) imply the following
ellipticity and boundedness properties of Ã (h)

Ã (h)p · p ≥ ν |p|2, |Ã (h)| ≤ L , (6.3)

for p ∈ R
N and consequently

|A (h)| = |Ã (h) τh(D
mu)| ≤ L |τh(D

mu)|. (6.4)

The Hölder continuity of A in (1.8) provides the following bound for B(h) and C (h)

|B(h)| ≤ L θ̃ (|τh(δu)|)
(
1 + |Dmu|) , |C (h)| ≤ L |h| β2m

(
1 + |Dmu|) . (6.5)

Similarly, we can decompose the differences τ s
h (A) of A in the space directions es , s =

1, . . . , n. Since the proofs of the fractional differentiability of Dmu in Chapts. 6.2 and 6.3
for the space direction are similar—but simpler—then the ones for the time direction, we
will not accomplish the details there. We will only sketch the differences and refer to [5] for
a detailed proof.

6.1 Estimates for finite differences

We first consider the derivatives Dku, 0 ≤ k ≤ m − 1 of lower order of a weak solution u
of system (1.1). Since u ∈ L2(−T, 0; W m,2(�,RN )) we know that Dku is weakly differen-
tiable with respect to the space-variable x . Therefore, we can estimate finite differences of
Dku, 0 ≤ k ≤ m − 1 by

t2∫

t1

∫

BR(x0)

|τ s
h (D

ku)|2 dx dt ≤ c(n)|h|2
t2∫

t1

∫

BR+|h|(x0)

|Dk+1u|2 dx dt, (6.6)

whenever BR+|h|(x0) � � and (t1, t2) � (−T, 0). But Dku is not necessarily weakly dif-
ferentiable with respect to the time variable t . To obtain nevertheless a similar estimate, we
will exploit the parabolic system. Roughly speaking, each space derivative corresponds to a
“ 1

2m th time derivative”. We know that u is m times weakly differentiable with respect to the
space variable x . This suggests that u is “ 1

2 times differentiable” with respect to t , and Dku
respectively “ m−k

2m times”. In a certain sense this is the conclusion of the following lemma,
where we derive suitable estimates for |τhu|.
Lemma 6.1 Suppose that u ∈ L2(−T, 0; W m,2(�; R

N )) is a weak solution of system (1.1)
under the assumptions (1.3) and (1.4) and let (t1, t2) � (−T, 0), B2r (x0) � � and 0 < r ≤ 1.
Then for all 0 < |h| < 1

2 min{|t2|, T + t1} the following estimate holds

t2∫

t1

∫

Br (x0)

|τhu|2
|h| dz ≤ c(n,m, L)

(
1 + |h|

r2m

) t2∫

t1

∫

B2r (x0)

(
1 + [|Dmu|]h + |τh(D

mu)|)2 dz.

Proof Without loss of generality we can assume that x0 = 0 and we show the assertion for
h > 0, since the proof in the case h < 0 is similar, with [u]h̄ instead of [u]h , where [u]h̄ and
[u]h denote the Steklov-means of u defined in (2.5). Therefore let 0 < h < 1

2 min{|t2|, T +t1}.
We start with the Steklov-formulation (2.7) of the system. Due to the fact that τhu =

h ∂t [u]h , we can write ∂t [u]h · ϕ = τhu
h · ϕ for the integrand on the left-hand side of (2.7).

Let r ≤ r1 < r2 ≤ 2r . We choose a cut-off η ∈ C∞
0 (Br2) with η ≡ 1 on Br1 and
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|D jη| ≤ c(r2 − r1)
− j for 0 ≤ j ≤ m. Taking the test-function ϕ = η τhu, integrating over

(t1, t2), using the growth assumptions (1.3) on A and (1.4) on B and Hölder’s inequality,
we get

t2∫

t1

∫

Br2

|τhu|2
h

η dz

=
t2∫

t1

∫

Br2

∂t [u]h · η τhu dz

= −
t2∫

t1

∫

Br2

[
A(·, δu, Dmu)

]
h · Dm(η τhu)+ [B(·, δu, Dmu)

]
h · δ(η τhu) dz

≤ c(m, L)

( t2∫

t1

∫

Br2

(
1 + [|Dmu|]h

)2 dz

) 1
2
( m∑

k=0

t2∫

t1

∫

Br2

|Dk(η τhu)|2 dz

) 1
2

. (6.7)

To bound the second term on the right-hand side we use that |Dk− jη| ≤ c (r2 − r1)
−(k− j)

for 0 ≤ j ≤ k ≤ m, η ≡ 1 on Br1 , apply the Interpolation-lemma 2.4 and note that
Dm(τhu) = τh(Dmu) and r2 − r1 ≤ 1. Thus, we obtain for 0 ≤ k ≤ m

t2∫

t1

∫

Br2

|Dk(ητhu)|2dz ≤ c
k∑

j=0

t2∫

t1

∫

spt Dk− jη

|D j (τhu)|2
(r2 − r1)2(k− j)

dz

≤ c

t2∫

t1

∫

Br2

|τhu|2
(r2 − r1)2m

+ |τh(D
mu)|2dz

where c = c(n,m). Summing over k = 0, . . . ,m this yields a bound for the second term on
the right-hand side of (6.7). Recalling that η ≡ 1 on Br1 and using Br2 ⊂ B2r and Young’s
inequality we therefore obtain from (6.7) that

t2∫

t1

∫

Br1

|τhu|2
h

dz ≤ 1

2

t2∫

t1

∫

Br2

|τhu|2
h

dz

+ c

(
1 + h

(r2 − r1)2m

) t2∫

t1

∫

B2r

(
1 + [|Dmu|]h + |τh Dmu|)2 dz,

where c = c(n,m, L). Applying Lemma 2.3 we infer the desired estimate. ��

Corollary 6.2 Suppose that u ∈ L2(−T, 0; W m,2(�; R
N )) is a weak solution of system

(1.1) under the assumptions (1.3) and (1.4) and let (t1, t2) � (−T, 0), B2r (x0) � � with
0 < r ≤ 1. Then for all 0 < |h| < 1

2 min{|t2|, T + t1, r2m} and all 0 ≤ k ≤ m − 1 there
holds
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t2∫

t1

∫

Br (x0)

|τh(D
ku)|2 dz ≤ c(n,m, L) |h| m−k

m

t2∫

t1

∫

B2r (x0)

(
1 + [|Dmu|]h + |τh(D

mu)|)2 dz.

Proof Applying the Interpolation-Lemma 2.4 “slicewise" on the ball Br (x0)with the choice

ε = |h| m−k
m /r2(m−k) (note that |h| m−k

m /r2(m−k) ≤ 1 by assumption) we infer that

t2∫

t1

∫

Br (x0)

|Dk(τhu)|2 dz ≤ |h| m−k
m

t2∫

t1

∫

Br (x0)

|Dm(τhu)|2 dz + c(n,m) |h|− k
m

t2∫

t1

∫

Br (x0)

|τhu|2 dz.

From Lemma 6.1 we obtain a bound for the second integral on the right-hand side (note that
|h|/r2m ≤ 1 by assumption). Finally noting that Dk(τhu) = τh(Dku) we infer the asserted
estimate. ��
Corollary 6.3 Suppose that u ∈ L2(−T, 0; W m,2(�; R

N )) is a weak solution of system
(1.1) under the assumptions (1.3) and (1.4) and let (t1, t2) � (−T, 0), B2r (x0) � � with
0 < r ≤ 1 and 0 < |h| < 1

2 min{|t2|, T + t1, r2m}. Then for 0 ≤ k ≤ m − 1 there holds

t2∫

t1

∫

Br (x0)

|τh(D
ku)|2 dz ≤ c(n,m, L) |h| m−k

m

t2+|h|∫

t1−|h|

∫

B2r (x0)

(
1 + |Dmu|)2 dz.

Proof The conclusion immediately follows from Corollary 6.2, since we can further esti-
mate the right-hand side with the help of (2.6) and (5.1) (and respectively their analogues for
negative h). ��
Remark 6.4 Under the assumptions of Corollary 6.3 we conclude with Lemma 5.1 that for
0 ≤ k ≤ m − 1 and for all γ ∈ (0, 1) we have

Dku ∈ W
m−k, γ (m−k)

2m ; 2
loc (�T ; R

Mk ).

We will also need a version of Corollary 6.2 where the exponent of |τh(Dku)| is larger
then 2. We will attain such an estimate by transferring the estimate from Corollary 6.2 to a
“larger” L p-norm with the help of the Hardy-Littlewood Maximal function and the Sharp
function.

Lemma 6.5 Suppose that u ∈ L2(−T, 0; W m,2(�; R
N )) is a weak solution of system (1.1)

under the assumptions (1.3) and (1.4) and let (t1, t2) � (−T, 0), B2r (x0) � � with 0 <
r ≤ 1. Furthermore suppose that |Dmu| ∈ L2+b

loc (�T ) for some b > 0. Then there exists
c = c(n,m, L , b) such that for all 0 ≤ k ≤ m −1 and 0 < |h| < 1

2 min{|t2|, T + t1, 1} there
holds

t2∫

t1

∫

Br (x0)

|τh(D
ku)|2+b dz

≤ c |h| (2+b)(m−k)
2m

t2∫

t1

∫

B2r (x0)

(
1 + |Dmu| + [|Dmu|]h + |τh(D

mu)|)2+b dz.
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Proof We choose a parabolic cylinder Qρ(z̄) = Bρ(x̄)×(t̄ −ρ2m, t̄ ) ⊂ Br (x0)×(t1, t2) and
denote Q2ρ,ρ2m (z̄) = B2ρ(x̄)× (t̄ − ρ2m, t̄ ). Now we distinguish the two cases ρ2m ≥ |h|
and ρ2m < |h|.

In the case ρ2m ≥ |h| we can apply Corollary 6.2 to obtian for 0 ≤ j ≤ m − 1, with
c = c(n,m, L):
∫

Qρ(z̄)

|τh D j u − (τh D j u)z̄,ρ |2 dz ≤ 2
∫

Qρ(z̄)

|τh D j u|2 dz

≤ c |h| m− j
m

∫

Q2ρ,ρ2m (z̄)

(
1 + [|Dmu|]h + |τh(D

mu)|)2 dz.

In the case ρ2m < |h|, let η̃ ∈ C∞
0 (B2ρ(x̄)) be a non-negative weight-function with∫

B2ρ(x̄)
η̃ dx = 1 and ‖D�η̃‖L2(Bρ(x̄)) ≤ cρ−( n

2 +�) for 0 ≤ � ≤ 2m. Exploiting the weighted

means of τh D j u defined in (3.14) we can decompose the integral similar to (3.18) in the
proof of the Poincaré type inequality. Then, applying the Poincaré inequality on the horizontal
slices Bρ(x̄)× {t} for a.e. t ∈ (t̄ − ρ2m, t̄) we infer

t̄∫

t̄−ρ2m

∫

Bρ(x̄)

|τh D j u − (τh D j u)z̄,ρ |2 dx dt ≤ c(n) ρ2

t̄∫

t̄−ρ2m

∫

Bρ(x̄)

|τh D j+1u|2 dx dt

+ 3

t̄∫

t̄−ρ2m

t̄∫

t̄−ρ2m

∣∣(τh D j u)η̃(t)− (τh D j u)η̃(τ )
∣∣2 dτ dt.

To estimate the integrand of the second integral we use the estimate for differences of weighted
means from Remark 3.14 on the cylinders Qρ(z̄) and Qρ(x̄, t̄ + h). Noting that ρm− j ≤
|h| m− j

2m we obtain for a.e. t, τ ∈ (t̄ − ρ2m, t̄ ) that

|(τh D j u)η̃(t)− (τh D j u)η̃(τ )|
≤ |(D j u)η̃(t + h)− (D j u)η̃(τ + h)| + |(D j u)η̃(t)− (D j u)η̃(τ )|
≤ c

ρ2m

ρm+ j

∫

Qρ(z̄)

(
1 + |Dmu(x, t + h)| + |Dmu|) dx dt

≤ c(n,m, L) |h| m− j
2m

∫

Qρ(z̄)

(
1 + |τh Dmu| + |Dmu|) dz,

where we have also used the fact that |Dmu(x, t + h)| ≤ |τh Dmu(x, t)| + |Dmu(x, t)|.
Inserting this above, using Hölder’s inequality and noting that ρ2 ≤ |h| 1

m we arrive at
∫

Qρ(z̄)

|τh D j u − (τh D j u)z̄,ρ |2 dz

≤ c |h| 1
m

∫

Qρ(z̄)

|τh D j+1u|2 dz + c |h| m− j
m

∫

Qρ(z̄)

(
1 + |τh Dmu| + |Dmu|)2 dz.
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Combining both cases we conclude that for 0 ≤ j ≤ m −1 and for all parabolic cylinders
Qρ(z̄) ⊂ Br (x0)× (t1, t2) there holds

∫

Qρ(z̄)

|τh D j u − (τh D j u)z̄,ρ |2 dz

≤ c |h| 1
m

∫

Qρ(z̄)

|τh D j+1u|2 dz + c(n,m, L) |h| m− j
m

∫

Q2ρ,ρ2m (z̄)

|wh |2 dz,

where

wh ≡ 1 + |Dmu| + [|Dmu|]h + |τh(D
mu)|.

We denote Q0 ≡ Br (x0)× (t1, t2) and Q̂0 ≡ B2r (x0)× (t1, t2). Our next aim is to derive a
bound for the sharp function of τh D j u, defined below. For this we consider a point z̃ ∈ Q0

and a parabolic cylinder Qρ(z̄) ⊂ Q0 with z̃ ∈ Qρ(z̄). From Hölder’s inequality and the last
estimate we infer that

( ∫

Qρ(z̄)

|τh D j u − (τh D j u)z̄,ρ | dz

)2

≤
∫

Qρ(z̄)

|τh D j u − (τh D j u)z̄,ρ |2 dz

≤ c |h| 1
m M

(|τh D j+1u|2χQ0

)
(̃z )+ c |h| m− j

m M̃
(|wh |2χQ̂0

)
(̃z ),

where c = c(n,m, L) and M , M̃ denote the maximal functions defined by

M( f )(̃z ) ≡ sup
z̃∈Qr (ẑ)

∫

Qr (ẑ)

| f | dz, M̃( f )(̃z ) ≡ sup
z̃∈Q2r,r2m (ẑ)

∫

Q2r,r2m (ẑ)

| f | dz

for an integrable function f : R
n+1 → R and z̃ ∈ R

n+1. Taking the supremum over all
parabolic cylinders Qρ(z̄) with z̃ ∈ Qρ(z̄) we find that for each z̃ ∈ Q0 there holds

[τh D j u]#
Q0
(̃z ) ≤ c |h| 1

2m M
(|τh D j+1u|2χQ0

) 1
2 (̃z )+ c |h| m− j

2m M̃
(|wh |2χQ̂0

) 1
2 (̃z ),

where c = c(n,m, L) and f #
Q0

denotes the localized Sharp function of f :

f #
Q0
(̃z) ≡ sup

Q⊂Q0, z̃∈Q

∫

Q

| f − ( f )Q | dz,

where the supremum is taken over all parabolic cylinders Q with z0 ∈ Q ⊂ Q0. Due to a
result of C. Fefferman and E. M. Stein, (see [21], Theorem 5, [24], Theorem 4.8) we know
that f #

Q0
∈ L p(Q0) implies that f ∈ L p(Q0) (and vice versa) and for p > 1 the following

estimate holds ∫

Q0

| f − ( f )Q0 |p dz ≤ c(n, p)
∫

Q0

| f #
Q0

|p dz.

We mention that in [21] and [24] the previous estmate is proved for a sharp function, where
the supremum is taken over cubes. But the proof can be adapted to the parabolic geometry
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with minor changes. Therefore, we infer for 0 ≤ j ≤ m − 1 that

∫

Q0

|τh D j u − (τh D j u)Q0 |2+b dz ≤ c
∫

Q0

∣∣[τh D j u]#
Q0

∣∣2+b dz

≤ c |h| 2+b
2m

∫

Q0

M
(|τh D j+1u|2χQ0

) 2+b
2 dz + c |h| (2+b)(m− j)

2m

∫

Q0

M̃
(|wh |2χQ̂0

) 2+b
2 dz

≤ c |h| 2+b
2m

∫

Q0

|τh D j+1u|2+b dz + c |h| (2+b)(m− j)
2m

∫

Q̂0

|wh |2+b dz,

where we have also used the Hardy-Littlewood maximal theorem in the last line. Here c =
c(n,m, L , b). Since we can bound the mean value |(τh D j u)Q0 | with the help of Corollary 6.2,
we find that

∫

Q0

|τh D j u|2+b dz ≤ c |h| 2+b
2m

∫

Q0

|τh D j+1u|2+b dz + c |h| (2+b)(m− j)
2m

∫

Q̂0

|wh |2+b dz,

where c = c(n,m, L , b). Starting with j = k and iterating this estimate for j = k +
1, . . . ,m−1 and recalling the definitions ofwh , Q0 ≡ Br (x0)×(t1, t2) and Q̂0 ≡ B2r (x0)×
(t1, t2), we finally conclude the desired estimate. ��

In the case that Dmu admits better differentiability properties, with respect to t , we expect
that this also affects Dku, 0 ≤ k ≤ m −1 in some sense. More precisely, if Dmu is “γ - times
differentiable” with respect to t for some γ ∈ (0, 1), then we would expect that u is “ 1

2 + γ

- times differentiable” with respext to t (then Dku is “ m−k
2m + γ - times differentiable”). But

we do not get this property for first finite differences. In fact, the best we could get in the
proof of Lemma 6.1 is that u is “ 1

2 + γ
2 - times differentiable" with respext to t [this can be

seen from (6.7)]. Therefore we turn our attention to second differences τ−h(τh Dku).

Lemma 6.6 Let u ∈ L2(−T, 0; W m,2(�; R
N )) be a weak solution of (1.1) under the

assumptions (1.4) and (1.7) and let (t1, t2) � (−T, 0), B2R(x0) � � and 0 < r < R ≤ 1
and 0 < |h| < 1

2 min{|t2|, T +t1, |t2−t1|, r2m}. Moreover, suppose that |Dmu| ∈ L2+b((t1−
|h|, t2+|h|)×B2R(x0)) for some b ∈ (0, 2β)and δu ∈ C0,λ/(2m)((t1−|h|, t2+|h|)×B2R(x0))

for some λ ∈ (0, 1). Then for all 0 ≤ k ≤ m − 1 there holds

t2∫

t1

∫

Br

|τ−h(τh Dku)|2 dz ≤ c |h| m−k
m

(R − r)2m

[ t2∫

t1

∫

BR

|τh Dmu|2 + |τ−h Dmu|2 dz

+ |h| 1
2m (λβ+b(1− λ

2 ))

t2+|h|∫

t1−|h|

∫

B2R

1 + |Dmu|2+b dz

]
,

where c = c(n,m, L , [δu]0,λ/(2m)).
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Proof Without loss of generality we assume that x0 = 0 and we show the assertion only for
h > 0. We start with the Steklov-formulation (2.7) of the system for [u]h̄ instead of [u]h .
Taking the difference at the levels t + h and t we obtain for a.e. t ∈ (t1, t2)

∫

�

τh
(
∂t [u]h̄(·, t)

) · ϕ dx

= −
∫

�

τh
[
A(·, t, δu, Dmu)

]
h̄ · Dmϕ + τh

[
B(·, t, δu, Dmu)

]
h̄ · δϕ dx

for all ϕ ∈ W m,2
0 (�,RN ). We choose r ≤ r1 < r2 ≤ R and a cut-off function η ∈ C∞

0 (Br2)

with 0 ≤ η ≤ 1, η ≡ 1 on Br1 and |D jη| ≤ c(r2 − r1)
− j for j = 0, . . . ,m. Choosing

the test-function ϕ = η(τ−hτhu), integrating over (t1, t2) and noting that ∂t [u]h̄ = τ−hu
−h ,

we infer that

t2∫

t1

∫

Br2

|τ−hτhu|2
h

η dz

= −
t2∫

t1

∫

Br2

τh(∂t [u]h̄) · η(τ−hτhu) dz

=
t2∫

t1

∫

Br2

τh[A(·, δu, Dmu)]h̄ · Dm(ητ−hτhu)+ τh[B(·, δu, Dmu)]h̄ · δ(ητ−hτhu) dz.

With the notation from (6.1) we decompose τh[A]h̄ = [τh A]h̄ = [A (h)]h̄ + [B(h)]h̄ +
[C (h)]h̄ . With Young’s inequality we obtain from the above equation for ε > 0 that

t2∫

t1

∫

Br2

|τ−hτhu|2
h

η dz

≤
t2∫

t1

∫

Br2

ε|Dm(η τ−hτhu)|2 + 1
ε

(|[A (h)]h̄ |2 + |[B(h)]h̄ |2 + |[C (h)]h̄ |2) dz

+
t2∫

t1

∫

Br2

∣∣τh
[
B(·, δu, Dmu)

]
h̄

∣∣ |δ(η τ−hτhu)| dz

= ε I1 + 1
ε
(I2 + I3 + I4)+ I5, (6.8)

with the obvious meaning of I1 − I5.
Estimate for I1. We recall that D�− jη ≡ 0 on Br1 for j ≤ � − 1. Applying the Inter-

polation-lemma 2.4 we obtain for 0 ≤ j ≤ m − 1, j ≤ � ≤ m and for all 0 < µ ≤ 1
that
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t2∫

t1

∫

sptD�− jη

|D j (τ−hτhu)|2
(r2 − r1)2(�− j)

dz

≤
t2∫

t1

∫

Br2

µ

2
(r2 − r1)

2(m−�)|Dm(τ−hτhu)|2 + c

µ
j

m− j

|τ−hτhu|2
(r2 − r1)2�

dz

≤ µ

t2∫

t1

∫

BR

|τh Dmu|2 + |τ−h Dmu|2 dz + c(n,m)

µm−1

t2∫

t1

∫

Br2

|τ−hτhu|2
(r2 − r1)2m

dz, (6.9)

where we have also used the fact that (r2 − r1) ≤ 1, |h| ≤ 1 and |τ−hτh f (t)| = |2 f (t) −
f (t +h)− f (t −h)| ≤ |τh f (t)|+|τ−h f (t)|. Using the assumptions on η, i.e. that |Dm− jη| ≤
c(r2 − r1)

−(m− j) for 0 ≤ j ≤ m and the last estimate in the case µ = 1 and � = m we infer
that

I1 ≤ c
m∑

j=0

t2∫

t1

∫

sptDm− jη

|D j (τ−hτhu)|2
(r2 − r1)2(m− j)

dz

≤ 2m

t2∫

t1

∫

BR

|τh Dmu|2 + |τ−h Dmu|2 dz + c(n,m)

t2∫

t1

∫

Br2

|τ−hτhu|2
(r2 − r1)2m

dz.

Estimate for I2. From (2.6), the bound (6.4) for A (h) and noting that |h| ≤ |t2 − t1|
we get

I2 ≤
t2∫

t1−h

∫

BR

|A (h)|2 dz ≤ L2

t2∫

t1−h

∫

BR

|τh(D
mu)|2 dz

≤ L2

t2∫

t1

∫

BR

|τh(D
mu)|2 + |τ−h(D

mu)|2 dz.

Estimate for I3. Similarly, using (2.6) and (6.5), (1.9), Hölder’s inequality (with exponents
2+b

2 , 2+b
b ) and noting that |Dmu| ∈ L2+b by assumption, we obtain

I3 ≤ L2
( t2∫

t1−h

∫

BR

(
1 + |Dmu|)2+b dz

) 2
2+b
( t2∫

t1−h

∫

BR

|τh(δu)| 2β(2+b)
b dz

) b
2+b

.

We now exploit the Hölder continuity of δu, i.e. the fact that |τh(δu)(z)| ≤ |h| λ
2m [δu]0,λ/(2m)

for all z ∈ BR × (t1 − h, t2), to diminish the exponent 2β(2 + b)/b in the last integral to
2 + b. Taking into account that |Dmu| ∈ L2+b

loc we apply Lemma 6.5 (with t1, t2 replaced by
t1 − h, t2) to infer that
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( t2∫

t1−h

∫

BR

|τh(δu)| 2β(2+b)
b dz

) b
2+b

≤ |h| λ(2β−b)
2m [δu]2β−b

0, λ2m

( t2∫

t1−h

∫

BR

|τh(δu)|2+b dz

) b
2+b

≤ c |h| b
2m + λ(2β−b)

2m

( t2∫

t1−h

∫

B2R

(
1 + |Dmu| + [|Dmu|]h + |τh Dmu|)2+b dz

) b
2+b

≤ c
(
n,m, L , [δu]0,λ/(2m)

) |h| b
2m + λ(2β−b)

2m

( t2+h∫

t1−h

∫

B2R

(
1 + |Dmu|)2+b dz

) b
2+b

.

Here we have used (2.6) and (5.1) in the last line. Inserting this estimate above we find that

I3 ≤ c(n,m, L , [δu]0,λ/(2m)) |h| 1
2m (λβ+b(1− λ

2 ))

t2+h∫

t1−h

∫

B2R

(
1 + |Dmu|)2+b dz.

Here we have used the fact that b < 2β.
Estimate for I4. From (2.6), and (6.5), the facts that |h| ≤ 1 and 1

2m (λβ + b(1 − λ
2 )) =

1
2m (λ(β − b

2 )+ b) ≤ β
m , since b ∈ (0, 2β) we obtain

I4 ≤ L2 |h| 1
2m (λβ+b(1− λ

2 ))

t2∫

t1−h

∫

BR

(
1 + |Dmu|)2 dz.

Estimate for I5. From Young’s inequality we get for ε > 0

I5 ≤ ε

2m |h| 1
m

t2∫

t1

∫

Br2

|δ(ητ−hτhu)|2 dz + 2m |h| 1
m

ε

t2∫

t1

∫

Br2

∣∣τh
[
B(·, δu, Dmu)

]
h̄

∣∣2 dz.

Using the estimate (6.9) in the case µ = |h| 1
m we infer for 1 ≤ � ≤ m − 1 that

t2∫

t1

∫

Br2

|D�(η τ−hτhu)|2 dz

≤ c
�∑

j=0

t2∫

t1

∫

sptD�− jη

|D j (τ−hτhu)|2
(r2 − r1)2(�− j)

dz

≤ 2m |h| 1
m

t2∫

t1

∫

BR

|τh Dmu|2 + |τ−h Dmu|2 dz + c(n,m) |h|− m−1
m

t2∫

t1

∫

Br2

|τ−hτhu|2
(r2 − r1)2m

dz.

Inserting this above and using the growth (1.4) of B, (2.6), and (5.1) we obtain, with
c = c(n,m, L)
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I5 ≤ ε

t2∫

t1

∫

BR

|τh Dmu|2 + |τ−h Dmu|2 dz + cε

|h|
t2∫

t1

∫

Br2

|τ−hτhu|2
(r2 − r1)2m

dz

+c|h| 1
m

ε

t2+h∫

t1−h

∫

BR

(
1 + |Dmu|)2 dz.

Combining the estimates for I1 - I5 with (6.8) and noting that |Du|2 ≤ 1 + |Du|2+b, we
arrive at

t2∫

t1

∫

Br1

|τ−hτhu|2
|h| dz ≤ c ε

(r2 − r1)2m

t2∫

t1

∫

Br2

|τ−hτhu|2
|h| dz

+ c

ε

t2∫

t1

∫

BR

|τh Dmu|2 + |τ−h Dmu|2 dz

+c |h| 1
2m (λβ+b(1− λ

2 ))

ε

t2+h∫

t1−h

∫

B2R

1 + |Dmu|2+b dz,

where c = c(n,m, L , [δu]0,λ/(2m)). We choose ε = 1
2 c (r2 − r1)

2m and apply Lemma 2.3 in
the case ϑ = 1

2 , to infer the asserted estimate in the case k = 0. In the case 1 ≤ k ≤ m −1 we

once again apply the Interpolation-Lemma 2.4 with (τ−hτhu, 0, r, 2, (|h|/r2m)
m−k

m ) instead
of (u, r1, r2, p, ε), which is possible since |h|/r2m ≤ 1 by assumption. This finally yields
the desired estimate. ��

The following lemma is the starting point for the considerations concerning finite differ-
ences of Dmu.

Lemma 6.7 Let u ∈ L2(−T, 0; W m,2(�; R
N )) be a weak solution of (1.1) with (1.2)–(1.4),

(1.7) and (1.8) and suppose that (t1, t2) � (−T, 0), BR(x0) � � and 0 < r < R ≤ 1.
Moreover let η ∈ C∞

0 (BR(x0)) and ζ ∈ C1(R) be two cut-off functions with 0 ≤ η ≤ 1,
0 ≤ ζ ≤ 1, η ≡ 1 on Br (x0), |Dkη| ≤ c(R − r)−k for 0 ≤ k ≤ m and ζ ≡ 0 on (−∞, t1].
Then for 0 < |h| < 1

2 min{T + t1, |t2|, 1} there holds

t2∫

t1

∫

Br (x0)

|τh(D
mu)|2ζ 2 dz ≤ c |h| βm

t2∫

t1

∫

BR(x0)

(
1 + |Dmu|)2 ζ 2 dz

+ c

t2∫

t1

∫

BR(x0)

m−1∑
k=0

|τh(Dku)|2
(R − r)2(m−k)

ζ 2 + ‖ζ ′‖∞|τhu|2ζ dz

+ c

t2∫

t1

∫

BR(x0)

(
1 + |Dmu|)2 θ̃ (|τh(δu)|)2 ζ 2 dz

+ c

∣∣∣∣
t2∫

t1

∫

BR(x0)

τh
[
B(·, δu, Dmu)

] · δ(η2mτhu)ζ 2 dz

∣∣∣∣,

where c = c(n,m, ν, L).
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We mention that the analogue estimate also holds for finite differences τ s
h , s = 1, . . . , n in

space-direction and the proof can be completely adapted.

Proof Without loss of generality we can assume that x0 = 0. We choose 0 < |λ| <
1
2 min{T + t1, |t2|, 1}. Our starting point is the Steklov-formulation (2.7) of the system,
with λ instead of h. Taking the difference of (2.7) at the levels t + h and t and using that
τh(∂t uλ) = ∂t (τhuλ), we obtain for a.e. t ∈ (t1, t2)∫

�

(
∂t (τh[u]λ(·, t)) · ϕ + τh

[
A(·, t, δu, Dmu)

]
λ

· Dmϕ
)

dx

=
∫

�

τh
[
B(·, t, δu, Dmu)

]
λ

· δϕ dx

for all ϕ ∈ W m,2
0 (�,RN ). We now choose the test-function ϕλ = (τh[u]λ)η2mζ 2, where η

and ζ are specified in the statement of the lemma. Noting that ζ(t1) = 0 we calculate for the
first-term on the left-hand side, integrated over (t1, t2):

t2∫

t1

∫

�

∂t (τh[u]λ) · ϕλ dz = 1

2

∫

�

η2m |τh[u]λ(t2)|2 ζ 2(t2) dx −
t2∫

t1

∫

�

η2m |τh[u]λ|2 ζ ζ ′ dz.

Now, we integrate the above system over (t1, t2) and insert the previous identity. Passing to
the limit λ ↘ 0 and noting that the term involving ζ(t2) is non-negative, we arrive at

t2∫

t1

∫

�

τh
[
A(·, δu, Dmu)

] · Dmϕ dz ≤
t2∫

t1

∫

�

τh
[
B(·, δu, Dmu)

] · δϕ dz

+
t2∫

t1

∫

�

|τhu|2 η2mζ ζ ′ dz,

where ϕ = (τhu)η2mζ 2. With the chain rule we compute for 0 ≤ j ≤ m that D jη2m =
η2m− j F j (η), where F j (η) ∈ R

M j and |F j (η)| ≤ c(n,m) (R − r)− j . With this notation
we find that

Dmϕ =
(

Dm(τhu) η2m + ηm
m−1∑
k=0

(
m

k

)
Dk(τhu)� Fm−k(η) η

k

︸ ︷︷ ︸
≡lot

)
ζ 2.

Recalling the decomposition of τh(A) from (6.1), i.e. τh(A)(x, t) = A (h)+ B(h)+ C (h),
we obtain:

t2∫

t1

∫

BR

A (h) · Dm(τhu) η2mζ 2 dz

≤
t2∫

t1

∫

BR

(|B(h)+ C (h)||Dm(τhu)| η2m + |A (h)+ B(h)+ C (h)||lot| ηm) ζ 2 dz

+
∣∣∣∣

t2∫

t1

∫

BR

τh
[
B(·, δu, Dmu)

] · δϕ dz

∣∣∣∣+
t2∫

t1

∫

BR

|τhu|2 η2mζ ζ ′ dz.
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With the notation from (6.2) we write A (h) = Ã (h)τh(Dmu) and infer from the ellipticity
(6.3) of Ã (h) an estimate from below for the integrand on the left-hand side of the above
inequality, i.e. A (h) · τh(Dmu) ≥ ν|τh(Dmu)|2. Also using the bound (6.4) for A (h), i.e.
|A (h)| ≤ L|τh Dmu|, Young’s inequality and 0 ≤ η ≤ 1, we obtain

ν

t2∫

t1

∫

BR

|τh(D
mu)|2 η2mζ 2 dz

≤
t2∫

t1

∫

BR

ν
2 |τh(D

mu)|2 η2mζ 2 + c
(|B(h)|2 + |C (h)|2 + |lot|2) ζ 2 dz

+
∣∣∣∣

t2∫

t1

∫

BR

τh
[
B(·, δu, Dmu)

] · δϕ dz

∣∣∣∣+
t2∫

t1

∫

BR

|τhu|2 η2mζ ζ ′ dz,

where c = c(ν, L). Now we estimate the remaining integrals on the right-hand side. The first
term can be absorbed on the left-hand side. For B(h) and C (h) we use the estimates in (6.5)
and for the the terms of lower order we recall that |Fm−k(η)| ≤ c(n,m)(R − r)−(m−k) for
0 ≤ k ≤ m − 1. Finally, dividing by ν/2 and noting that η ≡ 1 on Br we obtain the asserted
estimate. ��
6.2 Fractional estimates

In this chapter we show that Dmu admits certain fractional differentiability properties. For
this we have to assume slightly stronger hypothesis for the coefficients A and a mild regularity
for δu. Our main strategy can be described in the following way. We first derive estimates for
fractional difference quotients in x- and t- direction. This implies that Dmu lies in a certain
Nicolskii space. Thus, due to the embedding from Lemma 5.1 we can conclude the fractional
differentiability of Dmu in the sense of the W γ,

γ
2m spaces.

Lemma 6.8 Let u ∈ L2(−T, 0; W m,2(�; R
N )) be a weak solution of (1.1) under the

assumptions (1.2)–(1.4), (1.7) and (1.8). Then for any �̃ � � and (t1, t2) � (−T, 0) and for
all γ < δ

2 there holds

∫

�̃

t2∫

t1

t2∫

t1

|Dmu(x, t)− Dmu(x, τ )|2
|t − τ |1+ γ

m
dt dτ dx

+
t2∫

t1

∫

�̃

∫

�̃

|Dmu(x, t)− Dmu(y, t)|2
|x − y|n+2γ dx dy dt ≤ c < ∞,

where c = c(n,m, N , ν, L , β, γ, dist(�̃, ∂�), |t2|, T + t1, ‖u‖L2(−T,0;W m,2(�))) and δ =
βσ

1+σ , where σ = σ(n,m, N , L/ν) > 0 is the exponent from Theorem 4.1 about the higher
integrability of |Dmu|.

Moreover, in the case of simpler systems of the type (1.10), the assertion holds for all
γ < β.

Proof Here we shall take symmetric parabolic cylinders, i.e. for z0 ∈ R
n+1, R > 0 we denote

Q R(z0) ≡ BR(x0)×(t0 − R2m, t0 + R2m). Now, we will start with the time-direction, i.e. the
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first integral in the statement of the lemma. We choose a parabolic cylinder Q R(z0) � �T

with R ≤ 1. Without loss of generality we can assume that z0 = 0; then Q R(z0) = Q R =
BR × (−R2m, R2m). Moreover, we take 0 < |h| ≤ (R/4)2m . Let η ∈ C∞

0 (BR/2) and
ζ ∈ C1

0(−(R/2)2m, (R/2)2m) be two cut-off functions with 0 ≤ η ≤ 1, 0 ≤ ζ ≤ 1, η ≡ 1
on BR/4, ζ ≡ 1 on (−(R/4)2m, (R/4)2m), |Dkη| ≤ c R−k for 0 ≤ k ≤ m and |ζ ′| ≤ c R−2m .
With this particular choice of cut-off functions and with (R/4, R/2) instead of (r, R)we infer
from Lemma 6.7 that

∫

Q R/4

|τh(D
mu)|2 dz ≤ c |h| βm

∫

Q R/2

(
1 + |Dmu|)2 dz + c

∫

Q R/2

m−1∑
k=0

|τh(Dku)|2
R2(m−k)

dz

+ c
∫

Q R/2

(
1 + |Dmu|)2 θ̃ (|τh(δu)|)2 dz

+ c
∫

Q R/2

∣∣τh
[
B(·, δu, Dmu)

] ∣∣ |δ(η2mτhu)| dz

= c (I1 + I2 + I3 + I4), (6.10)

with the obvious meaning of I1 − I4 and where c = c(n,m, ν, L). Our aim is to show that
τh(Dmu) lies in a suitable Nicolskii-space. For this we still have to consider the terms I2 − I4.

Estimate for I2. Applying Corollary 6.3 with R/2 instead of r , which is possible since
|h| ≤ (R/4)2m and taking into account that (R/2)2m +|h| ≤ R2m we infer for 0 ≤ k ≤ m−1

∫

Q R/2

|τh(D
ku)|2 dz ≤ c(n,m, L) |h| m−k

m

∫

Q R

(
1 + |Dmu|2) dz. (6.11)

Since |h| ≤ 1 this bound implies that I2 ≤ c |h| 1
m , where c = c(n,m, L , R,

‖u‖L2(−T,0;W m,2(�))).
Estimate for I3. From Theorem 4.1 we know that |Dmu| is higher integrable, i.e. there

exists σ = σ(n,m, N , L/ν) > 0 such that |Dmu| ∈ L2(1+σ)
loc (�T ). Moreover, using Hölder’s

inequality and the fact that θ̃ ≤ 1 and therefore θ̃ (·) 2(1+σ)
σ ≤ θ̃ (·) we obtain

I3 ≤ |Q R/2|
( ∫

Q R/2

θ̃ (|τh(δu)|) 2(1+σ)
σ dz

) σ
1+σ ( ∫

Q R/2

(
1 + |Dmu|)2(1+σ) dz

) 1
1+σ

≤ c(n,m, N , ν, L) |Q R/2|
( ∫

Q R/2

θ̃ (|τh(δu)|) dz

) σ
1+σ ∫

Q R

(
1 + |Dmu|)2 dz,

To bound the first integral on the right-hand side we apply Jensen’s inequality to the concave
function θ̃ , use the growth condition (1.9) on θ̃ and Hölder’s inequality to infer that
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( ∫

Q R/2

θ̃ (|τh(δu)|) dz

) σ
1+σ

≤ c θ̃

( ∫

Q R/2

|τh(δu)| dz

) σ
1+σ

≤ c(n,m, L)

( ∫

Q R/2

|τh(δu)|2 dz

) βσ
2(1+σ)

.

Inserting this above and using the bound in (6.11) and that |h| m−k
m ≤ |h| 1

m for 0 ≤ k ≤ m −1
we arrive at

I3 ≤ c

( ∫

Q R/2

|τh(δu)|2 dz

) βσ
2(1+σ) ∫

Q R

(
1 + |Dmu|)2 dz ≤ c |h| βσ

2m(1+σ) ,

where c = c(n,m, N , ν, L , R, ‖u‖L2(−T,0;W m,2(�))).
Estimate for I4. We first apply Hölder’s inequality. Then we use the growth assumption

(1.4) on B and (5.1) in the first resulting integral. To estimate the second integral we differ-
entiate η2mτhu with respect to x , taking into account that |D jη| ≤ c R− j for 0 ≤ j ≤ m −1.
Finally, exploiting the bound in (6.11) we obtain

I4 ≤ c(n,m) L

( ∫

Q R

(
1 + |Dmu|)2 dz

) 1
2
( m−1∑

k=0

k∑
j=0

∫

Q R/2

|D j (τhu)|2
R2(k− j)

dz

) 1
2

≤ c |h| 1
2m ,

where c = c(n,m, L , R, ‖u‖L2(−T,0;W m,2(�))).
Combining the estimates for I2 − I4 with (6.10) and taking into account that |h| ≤ 1 and

that I3 = I4 = 0 for simpler systems of the type (1.10) we obtain∫

Q R/4

|τh(D
mu)|2 dz ≤ c

(
|h| βm + |h| 1

m

)
+ c
(
|h| βσ

2m(1+σ) + |h| 1
2m

)

≤ c1 |h| βm + c2 |h| βσ
2m(1+σ) , (6.12)

where ci = ci (n,m, ν, L , β, R, ‖u‖L2(−T,0;W m,2(�)) for i = 1, 2 and c2 = 0, for simpler
systems of the type (1.10). Since the constants c1 and c2 are independent of h, we can apply
Lemma 5.1 and conclude that

[Dmu]0, γ2m ; 2; Q R/4
≤ c(n,m, ν, L , β, γ, R, ‖u‖L2(−T,0;W m,2(�)) for all γ < δ

2 = βσ
2(1+σ) .

For systems of the type (1.10), the above statement even holds for all γ < β, since in this
case we have c2 = 0 in (6.12). Since this bound is independent of the particular considered
cylinder, the desired local estimate on �̃×(t1, t2) follows with a standard covering argument.

The proof for the spacial fractional differentiability, is essentially similar. Therefore, we
will only outline the differences. As starting point we use a spacial analogue of Lemma 6.7.
The terms appearing on the right-hand side can then be estimated similarly, apart from one
difference: Instead of applying Corollary 6.3 to infer (6.11), we now can exploit the fact that
δu has weak derivatives in L2 with respect to the space variable x , i.e. we can use the estimate
(6.6). Then, proceeding as above we can also conclude the fractional differentiability with
respect to the space direction. ��

Under the additional assumption that δu is Hölder continuous we can show Dmu ∈
W
γ,

γ
2m ; 2

loc (�T ; R
N ) for all γ < β, although the coefficients A depend on δu. This is proved

123



112 V. Bögelein

by an iteration argument in the following lemma. In each step of the iteration, the “order”
of fractional differentiability of Dmu can be improved. Within this procedure the Interpola-
tion-Theorem 5.7 plays an essential role.

Lemma 6.9 Let u ∈ L2(−T, 0; W m,2(�; R
N ))∩ Cm−1,λ, λ2m (�T ; R

N ) with λ ∈ (0, 1) be a
weak solution of (1.1) under the assumptions (1.2)–(1.4), (1.7) and (1.8). Then for all γ < β

we have Dmu ∈ W
γ,

γ
2m ; 2

loc (�T ; R
N ) and Dm−1u ∈ W

1+γ
2m ; 2

loc (−T, 0; L2(�; R
Mm−1)). More-

over for any �̃ � � and (t1, t2) � (−T, 0) there holds

[Dmu]γ, γ2m ; 2; �̃×(t1,t2) ≤ c < ∞, for all γ < β,

where c = c(n,m, N , ν, L , β, λ, γ, dist(Q̃, ∂�T ), ‖u‖L2(−T,0;W m,2(�)), [δu]λ, λ2m
).

Proof In the following, with C , respectively C�, Ĉ�, C̃� (with � ∈ N) we denote constants
depending on n, m, N , ν, L , β, λ, ‖u‖L2(−T,0;W m,2(�)) and [δu]λ, λ2m

. We will only indicate the
additional dependencies of these constats. Moreover, we once again take symmetric parabolic
cylinders, i.e. for z0 ∈ R

n+1, R > 0 we denote Q R(z0) ≡ BR(x0)× (t0 − R2m, t0 + R2m).
We choose such a parabolic cylinder Q R(z0) � �T with R ≤ 1 and fix γ ∈ (0, β). In the
following we will show that

{
Dmu ∈ W γ,

γ
2m ; 2(Q R/64�̄ (z0); R

N
)
,

Dm−1u ∈ W 1, 1+γ
2m ; 2(Q R/64�̄ (z0); R

Mm−1
)
,

(6.13)

where �̄ = �̄(β, γ, λ) ∈ N.
Without loss of generality, in the following we consider h > 0 as parameter for the finite

differences and we assume that z0 = 0. Initiallay we define the sequence (b�)�∈N of positive
real numbers

b0 = 0, b1 = βλ, b�+1 = βλ+ b�
(
1 − λ

2

)
.

Rewriting b� = βλ
∑�−1

i=0 (1 − λ
2 )

i , we see that b� ↗ 2β as � → ∞. Furthermore we define
a sequence of radii ρ� ≡ R/64� for � ∈ N and we set Q� ≡ Qρ� and denote αQ� ≡ Qαρ�

and αB� ≡ Bαρ� for α > 0. In the following we show by induction that for all � ∈ N, and
for all 0 < h ≤ ρ2m

� there holds⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫

16Q�

|τh Dmu|2 + |τ−h Dmu|2 dz ≤ C� |h| b�
2m ,

∫

16Q�

n∑
s=1

|τ s
h Dmu|2 dz ≤ C� |h|b� ,

(A�)

where C� = C�(R, �). Moreover, we have Dmu ∈ W
ϑb�

2 ,
ϑb�
4m ; 2(8Q�; R

N ) for all ϑ ∈ (0, 1)
and

[Dmu] ϑb�
2 ,

ϑb�
4m ; 2; 8Q�

≤ Ĉ�(R, �, ϑ). (B�)

Furthermore, we have |Dmu| ∈ L2+b�−1(Q�) and∫

Q�−1

|Dmu|2+b�−1 dz ≤ C̃�(R, �). (C�)

123



Higher order parabolic systems 113

We further note that C�, Ĉ� and C̃� depend on R, but not on the special cylinder Q R = Q R(z0)

and that possibly C�, Ĉ�, C̃� → ∞ as � → ∞. Therefore we will stop the iteration at some
finite step �̄.

The case � = 1. First we show that (A)1 holds. For this we will once again use the estimate
(6.10) from the proof of Lemma 6.8 with the same labelling for I1 − I4. But here we treat
the term I3 in a different way. Since θ̃ (s) ≤ sβ for s > 0 by (1.9) and due to the Hölder
continuity of δu we find that

I3 ≤
∫

Q R/2

(
1 + |Dmu|)2 |τh(δu)|2β dz ≤ |h| βλm [δu]2β

0, λ2m

∫

Q R/2

(
1 + |Dmu|)2 dz.

For the remaining terms I2 and I4 in (6.10) we use the same estimates as before. Taking also
into account that b1 = βλ by definition and |h| ≤ 1 we therefore conclude that

∫

Q R/4

|τh(D
mu)|2 dz ≤ c

(
|h| βm + |h| 1

m + |h| βλm + |h| 1
2m

)
≤ C1 |h| b1

2m ,

with the asserted dependence of the constant. The analogue estimate for −h instead of h
can be shown similarly. Since Q R/4 = Q16ρ1 = 16Q1, this shows the first bound in (A)1.
Since the same reasoning can also be applied for the space-direction, we also infer the sec-
ond estimate in (A)1. Together, this proves (A)1. By Lemma 5.1 (A)1 now implies that

Dmu ∈ W
ϑb1

2 ,
ϑb1
4m ; 2(8Q1; R

N ) for all ϑ ∈ (0, 1), i.e. (B)1 holds. For (C)1 there is nothing
to show, since |Dmu| ∈ L2 by assumption.

Induction step � → �+1. We now show (A)�+1, (B)�+1 and (C)�+1 provided that (A)�,
(B)� and (C)� hold for some � ≥ 1.

First, we show (C)�+1. Applying Lemma 6.6 with (8B�, 16B�,−(8ρ�)2m, (8ρ�)2m, b�−1,

m − 1) instead of (Br (x0), BR(x0), t1, t2, b, k) and using (A)� and (C)� we obtain (note that
λβ + b�−1(1 − λ

2 ) = b� and 0 < h ≤ ρ2m
� )

∫

8Q�

|τ−h(τh Dm−1u)|2 dz

≤ c|h| 1
m

ρ2m
�

∫

16Q�

(
|τh Dmu|2 + |τ−h Dmu|2 + |h| 1

2m (λβ+b�−1(1− λ
2 ))(1 + |Dmu|2+b�−1)

)
dz

≤ C(1/ρ�,C�, C̃�) |h| 1
m + b�

2m .

Since τ−hτh f (t) = −τhτh f (t − h) and h ≤ ρ2m
� this implies the same estimate for

τh(τh Dm−1u) instead of τ−h(τh Dm−1u) on the smaller cylinder 4Q�. Applying Lemma
5.3 yields a similar estimate for the first differences, i.e. for all 0 < h ≤ ρ2m

� we have
∫

4Q�

|τh(D
m−1u)|2 dz ≤ C(1/ρ�, b�,C�, C̃�) |h| 1

m + b�
2m . (6.14)

Therefore, we can apply the Lemma 5.1 with ( 2+b�
4m ,

2+ϑb�
4m ) instead of (γ, γ̃ ) to infer that

Dm−1u ∈ W 0,
2+ϑb�

4m ; 2(2Q�; R
Mm−1) for allϑ ∈ (0, 1) and there holds [Dm−1u]

0,
2+ϑb�

4m , 2Q�
≤

C(1/ρ�, b�, ϑ,C�, C̃�). Moreover, from (B)� we know that Dmu ∈ W
ϑb�

2 ,
ϑb�
4m ;2(2Q�; R

N )
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for allϑ ∈ (0, 1). Finally, by assumption we have that Dm−1u ∈ Cλ, λ2m (�T ; R
Mm−1). There-

fore we can apply the Interpolation-Theorem 5.7 for u replaced with Dm−1u in the case γ =
ϑb�

2 and infer that |Dmu| ∈ Ls(Q�) for all s < (n+2m)(2+ϑb�)
n+2m−λϑb�

. Now, we choose ϑ ∈ (0, 1),

such that 2+b� <
(n+2m)(2+ϑb�)

n+2m−λϑb�
. Note that we can take any n+2m

n+2m+(2+b�)λ
< ϑ < 1. Hence,

we can choose ϑ = ϑ(n,m, λ) = n+2m
n+2m+2λ . Then, we have |Dmu| ∈ L2+b� (Q�) and the

bound in (C)�+1 holds, i.e.∫

Q�

|Dmu|2+b� dz ≤ C(1/ρ�, b�,C�, C̃�, Ĉ�) = C̃�+1. (6.15)

Due to Lemma 6.5 this implies that |τh(Dku)| ∈ L2+b� (32Q�+1) for 0 ≤ k ≤ m − 1 (note
that 1

2 Q� = 32Q�+1) with the estimate
∫

32Q�+1

|τh(D
ku)|2+b� dz ≤ C(b�) |h| (2+b�)(m−k)

2m

∫

Q�

(1 + |Dmu|)2+b� dz

≤ C(b�, C̃�+1) |h| (2+b�)(m−k)
2m , (6.16)

where have also used (2.6) and (5.1) and the fact that |h| ≤ ρ2m
�+1.

The previous considerations can now be exploited to infer better estimates for the finite
differences of Dmu. We choose 16ρ�+1 ≤ r1 < r2 < r3 ≤ 32ρ�+1 with r2 = 1

2 (r1 + r3).
Then 16Q�+1 ⊂ Qr1 ⊂ Qr2 ⊂ Qr3 ⊂ 32Q�+1 by construction. Moreover, we choose
cut-off functions η ∈ C∞

0 (Br2) and ζ ∈ C1
0(−r2m

2 , r2m
2 ) with 0 ≤ η, ζ ≤ 1, η ≡ 1 on Br1 ,

ζ ≡ 1 on (−r2m
1 , r2m

1 ), |Dkη| ≤ c(r2 −r1)
−k for 0 ≤ k ≤ m and |ζ ′| ≤ c(r2 −r1)

−2m . From
Lemma 6.7 with (Br1 , Br2 , −r2m

2 , r2m
2 ) instead of (Br (x0), BR(x0), t1, t2) and the fact that

ζ ≡ 1 on (−r2m
1 , r2m

1 ) we obtain

∫

Qr1

|τh Dmu|2 dz ≤ C |h| βm
∫

Qr2

(
1 + |Dmu|)2 dz + C

∫

Qr2

m−1∑
k=0

|τh(Dku)|2
(r2 − r1)2(m−k)

dz

+C
∫

Qr2

(
1 + |Dmu|)2 θ̃ (|τh(δu)|)2 dz

+C

∣∣∣∣
∫

Qr2

B(·, δu, Dmu) · τ−h
(
δ(η2mτhu)ζ 2) dz

∣∣∣∣

= C
(

I (�+1)
1 + I (�+1)

2 + I (�+1)
3 + I (�+1)

4

)
, (6.17)

with the obvious labelling of I (�+1)
1 − I (�+1)

4 . Note that in last term we have used “inte-
gration by parts for finite differences”, which is applicable since spt ζ ⊂ (−r2m

2 , r2m
2 ) and

r2m
2 +|h| ≤ (32ρ�+1)

2m +ρ2m
�+1 ≤ (322m +1)ρ2m

�+1 ≤ ρ2m
� and r2 ≤ 32ρ�+1 ≤ ρ�; therefore

spt(B · τ−h(δ(η
2mτhu)ζ 2)) ⊂ Q�). We now establish bounds for I (�+1)

2 − I (�+1)
4 .

Estimate for I (�+1)
2 : From the fact that Qr2 ⊂ 32Q�+1, (r2 − r1) ≤ 1 and Corollary 6.3,

which is applicable since |h| ≤ ρ2m
�+1, we infer that

I (�+1)
2 ≤ 2

(r2 − r1)2m

m−1∑
k=0

∫

32Q�+1

|τh(D
ku)|2 dz ≤ C

|h| 1
m

(r2 − r1)2m

∫

Q�

(
1 + |Dmu|2) dz.
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Estimate for I (�+1)
3 . Using (1.9), the fact that Qr2 ⊂ 32Q�+1 and Hölder’s inequality we

obtain

I (�+1)
3 ≤

( ∫

32Q�+1

(
1 + |Dmu|)2+b� dz

) 2
2+b�
( ∫

32Q�+1

|τh(δu)|
2β(2+b�)

b� dz

) b�
2+b�

.

For the second integral on the right-hand side we use the Hölder continuity of δu, i.e. the fact

that |τh(δu)| ≤ |h| λ
2m [δu]0, λ2m

and (6.16) to infer that

( ∫

32Q�+1

|τh(δu)|
2β(2+b�)

b� dz

) b�
2+b�

≤ C(b�) |h| b�
2m + λ(2β−b�)

2m [δu]2β−b�
0, λ2m

(∫

Q�

(1 + |Dmu|)2+b� dz

) b�
2+b�

.

Inserting this above and taking into account that b�+λ(2β−b�) = βλ+b�−λ(b�−β) ≥ b�+1

since β ≥ b�/2 we get

I (�+1)
3 ≤ C(b�) |h| b�+1

2m

∫

Q�

(1 + |Dmu|)2+b� dz.

Estimate for I (�+1)
4 . For the last term we obtain with Young’s inequality for ε > 0 that

I (�+1)
4 ≤ ε

∫

Q�

∣∣τ−h
(
δ(η2mτhu)ζ 2) ∣∣2 dz + L2

ε

∫

Q�

(
1 + |Dmu|)2 dz = ε J1 + J2, (6.18)

with the obvious meaning of J1 and J2. To estimate J1 we set w ≡ δ(η2mτhu) and compute:
∣∣τ−h[w(t)ζ(t)2]∣∣ ≤ ∣∣w(t − h) τ−h[ζ(t)2]∣∣+ ∣∣τ−h[w(t)] ζ(t)2∣∣.

Moreover, we have |τ−h[ζ(t)2]| = |ζ(t − h) − ζ(t)|(ζ(t − h) + ζ(t)) ≤ |h|‖ζ ′‖∞(ζ(t −
h)+ ζ(t)) (note that ζ ≥ 0) and therefore, we infer that

J1 ≤ |h|2 ‖ζ ′‖2∞
∫

Q�

∣∣δ (η2mτhu(·, t − h)
) ∣∣2 (ζ(t − h)2 + ζ(t)2

)
dz

+
∫

Q�

∣∣τ−h
(
δ(η2mτhu(·, t))

) ∣∣2ζ(t)2 dz

= J1,1 + J1,2.

First, we recall that |ζ ′| ≤ c(r2 − r1)
−2m , 0 ≤ ζ ≤ 1, |Dkη| ≤ c(r2 − r1)

−k ≤ c(r2 − r1)
−m

for 0 ≤ k ≤ m and spt ζ ⊂ (−r2m
2 , r2m

2 ). Then we apply Corollary 6.3 (note that Qr2 ⊂
32Q�+1 = 1

2 Q� and |h| ≤ ρ2m
�+1 and |h| ≤ 1) to obtain

J1,1 ≤ C |h|2
(r2 − r1)6m

m−1∑
k=0

r2m
2 +|h|∫

−r2m
2 −|h|

∫

Br2

|Dkτhu|2 dz ≤ C
|h|2

(r2 − r1)6m

∫

Q�

(
1 + |Dmu|)2 dz.
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For J1,2 we note that spt(ηζ ) ⊂ Qr2 and |Dkη| ≤ c(r2−r1)
−k ≤ c(r2−r1)

−m for 0 ≤ k ≤ m.
Moreover, we apply Lemma 6.6 with (Br2 , Br3 , −r2m

2 , r2m
2 ) instead of (Br (x0), BR(x0),

t1, t2) (note that |h| ≤ ρ2m
�+1 and λβ + b�(1 − λ

2 ) = b�+1) to infer that

J1,2 ≤ C

(r2 − r1)2m

m−1∑
k=0

∫

Qr2

|τ−hτh(D
ku)|2 dz

≤
m−1∑
k=0

C |h| m−k
m

(r3 − r2)4m

(∫

Qr3

|τh Dmu|2 + |τ−h Dmu|2 dz + |h| b�+1
2m

∫

Q�

1 + |Dmu|2+b� dz

)
.

Now, we join the previous estimates for J1,1 and J1,2 with (6.18) and note that |h| ≤ 1,

|h|2 ≤ |h| b�+1
2m , 2(r2 − r1) = (r3 − r1) and |Dmu|2 ≤ 1 + |Dmu|2+b� . Finally, choosing

ε = (r2 − r1)
6m/(4c|h| 1

m ) we obtain

I (�+1)
4 ≤ 1

4

∫

Qr3

|τh Dmu|2 + |τ−h Dmu|2 dz + C |h| b�+1
2m

(r3 − r1)6m

∫

Q�

1 + |Dmu|2+b� dz,

where we have also used that |h| 1
m ≤ |h| b�+1

2m , (r3 − r1) ≤ 1 and |Dmu|2 ≤ 1 + |Dmu|2+b� .
Combining the previous estimates for I (�+1)

2 − I (�+1)
4 with (6.17) and noting once again

that |h| ≤ 1, b�+1
2m ≤ β

m , (r3 − r1) ≤ 1, r3 − r1 = 2(r2 − r1) and |Dmu|2 ≤ 1 + |Dmu|2+b�

we arrive at ∫

Qr1

|τh Dmu|2 dz ≤ 1

4

∫

Qr3

|τh Dmu|2 + |τ−h Dmu|2 dz

+ C(b�)
|h| b�+1

2m

(r3 − r1)6m

∫

Q�

1 + |Dmu|2+b� dz.

We also obtain the analogous estimate for −h instead of h, and combining them yields:∫

Qr1

|τh Dmu|2 + |τ−h Dmu|2 dz ≤ 1

2

∫

Qr3

|τh Dmu|2 + |τ−h Dmu|2 dz

+ C |h| b�+1
2m

(r3 − r1)6m

∫

Q�

1 + |Dmu|2+b� dz,

where C = C(b�). Applying Lemma 2.3 and using (C)�+1, i.e. (6.15) we infer that

∫

16Q�+1

|τh Dmu|2 + |τ−h Dmu|2 dz ≤ C(b�)
|h| b�+1

2m

ρ6m
�+1

∫

Q�

1 + |Dmu|2+b� dz

≤ C(1/ρ�+1, b�) C̃�+1 |h| b�+1
2m .

This proves the first bound in (A)�+1.
A similar estimate for the finite differences in x-direction can be obtained, when we start

with a similar estimate for the space-direction, instead of Lemmas 6.7. Then we estimate
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the right-hand side similar to the time direction. Once again, we can exploit the weak dif-
ferentiability of Dku, 0 ≤ k ≤ m − 1, i.e. the estimate (6.9) instead of Lemma 6.5 and 6.6
to infer also the second estimate in (A)�+1. This finishes the proof of (A)�+1. Finally, from
Lemma 5.1 we now conclude that (B)�+1 holds.

Since b� ↗ 2β, we find for each γ < β an integer �̄ = �̄(β, γ, λ) ∈ N, such that
2γ < b�̄ < 2β. Iterating up to the step �̄ we infer from (B)�̄ that Dmu ∈ W γ,

γ
2m ; 2

(Q R/64�̄; R
N ) (note that 8ρ�̄ ≥ ρ�̄ = R/64�̄). Moreover from (6.14) we know that Dm−1u ∈

W 1, 1+γ
2m ; 2(Q R/64�̄; R

Mm−1). This shows the assertion (6.13).

Now let Q̃ = �̃ × (t1, t2) � �T . We choose R = 1
2 min{dist(�̃, ∂�), T + t̃1, |t2|} and

cover Q̃ by finitely many cylinders Q R/64�̄ (zi ), i = 1, . . . ,M , with center zi ∈ Q̃. Using
(6.13) on each cylinder Q R/64�̄ (zi ) and summing over i = 1, . . . ,M we finally obtain the
assertion of Lemma 6.9. ��
6.3 Proof of the results

Proof of Theorem 1.2 At first we will show that for k = 0, . . . ,m there holds

Dku ∈ W
γ,

γ
2m ; 2

loc (�T ,R
Mk ) for all γ < δ/2, (6.19)

where δ = δ(n,m, β, N , L/ν) is specified in Lemma 6.8. For k = m this is exactly the
conclusion of those Lemmas. Furthermore for k = 0, . . . ,m − 1 we know from Remark 6.4

that Dku ∈ W
m−k, γ (m−k)

2m ; 2
loc (�T ,R

Mk ) for all γ ∈ (0, 1). Therefore we conclude that (6.19)
is true.

Applying Proposition 5.4 yields that dimP(�1) ≤ n + 2m − δ and dimP(�2) ≤ n +
2m − δ, where �1 and �2 are defined in Theorems 3.15 and 3.7. From Theorem 3.15 we
know that the singular set � of Dmu is contained in �1 ∪ �2 and therefore dimP(�) ≤
dimP(�1 ∪�2) ≤ n + 2m − δ, which shows the assertion of Theorem 1.2. ��

Remark 6.10 Under the conditions of Theorems 1.4 or 1.5 we can use the better fractional
differentiability properties from Lemmas 6.8, respectively 6.9 to infer the better estimate
dimP(�) ≤ n + 2m − 2β.

We shall see in the following that this estimate can be improved slightly in the sense
that the inequality is strict. This will be achieved by exploiting the differentiability of the
coefficients A with respect to the last variable in such a way that we can rewrite the system
as a linear system for the finite differences τhu respectively τ s

h u. From this linear system we

obtain the higher integrability of the t- derivative of Dmu of fractional order β
2m and also of

the x-derivative of Dmu of fractional order β (see Lemmas 6.11 and 6.12). This leads us to
better estimates for the fractional difference quotients of Dmu. Therefore we can conclude
that Dmu lies in some slightly better fractional Sobolev space, which will lead us directly to
the dimension reduction statements of Theorems 1.4 and 1.5.

Lemma 6.11 Let u ∈ L2(−T, 0; W m,2(�; R
N )) ∩ Cm−1,λ, λ2m (�T ; R

N ) with λ ∈ (0, 1) be
a weak solution of (1.1) in�T under the assumptions (1.2), (1.3), (1.7) and (1.8) with B ≡ 0.
Then there exists ξ = ξ(n,m, N , L/ν) > 1, such that for all �̃ � �, (t1, t2) � (−T, 0) and
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for all γ < β there holds

∫

�̃

t2∫

t1

t2∫

t1

|Dmu(x, t)− Dmu(x, τ )|2ξ
|t − τ |1+ ξ γ

m

dt dτ dx

+
t2∫

t1

∫

�̃

∫

�̃

|Dmu(x, t)− Dmu(y, t)|2ξ
|x − y|n+2ξγ dx dy dt < ∞.

Proof In the following, with C we shall denote a constant depending on n, m, N , ν, L , β, λ,
‖u‖L2(−T,0;W m,2(�)) and [δu]λ, λ2m

. We will only indicate the additional dependencies of C .
We fix parameters γ and θ such that

0 < γ < β and 2 + 2β < θ < q ≡ 2(n + 2m)(1 + γ )

n + 2m − 2λγ
.

From Lemma 6.9 we already know that Dmu ∈ W
γ,

γ
2m ; 2

loc (�T ; R
N ) and Dm−1u ∈ W

1+γ
2m ; 2

loc

(−T, 0; L2(�; R
Mm−1)). Moreover, by assumption we have that Dm−1u ∈ Cλ, λ2m

(�T ; R
Mm−1). Therefore we can apply Lemma 5.7 to the function Dm−1u and find that

|Dmu| ∈ Ls
loc(�T ) for all 1 ≤ s < q . In particular we have |Dmu| ∈ Lθloc(�T ). Since the

result we are going to prove is of local nature, we can suppose without loss of generality that
|Dmu| ∈ Lθ (�T ) and ∫

�T

|Dmu|θ dz ≤ C(γ, θ) < ∞. (6.20)

We will start with the proof for the time-direction. Let �̃ � �, (t1, t2) � (−T, 0) and
0 < |h| < 1

2 min{|t2|, T + t1, 1}. We set Q̃ ≡ �̃ × (t1, t2). Replacing ϕ with τ−hϕ in (1.1)
we obtain after “integration by parts" for finite differences∫

�T

(
τh(u) · ϕt − τh[A(·, δu, Dmu)] · Dmϕ

)
dz = 0 for all ϕ ∈ C∞

0 (Q̃; R
N ). (6.21)

With the notation introduced in (6.1) and (6.2) for Ã , B and C , we rewrite τh(A) =
Ã (h)τh(Dmu)+ B(h)+ C (h) and define

vh ≡ τh(u)

|h| β2m

, B̃(h) ≡ −B(h)

|h| β2m

, C̃ (h) ≡ − C (h)

|h| β2m

.

Dividing (6.21) by |h| β2m , we see that vh is a weak solution of the linear system∫

�T

(
vh · ϕt − Ã (h)Dmvh · Dmϕ

)
dz =

∫

�T

(
B̃(h)+ C̃ (h)

) · Dmϕ dz (6.22)

for allϕ ∈ C∞
0 (Q̃; R

N ). Due to (6.3), the coefficients satisfy Ã (h) p·p ≥ ν |p|2, |Ã (h)| ≤ L
and

|B̃(h)| ≤ L |h|− β
2m |τhδu|β (1 + |Dmu|) , |C̃ (h)| ≤ L

(
1 + |Dmu|) . (6.23)

In the following we will apply Theorem 4.1 in order to show that |Dmvh | is higher integra-
ble. For that purpose we firstly have to ensure that B̃ and C̃ fulfill the required integrability
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assumptions, i.e. that they are integrable with an exponent larger then 2. Indeed, by (6.20) we
know that C̃ ∈ Lθ (�T ). Moreover, we set 1 + δ1 ≡ θ

2+2β > 1 and show that B̃ ∈ L2ξ for
all 1 ≤ ξ ≤ 1 + δ1. Let Qρ ≡ Qρ(z0) be a parabolic cylinder with Q2ρ � �T . To estimate
the following integral we first use (6.23) and Hölder’s inequality. Since θ ≥ 2ξ(1 + β) we
conclude from (6.20) that |Dmu| ∈ L2ξ(1+β)(�T ). Therefore we can apply Lemma 6.5 with
b = 2ξβ to estimate the first integral appearing on the right-hand side. Hence, we obtain for
1 ≤ ξ ≤ 1 + δ1 that

∫

Qρ

|B̃(h)|2ξ dz ≤ L2ξ |h|− βξ
m

( ∫

Qρ

|τh(δu)|2ξ(1+β) dz

) β
1+β

×
( ∫

Qρ

(1 + |Dmu|)2ξ(1+β) dz

) 1
1+β

≤ C
∫

Q2ρ

(
1 + |Dmu| + [|Dmu|]h + |τh Dmu|)2ξ(1+β) dz. (6.24)

We note that, here and in the following it is important that all appearing constants are inde-
pendent of h.

Higher integrability of Dmvh . From the previous discussion we know that B̃, C̃ ∈
L2(1+δ1). Therefore we can apply Theorem 4.1 to infer that there exists ξ = ξ(n,m, N , L/ν)
with 1 < ξ < 1 + δ1, such that |Dmvh | ∈ L2ξ

loc(Q̃) and for all parabolic cylinders Q4ρ ≡
Q4ρ(z0) � Q̃ and 0 < ρ ≤ 1 there holds

∫

Qρ/4

|Dmvh |2ξ dz ≤ C

( ∫

Qρ

|Dmvh |2 dz

)ξ
+ C

∫

Qρ

(|B̃|2ξ + |C̃ |2ξ + 1
)

dz, (6.25)

Note that we have used (6.24) in the last line.
In order to estimate the first integral on the right-hand side we choose two cut-off functions

η ∈ C∞
0 (B2ρ) and ζ ∈ C1

0 (R) with 0 ≤ η ≤ 1, 0 ≤ ζ ≤ 1, η ≡ 1 on Bρ , |Dkη| ≤ c ρ−k for
0 ≤ k ≤ m and ζ ≡ 0 on (−∞, t0 − (2ρ)2m), ζ ≡ 1 on (t0 −ρ2m, t0) and 0 ≤ ζ ′ ≤ c ρ−2m .
We use the estimate from Lemma 6.7 with this particular choice of cut-off functions, recall
the definition vh = τhu/|h|β/(2m) and the fact that θ̃ (s) ≤ sβ to infer that

∫

Qρ

|Dmvh |2 dz ≤ C
∫

Q2ρ

(
1 + |Dmu|)2 dz + C |h|− β

m

m−1∑
k=0

∫

Q2ρ

|τh(Dku)|2
ρ2(m−k)

dz

+C |h|− β
m

∫

Q2ρ

(
1 + |Dmu|)2 |τh(δu)|2β dz

= C (I1 + I2 + I3), (6.26)

with the obvious meaning of I1 − I3. In the following we will derive bounds for I2 and I3.
Estimate for I2. Applying Corollary 6.2 (note that 0 < |h| < 1

2 min{|τ2|, T + τ1, 1}) and
taking into account that |h| ≤ 1, we obtain

I2 ≤ C ρ−2(m−k)
∫

Q4ρ

(
1 + [|Dmu|]h + |τh Dmu|)2 dz.
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Estimate for I3. Here, we proceed completely similar to our estimate for B̃, i.e. (6.24)
for ξ replaced with 1. This yields that

I3 ≤ C
∫

Q4ρ

(
1 + |Dmu| + [|Dmu|]h + |τh Dmu|)2(1+β) dz.

Combining the estimates for I2 and I3 with (6.26), we infer an estimate for the first integral
in (6.25). For the second integral we use (6.24) and (6.23). Applying also Hölder’s inequality,
we finally arrive at

∫

Qρ/4

|Dmvh |2ξ dz ≤ C
∫

Q4ρ

(
1 + |Dmu| + [|Dmu|]h + |τh Dmu|)2ξ(1+β) dz

≤ |�T | + C(γ, θ, ρ),

where we have used (2.6), (5.1), the fact that 0 < |h| < 1
2 min{|t2|, T + t1, 1} and (6.20) in

the last line.
Since the choice of the cylinder Q4ρ � Q̃ was arbitrary, we can cover any open sub-

set O � Q̃ by parabolic cylinders (Qρ/4(zi )), i = 1, . . . ,M with Q4ρ(zi ) � Q̃ and ρ =
1
8 min{dist(O, Q̃), 1}. Summing over i = 1, . . . ,M yields a bound of the considered integral
over the whole set O , i.e. for

∫
O |Dmvh |2ξ dz. Recalling the definition vh = τhu/|h|β/(2m)

we therefore find that∫

Q̃

|τh(D
mu)|2ξ dz = |h| ξβm

∫

Q̃

|Dmvh |2ξ dz ≤ C(γ, θ, dist(O, Q̃)) |h| ξβm ,

for all h with 0 < |h| < 1
2 min{|t2|, T + t1, 1}. Applying Lemma 5.1 and noting that Q̃ � �T

was arbitrary, we finally conclude the asserted fractional differentiability in time direction.
The proof for the space-direction is very much similar to the one for the time-direction

from above and we will not accomplish the details. We can also write our parabolic system
as a linear system for vh = τ s

h (u)/|h|β . Then, applying once again Theorem 4.1 we can
show higher integrability of |Dmvh |. The resulting terms are estimated essentially similar as
before. But now, we can use the weak differentiability of Dku for 0 ≤ k ≤ m − 1 [see (6.6)]
to estimate integrals involving τ s

h (D
ku) [instead of Lemma 6.5 in (6.24)]. Proceeding this

way, we also infer the second assertion of the lemma. ��

Lemma 6.12 The conclusion of Lemma 6.11 also holds for weak solutions u ∈ L2(−T, 0;
W m,2(�; R

N )) of the simpler system (1.10) under the assumptions (1.2), (1.7) and (1.8).

Proof We will only outline this proof, since it is similar to the one of Lemma 6.11. Following
the proof of Lemma 6.11, the arguments leading us to (6.22) now yield
∫

�T

(
vh · ϕt − Ã (h)Dmvh · Dmϕ

)
dz = −

∫

�T

C̃ (h) · Dmϕ dz for all ϕ ∈ C∞
0 (Q̃; R

N ),

where vh ≡ τh(u)/|h| β2m and Ã (h) respectively C̃ (h) = C (h)/|h| β2m are defined in (6.2)
respectively (6.1). Due to the higher integrability of Dmu from Theorem 4.1 there exists σ =
σ(n, m, N , L/ν) > 0, such that |Dmu| ∈ L2(1+σ)

loc (�T ). Since |C̃ (h)| ≤ L(1 + |Dmu|) we

infer that |C̃ (h)| ∈ L2(1+σ)
loc (�T ). Therefore Theorem 4.1 ensures the existence of ξ = ξ(n,
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m, N , L/ν) with 0 < ξ < 1 + σ , such that for all parabolic cylinders Q4ρ(z0) � �T there
holds

∫

Qρ/4(z0)

|Dmvh |2ξ dz ≤ c

( ∫

Qρ(z0)

∣∣Dmvh
∣∣2 dz

)ξ
+ c

∫

Qρ(z0)

(
1 + |Dmu|2ξ ) dz.

Using the estimate (6.12) from the proof of Lemma 6.8, (with c2 = 0) we can bound the
first integral on the right-hand side by a constant independent of h. Whence, the second
integral can be bounded, using the higher integrability of |Dmu|, we mentioned above. In
conclusion, we can bound the left-hand side independently of h and recalling the definition
vh = τhu/|h|β we therefore obtain∫

Qρ/4(z0)

|τh(D
mu)|2ξ dz = |h| 2ξ

m

∫

Qρ/4(z0)

∣∣Dmvh
∣∣2ξ dz ≤ |h| 2ξ

m c,

where c = c(n,m, N , ν, L , β, R, T + t̃0, ‖u‖L2(−T,0;W m,2(B4R(x0))
). Since the choice of the

cylinder Q4ρ(z0) � �T was arbitrary, we obtain the desired result with a covering argument.
��

Proof of Theorems 1.4 and 1.5 Due to Remark 6.10 we already know that the first assertion
of Theorem 1.4, respectively 1.5 holds, i.e. that dimP(�) ≤ n + 2m − 2β. We can apply
Lemmas 6.12, respectively 6.11 to ensure that there exists ξ = ξ(n,m, N , L/ν) > 1 such
that

Dmu ∈ W
γ,

γ
2m ; 2ξ

loc (�T ,R
N ) for all γ < β.

Hence, we infer from Lemma 5.4 that dimP(�1) ≤ n + 2m − 2β − δ and dimP(�2) ≤
n + 2m − 2β − δ, where δ = 2βσ in the case of Theorem 1.4, respectively δ = 2β(ξ − 1)
in the case of Theorem 1.5. From Theorem 3.15 we know that the singular set � of Dmu is
contained in �1 ∪�2 and hence dimP(�) ≤ dimP(�1 ∪�2) ≤ n + 2m − 2β − δ, which
shows the assertion. ��
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