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Abstract For a three-dimensional periodic Lotka–Volterra system, the asymp-
totic behaviour of its positive solutions is investigated. More specifically, we give
suitable average conditions which lead to extinction of the competitively inferior
species and global stable coexistence of the two remaining predator and prey
species.
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1 Introduction

The dynamics of Lotka–Volterra predator–prey models have been investigated by
several authors in order to study permanence, stability, global attractivity, coexis-
tence and extinction.

In the case of autonomous systems, Krikorian [5] classifies three species
models obtaining results regarding global boundedness and stability. Using Lya-
punov’s method and Hopf’s bifurcation theory, stability of two-prey, one-predator
communities is investigated by Takeuchi and Adachi in [9]. They give condi-
tions for stable coexistence, for extinction and they show that a chaotic motion
may occur. Korobeinikov and Wake [4], Korman [3] analyse both two-prey, one-
predator and two-predator, one-prey models with constants coefficients in which
direct competition is absent. Their three-dimensional systems, such as

⎧
⎪⎨

⎪⎩

x ′
1 = x1(a1 − b1 y)

x ′
2 = x2(a2 − b2 y)

y′ = y(−c + d1x1 + d2x2) ,

(1.1)

B. Lisena (B)
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consist of the classical Lotka–Volterra model of the predator–prey interaction by
adding the presence of a third species. They show that either the prey more suscep-
tible to predation or the less voracious predator is always driven to extinction and
the system behaves asymptotically as a two-dimensional predator–prey system.
Recently a nonautonomous Lotka–Volterra system with m-predators and n-preys
is studied in [10, 11]. Yang and Xu [10] suppose periodic coefficients and obtain
sufficient conditions for existence, uniqueness and global attractivity of the posi-
tive periodic solution. Using the notion of lower and upper average introduced by
Ahmad and Lazer [1], Zhao and Jiang [11] find conditions for permanence and
global attractivity.

Our purpose in this paper is to consider both two-predator, one-prey and
two-prey, one-predator models with periodic coefficients in which competition
is present, too. We introduce average conditions which lead to extinction of the
competitively inferior species and global stable coexistence of the two remaining
predator and prey species. Consequently our conditions lead to the same conclu-
sions of [3, 4] for the periodic case, avoiding any chaotic phenomenon.

To our knowledge, the results of this article seems to be new even in the au-
tonomous case. Indeed this special case, cannot be derived by autonomous model
(1.1), which is simpler and less realistic than our analogous system (3.1). Extinc-
tion in three species periodic competitive systems has recently been studied in [8]
by the same author.

2 Two-predator competing for one-prey

The first model discussed in this paper is described by the following system of
differential equations:

⎧
⎪⎨

⎪⎩

x ′
1 = x1(a1(t) − b11(t)x1 − b12(t)x2 − b13(t)x3)

x ′
2 = x2(−a2(t) + b21(t)x1 − b22(t)x2 − b23(t)x3)

x ′
3 = x3(−a3(t) + b31(t)x1 − b32(t)x2 − b33(t)x3) .

(2.1)

where x1(t) denotes the density of prey species at time t , x2(t), x3(t) denote the
density of predator species at time t , all coefficients are continuous, T-periodic,
bi j (t) are positive (i, j = 1, 2, 3 ) and

m[ai ] = 1

T

∫ T

0
ai (s) ds > 0 , i = 1, 2, 3.

In (2.1), b23(t), b32(t) measure the competitive effect between the predator
species x2(t), x3(t), b12(t), b13(t), b21(t), b31(t) are the coefficients due to
predation.

Lemma 2.1 Let (x1(t), x2(t), x3(t)) be a solution of (2.1) with positive initial
value. Then it is positive for all t > 0.

Proof By assumption x1(0), x2(0), x3(0) > 0. Since

x ′
1

x1
= a1(t) − b11(t) x1 − b12(t) x2 − b13(t) x3
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therefore

x1(t) = x1(0) exp

{∫ t

0
(a1(s) − b11(s) x1(s) − b12(s) x2(s) − b13(s) x3(s))ds

}

.

It follows that

x1(t) > 0 , t > 0 .

The same holds for x2(t) and x3(t). ��
Lemma 2.2 All positive solution of (2.1) are bounded for t ≥ 0 .

Proof First recall some properties regarding the logistic equation

u′ = u(a(t) − b(t)u) (2.2)

where a(t), b(t) are continuous, T-periodic, b(t) > 0 .
If m[a] > 0, it is well-known that (2.2) has a unique positive, T-periodic solution
U (t). Any positive solution u(t) of (2.2) is bounded above and below by positive
reals on [0, +∞) and

lim
t→∞(u(t) − U (t)) = 0 . (2.3)

If m[a] ≤ 0 and u(t) is any positive solution of (2.2), then limt→∞ u(t) = 0 .
Now consider (x1(t), x2(t), x3(t)) positive solution of (2.1) (for t ≥ 0 ). If u(t)
denotes the solution of u′ = u(a1(t) − b11(t)u) with initial condition x1(0), then
by a known comparison theorem

x1(t) < u(t) for t > 0

so that

x1(t) ≤ k for some k > 0 .

About x2(t) we get

x2(t) < v(t) , t > 0

where v(t) is the solution of the logistic equation

v′ = v(−a2(t) + k − b22(t)v )

with initial condition v(0) = x2(0).
Hence x2(t) is bounded above. Similar argument holds for x3(t) . ��
The following result concerning the two-species system

{
u′

1 = u1( a1(t) − b11(t)u1 − b12(t)u2)

u′
2 = u2(−a2(t) + b21(t)u1 − b22(t)u2)

(2.4)

is proved in [2] .
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Theorem 2.1 Let U1(t) denote the positive T-periodic solution of the logistic
equation

u′ = u(a1(t) − b11(t)u) .

If
m[a2] < m[b21U1] , (2.5)

then a periodic positive solution (
◦

u1,
◦

u2) of (2.4) exists such that

0 <
◦

u1(t) < U1(t) for all t > 0 .

Remark 2.1 It is also known (see [11] ) that

0 <
◦

u2(t) < V2(t), t > 0

where V2(t) is the positive, T-periodic solution of the logistic equation

v′ = v((−a2 + b21U1)(t) − b22(t)v) .

In [7] a global stability result concerning (
◦

u1,
◦

u2) is proved. Its statement
needs the notations below.

Let

ai j (t) = (bi j
◦

u j )(t) , i, j = 1, 2

β±(t) = a21

a12

[(

1 + 2b11b22

b21b12

)

±
√

(

1 + 2b11b22

b21b12

)2

− 1

]

,

α = max
t>0

β−(t) (2.6)

�α(t) = (α a12(t) − a21(t))
2 − 4α (a11a22)(t)

Bα(t) = max

{
�α(t)

4α a11(t)
,

�α(t)

4a22(t)

}

,

and let λα(t) be the greatest eigenvalue of the symmetric matrix
⎛

⎜
⎝

−α a11(t) − (α a12 − a21)(t)

2
− (α a12 − a21)(t)

2
−a22(t)

⎞

⎟
⎠ .

Theorem 2.2 Suppose inequality (2.5) holds. Let Mα(t) be the T-periodic func-
tion defined by

Mα(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λα(t)

α
if β−(t) ≤ α <

a21(t)

a12(t)
Bα(t)

α
if

a21(t)

a12(t)
≤ α < β+(t)

Bα(t) if β+(t) ≤ α

(2.7)
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in the case α ≥ 1, whereas

Mα(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λα(t) if β−(t) ≤ α <
a21(t)

a12(t)

Bα(t) if
a21(t)

a12(t)
≤ α < β+(t)

α Bα(t) if β+(t) ≤ α

(2.8)

in the case 0 < α ≤ 1. If
m[Mα(t)] < 0 , (2.9)

then the solution (
◦

u1,
◦

u2) of system (2.4), whose existence is ensured by Theorem
2.1, is a global attractor in the first quadrant .

Theorem 2.3 Suppose average condition (2.5) holds. Let (x1(t), x2(t), x3(t)) be
a positive solution of (2.1), then there exists t0 > 0 such that

x1(t) < U1(t) , for any t > t0 .

Proof If, for some t0 ≥ 0, x1(t0) ≤ U1(t0), then, by known comparison results,

x1(t) < U1(t) , for any t > t0 .

Now assume
x1(t) > U1(t) for all t ≥ 0 . (2.10)

Let u(t) be the solution of

u′ = (a1(t) − b11(t)u) , u(0) = x1(0) .

By (2.3)
lim

t→∞ u(t) = U1(t)

hence the inequalities
U1(t) < x1(t) < u(t)

lead to
lim

t→∞ x1(t) = U1(t) .

As a consequence

lim
t→∞(x1(t), x2(t), x3(t)) = (U1(t), 0, 0) .

Take ε > 0 such that

m[a2] < m[b21U1] − ε m[b21 + b22 + b23] (2.11)

and, for some t0 > 0,

(x1(t), x2(t), x3(t)) ∈]U1(t) − ε, U1(t) + ε[×]0, ε[×]0, ε[, t > t0 .

We deduce

x ′
2(t) > x2(t) (−a2 + b21(U1 − ε) − b22ε − b23ε ) , t > t0 .
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Since by (2.11)

m[−a2 + b21(U1 − ε) − b22ε − b23ε ] > 0 ,

it follows

lim
t→∞ x2(t) = +∞

which contradicts Lemma 2.2 .
We conclude that (2.10) cannot occur and the proof is complete. ��
Theorem 2.4 Consider (x1(t), x2(t), x3(t)), positive solution of (2.1), and as-
sume that

m[a2] < m[b21U1] , m[a3] > m[b31U1] .

Then

lim
t→∞ x3(t) = 0 . (2.12)

Proof By Theorem 2.3, for some t0 > 0,

x1(t) < U1(t) , t > t0 .

Let w(t) the solution of the following initial value problem

{
w′ = (−a3 + b31U1)(t) w

w(t0) = x3(t0) > 0.

From the inequality

−a3(t)+b31(t)U1(t) > −a3(t)+b31(t)x1(t)−b32(t)x2(t)−b33(t)x3(t), t > t0,

it follows

x3(t) < w(t) , t > t0 . (2.13)

On the other hand, since m[−a3 + b31U1] < 0, w(t) vanishes exponentially as
t → ∞. Using (2.13) and positiveness of x3(t), we obtain (2.12). ��
Lemma 2.3 Let p(t), g(t) be continuous functions for t > t0, satisfying
(i)

∫ t
s p(τ ) dτ ≤ −k(t − s)

for some fixed k > 0 and t ≥ s ≥ t0, t great enough,
(ii) limt→∞ g(t) = 0 .
Then the solution z(t) of the following initial value problem

{
z′ = p(t) z + g(t)

z(t0) = z0 > 0

vanishes as t → ∞.



Asymptotic behaviour in periodic three species predator–prey systems 91

Proof By the variation of constants formula

z(t) = z0 e
∫ t

t0
p(τ )dτ +

∫ t

t0
g(s) e

∫ t
s p(τ )dτ ds . (2.14)

Fix t great enough. By hypothesis (i)

e
∫ t

t0
p(τ ) dτ ≤ ek t0 e−k t .

Furthermore
∣
∣
∣
∣

∫ t

t0
g(s) e

∫ t
s p(τ )dτ ds

∣
∣
∣
∣ ≤ e−k t

∫ t

t0
|g(s)| ek s ds .

If
∫ +∞

t0
|g(s)| ek s ds < +∞, from (2.14) we obviously get limt→∞ z(t) = 0.

Otherwise, using (ii)

lim
t→∞

∫ t
t0

|g(s)| ek s ds

ek t
= lim

t→∞
|g(t)|

k
= 0

hence again z(t), defined by (2.14), vanishes as t → ∞ . ��
Now we can give the following main result about system (2.1) .

Theorem 2.5 Assume that

m[a2] < m[b21U1] , m[a3] > m[b31U1]
and

m[Mα] < 0

where Mα(t) is defined by either (2.7) or (2.8).

If (x1(t), x2(t), x3(t)) is any positive solution of (2.1) and (
◦

u1,
◦

u2) is the unique
positive, T-periodic solution of (2.4), then

x1(t) → ◦
u1(t), x2(t) → ◦

u2(t), x3(t) → 0, as t → ∞ .

Proof Under our assumptions, by Theorem 2.2, the two-species prey-predator sys-
tem (2.4) has a unique solution (

◦
u1,

◦
u2) which is globally attractive in the first

quadrant. Moreover system (2.1) cannot admit any positive, T-periodic solution.
Indeed, by contradiction, suppose that (x̄1(t), x̄2(t), x̄3(t)) is a T-periodic solution
of (2.1) such that

0 < x̄i (t) , t ≥ 0 , i = 1, 2, 3 .

It follows from the third equation equation of system (2.1)

m[a3] = m[b31 x̄1] − m[b32 x̄2] − m[b33 x̄3] < m[b31 x̄1] .

By Theorem 2.3 and the periodicity of both U1(t) and x̄1(t),

x̄1(t) < U1(t) , t ≥ 0
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hence
m[a3] < m[b31 x̄1] < m[b31U1]

which contradicts our assumption about m[a3] .
Now take (x1(t), x2(t), x3(t)) positive solution of (2.1). From Theorem 2.4 we get

lim
t→∞ x3(t) = 0 .

Consider the two-dimensional system
{

x ′
1 = x1 (a1 − b11 x1 − b12 x2 ) − b13 x1x3

x ′
2 = x2 (−a2 + b21 x1 − b22 x2 ) − b23 x2x3.

(2.15)

Introducing the functions

x(t) = x1(t)
◦

u1(t)
− 1 , y(t) = x2(t)

◦
u2(t)

− 1 , (2.16)

system (2.15) turns into
{

x ′ = (1 + x)(−a11(t) x − a12(t) y − b13(t) x3 )

y′ = (1 + y)(a21(t) x − a22(t) y − b23(t) x3 )
(2.17)

where ai j (t) = bi j (t)
◦

u j (t) , i, j = 1, 2 .
At this point, arguing as in [7], define the function

V (x, y) = α (x − log(1 + x)) + (y − log(1 + y)) (2.18)

where α is chosen as in (2.6).
We have the following computation

d

dt
( V (x(t), y(t)) ) = α

x ′(t)
1 + x(t)

x(t) + y′(t)
1 + y(t)

y(t)

= (−(α a11) x2 − α a12 x y + a21 x y − a22 y2 − α b13 x x3 − b23 y x3)(t)

= (−(α a11) x2 − (α a12 − a21) x y − a22 y2 )(t) + g(t)

where
g(t) = (−α b13 x − b23 y )(t) x3(t) .

Using Theorem 3.1 [7], we deduce

dV

dt
≤ Mα(t) (1 − e−V ) + g(t) . (2.19)

Introducing the further function

Z(t) = eV (x(t),y(t)) − 1 (2.20)

we get from (2.19)

Z ′(t) ≤ Mα(t) Z(t) + g(t) (Z(t) + 1)
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that is
Z ′ ≤ (Mα(t) + g(t)) Z + g(t) . (2.21)

We claim that
lim

t→∞ Z(t) = 0 . (2.22)

Note that x(t) and y(t) are bounded, hence

lim
t→∞ g(t) = 0 .

Define
p(t) = Mα(t) + g(t)

and observe that for t ≥ s

lim
t→∞

1

t − s

∫ t

s
p(τ ) dτ = lim

ω→∞
1

ω

∫ s+ω

s
(Mα(τ ) + g(τ )) dτ = m[Mα] < 0 .

Therefore there exist t0 > 0, k > 0 such that
∫ t

s
p(τ ) dτ > −k(t − s) , t ≥ s ≥ t0 .

By Lemma 2.3, denoting by z(t) the solution of
{

z′ = (Mα(t) + g(t)) z + g(t)

z(t0) = Z(t0)

we get
lim

t→∞ z(t) = 0 .

From (2.21), claim (2.22) is proved.
Using Theorem 2.4, (2.20), (2.18) and (2.16) the proof is complete. ��
Remark. The average inequalities of the type

m[ai ] ≶ m[bi jU j ], i, j = 1, 2, 3

can be verified by numerical valutations, as done in [6], since an explicit formula
is available for the positive, periodic solution of the logistic equation.
If the coefficients bi j are positive constants, we have

m[U j ] = m[a j ]
b j j

, j = 1, 2, 3 ,

so that the average conditions provided for Theorem 2.4 are easy to be verified.
About the further inequality

m[Mα] < 0

appearing in the statement of Theorem 2.5, we discussed the autonomous case in
[7].
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3 One predator acting on two competing prey species

In this section we will investigate the following one-predator, two-prey system
⎧
⎪⎨

⎪⎩

x ′
1 = x1(−a1(t) − b11(t)x1 + b12(t)x2 + b13(t)x3)

x ′
2 = x2(a2(t) − b21(t)x1 − b22(t)x2 − b23(t)x3)

x ′
3 = x3(a3(t) − b31(t)x1 − b32(t)x2 − b33(t)x3).

(3.1)

where x1(t) denotes the density of predator species at time t , x2(t), x3(t) the
density of prey species at time t . The coefficients ai (t), bi j (t), i, j = 1, 2, 3 are
continuous, T-periodic, bi j (t) > 0 and m[ai ] > 0. In our model b23(t) and b32(t)
measure the amount of competition between the prey species.

Let Ui (t) be the T-periodic, positive solution of the logistic equation

y′ = y(ai (t) − bii (t)y ) i = 2, 3 .

Arguing as in Lemma 2.1 and Theorem 2.3, we can state the following result.

Theorem 3.1 Let (x1(t), x2(t), x3(t)) a solution of (3.1) with positive initial
value. Then it is positive for all t > 0. Moreover there exists t0 > 0 such that

x2(t) < U2(t) , x3(t) < U3(t), t > t0 .

Theorem 3.2 Let (x1(t), x2(t), x3(t)) be a positive solution of (3.1). If

m[a1] < m[b12U2]
and V1(t) denotes the positive, T-periodic solution of the logistic equation

x ′ = x((−a1 + b12U2 + b13U3)(t) − b11(t)x )

then, for an appropriate t̄ > 0

x1(t) < V1(t) , t > t̄ . (3.2)

Proof Note that

m[−a1 + b12U2 + b13U3] > m[−a1 + b12U2] > 0

so that we can consider V1(t).
By Theorem 3.1, for all t > t0,

(−a1 + b12U2 + b13U3)(t) > (−a1 + b12x2 + b13x3)(t)

therefore, if x1(t̄) ≤ V1(t̄), for some t̄ > t0, we deduce

x1(t) < V1(t), t > t̄ .

It remains to consider the case

x1(t) > V1(t) for all t > t0 .
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Arguing as in the proof of Theorem 2.3, we obtain

lim
t→+∞ x1(t) = V1(t)

so that x1(t) has upper and lower positive bounds, from which

lim
ω→+∞

1

ω

∫ t0+ω

t0

x ′
1(s)

x1(s)
ds = lim

ω→+∞
1

ω
ln

(
x1(t0 + ω)

x1(t0)

)

= 0 .

For a bounded function a(t), continuous for t > t0, assume

M[a(t)] = lim
ω→+∞

1

ω

∫ t0+ω

t0
a(s) ds .

Using the first equation in system (3.1)

M[−a1 − b11 x1 + b12 x2 + b13 x3 ] = 0

which yields

M[b11 x1] = M[−a1 +b12 x2 +b13 x3] < m[−a1 +b12U2 +b13U3] = m[b11V1] .

The above inequality excludes the occurrence that x1(t) > V1(t) for all t > t0.
��

It follows from Theorem 3.1 and Theorem 3.2 that any solution of (3.1) which
has positive initial value remains bounded for t > 0.

The statement of next theorem needs some preliminary notations.
For fixed t ≥ 0, β, γ > 0, we define by A(t) the maximum of the function

ft (x1, x2, x3) = (−β a2(t) + γ a3(t)) + (β b21(t) − γ b31(t))x1

+ (β b22(t) − γ b32(t))x2 + (β b23(t) − γ b33(t))x3

on the three-dimensional rectangle Qt = [0, V1(t)] × [0, U2(t)] × [0, U3(t)], that
is

A(t) = max
(x1,x2,x3)∈Qt

ft (x1, x2, x3) (3.3)

Theorem 3.3 If

m[a1] < m[b12U2], m[a2] > m[b21V1], m[a2] > m[b23U3],
m[a3] < m[b31V1], m[a3] < m[b32U2]

and
m[A(t)] < 0 (3.4)

where A(t) is defined by (3.3) , then

lim
t→∞ x3(t) = 0

for any positive solution of (3.1) .



96 B. Lisena

Proof Thanks to our average conditions on coefficients of differential system
(3.1), we can find two positive real numbers β, γ such that

m[a3]
m[a2] <

β

γ
< min

{
m[b32U2]

m[a2] ,
m[a3]

m[b23U3] ,
m[b31V1]
m[b21V1]

}

. (3.5)

Using Theorem 3.1 and Theorem 3.2, take t0 > 0 so that

x1(t) < V1(t), x2(t) < U2(t), x3(t) < U3(t), t > t0 (3.6)

hence
(x1(t), x2(t), x3(t)) ∈ Qt t > to .

For t > t0, define
	(t) = (x2(t))

−β (x3(t))
γ .

Easy computations give

	′(t) = [(−β a2 + γ a3) + (β b21 − γ b31)x1

+ (β b22 − γ b32)x2 + (β b23 − γ b33)x3]	(t)

therefore
	′(t) = ft (x1(t), x2(t), x3(t))	(t) . (3.7)

We claim that our average assumptions ensure that ft (x1(t), x2(t), x3(t)) is a pe-
riodic function with negative mean value in each vertex of Qt . Indeed

ft (0, 0, 0) = −β a2 + γ a3

and from the first inequality in (3.5), we get

m[−β a2 + γ a3] < 0 .

ft (V1, 0, 0) = (−β a2 + γ a3) + (β b21V1 − γ b31V1)

and, by (3.5) β m[b21V1] − γ m[b31V1] is negative .
Analogously

ft (0, U2, 0) = (−β a2 + γ a3) + (β b22U2 − γ b32U2)

and
β m[b22U2] − γ m[b32U2] = β m[a2] − γ m[b32U2] < 0 .

Finally
ft (0, 0, U3) = (−β a2 + γ a3) + (β b23U3 − γ b33U3)

and our choice of β and γ yields

β m[b23U3] − γ m[b33U3] = β m[b23U3] − γ m[a3] < 0 .

The previous calculations prove the claim.
From (3.7) and (3.3), we deduce

	′(t) ≤ A(t) 	(t) . (3.8)
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Note that, for fixed t > t0, ft (x1, x2, x3) is linear hence its maximum value, A(t),
on the three-dimensional rectangle Qt , is achieved in one of the vertices.
Assumption (3.4), which is stronger than the above claim, and (3.8) imply

lim
t→∞ 	(t) = 0.

Therefore the theorem follows from the inequality

(x3(t))
γ = 	(t) (x2(t))

β

and the boundedness of x2(t). ��
Corollary 3.1 If the coefficients bi j , i, j = 1, 2, 3, are positive constants and the
follow inequalities

m[a1] <
b12

b22
m[a2], m[a2] >

b23

b33
m[a3],

m[a3] <
b32

b22
m[a2], m[a3] <

b31

b21
m[a2]

are satisfied, then the same conclusion of Theorem 3.3 holds.

Proof Arguing as in the previous theorem and in Theorem 3.3 [8], we see that, for
each fixed t , great enough

ft (x1, x2, x3) ≤ −βa2(t) + γ a3(t) on Qt ,

where m[−βa2(t) + γ a3(t)] < 0. This estimate, together with (3.7), proves our
assertion. ��
Remark. In absence of the third species x3(t), system (3.1) becomes

{
u′

1 = u1(−a1(t) − b11(t)u1 + b12(t)u2)

u′
2 = u2(a2(t) − b21(t)u1 − b22(t)u2) .

(3.9)

Comparing it to (2.4), we observe an exchange of index 1 with index 2. Indeed
(2.4) is a prey-predator model whereas (3.9) is a predator–prey system.

Using the above Remark, we are ready to prove the final result concerning
the asymptotic behaviour of the positive solutions of our one-predator, two-prey
system (3.1).

Theorem 3.4 Suppose all hypothesis of the previous theorem are satisfied. If the
T-periodic function Nα(t), defined by either (2.7) or (2.8), after exchanging in-
dices 1 and 2, has negative mean value, then for any positive solution of (3.1)

lim
t→∞ x3(t) = 0, lim

t→∞(x1(t) − ◦
u1(t)) = 0, lim

t→∞(x2(t) − ◦
u2(t)) = 0

where (
◦

u1,
◦

u2) is the unique positive, T-periodic solution of predator–prey system
(3.9).
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Proof By Theorem 3.3, we know that x3(t) vanishes as t → ∞. The remaining
part of our statement can be proved as in Theorem 2.5 . Hence we only sketch the
main steps of the proof.
Since

m[a1] < m[b12U2]
and

m[Nα] < 0

existence and uniqueness of (
◦

u1,
◦

u2) follows from Theorem 2.2 . In the first two
equations of system (3.1) we put

x(t) = x1(t)
◦

u1(t)
− 1 , y(t) = x2(t)

◦
u2(t)

− 1

so we obtain
{

x ′ = (1 + x)(−a11(t) x + a12(t) y + b13(t) x3 )
y′ = (1 + y)(−a21(t) x − a22(t) y − b23(t) x3 )

(3.10)

where ai j (t) = bi j (t)
◦

u j (t), i, j = 1, 2 . Note that system (3.10) can be
treated as system (2.17). Hence the proof proceeds using the same arguments of
Theorem 2.5 ��
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