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Abstract. Hadamard claimed in 1907 that the clamped-plate equation is positivity preserv-
ing for domains which are bounded by a Limaçon de Pascal. We will show that this claim
is false in its full generality. However, we will also prove that there are nonconvex limaçons
for which the clamped-plate equation has the sign-preserving property. In fact we will give
an explicit bound for the parameter of the limaçon where sign change may occur.
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1. Introduction

Hadamard in [11] states that the clamped-plate equation for plates having the
shape of a Limaçon de Pascal is positivity preserving. Positivity preserving for
this (linear) equation on Ω ⊂ R2 means that in the fourth-order boundary value
problem {

∆2u = f in Ω,

u = ∂
∂ν

u = 0 on ∂Ω,
(1)

the sign of f is preserved by u. Here f is the force (density) and u the deflection
of the plate of shape Ω. So the statement reads as, say for f ∈ L1 (Ω):

f ≥ 0 implies u ≥ 0. (2)

For a precise citation of Hadamard, let Γ B
A = GΩ (A, B) be the corresponding

Green function, that is u (x) = ∫
Ω

GΩ (x, y) f (y) dy solves (1). Concerning Γ B
A ,

Hadamard in [11] writes:

M. Boggio, qui a, le premier, noté la signification physique de Γ B
A , en

a déduit l’hypothése que Γ B
A était toujours positif. Malgré l’absence de

démonstration rigoureuse, l’exactitude de cette proposition ne parâit pas
douteuse pour les aires convexes. Mais il était l’intéressant d’examiner si
elle est vraie pour le cas du Limaçon de Pascal, qui est concave. La rėponse
est affirmative.
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Let us focus on Hadamard’s two claims separately.

Claim. There is no doubt that Γ B
A is positive for convex domains.

This conjecture stood for a long time and only in 1949 a first counterexample,
with Ω a long rectangle, was established by Duffin in [3]. This counterexample
was soon to be followed by numerous others. A short survey can be found in the
introduction of [14]. So by now it is well known that convexity is not a sufficient
condition.

Let us remind the reader that around 1905 Boggio [2] did prove that (2) holds
in the case of a disk. In fact, some believed that the disk might be the only domain
where (2) holds. However, in [6] it is shown that (2) also holds in domains that are
small perturbations of the disk. Since smallness of these perturbations is defined
by a C2-norm, non-convex domains are not included.

Claim. Γ B
A is positive for some non-convex domains, namely for the Limaçons de

Pascal.

Hadamard in [11] starts his proof of this claim by observing that:

... on constate aisément que, si l’un de ces deux points est très voisin du
contour, la partie principale de Γ B

A est positive.

Although we are not certain what he meant by ‘partie principale’, we know
by now that Γ B

A can be negative when one point is near the boundary. In fact, we
will show that if the Green function (on a limaçon) is negative somewhere, it will
be negative for some A and B near the boundary. Hadamard continues his proof
by referring to the results in [10]. In this paper he gives an explicit formula for
the Green function for (1) in the case of a limaçon. This formula will allow us to
demonstrate the theorem below. Since there is no explicit proof that his formula
indeed gives the Green function, we will supply such a proof in the appendix.

The domains under consideration are defined for a ∈ [
0, 1

2

]
by

Ωa = {
(ρ cos ϕ, ρ sin ϕ) ∈ R2; 0 ≤ ρ < 1 + 2a cos ϕ

}
.

For 0 ≤ a ≤ 1
2 the curve ρ = 1 + 2a cos ϕ is a non-self-intersecting limaçon.

We will show the following:

Theorem 1. The clamped-plate problem on Ωa with a ∈ [
0, 1

2

]
is positivity pre-

serving if and only if a ∈ [
0, 1

6

√
6
]
.

Remark 1. The limaçon is convex precisely if 0 ≤ a ≤ 1
4 . Notice that 1

4 < 1
6

√
6.

So Hadamard is right in the sense that convexity is not a necessary condition. He
is wrong in claiming the positivity-preserving property for all limaçons.

Remark 2. A related question is if the first eigenfunction has a fixed sign
for all limaçons (compare the Boggio–Hadamard conjecture versus the
Szegö conjecture in [15]; see also [14]). Since one cannot expect an explicit
formula for the eigenfunction, this seems a much harder question. One does know
that the number a where positivity of the first eigenfunction breaks down is strictly
larger than the number where (2) fails, see [8].
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Fig. 1. Limaçons for resp. a = 0.1, 0.175, 0.25, 0.325, 1
6

√
6, 0.45, 0.5. The fifth one with

a = 1
6

√
6 is critical for positivity

Finally, we would like to mention some papers that consider explicit solutions
for the clamped-plate equation. Schot constructed in [12] (see also Boggio in [2])
an explicit Green function on the disk and on the half-plane. Dube in [4] gives
a series solution for the Green function on a limaçon.

2. Proofs

Any limaçon can be seen as the image of a circle through the conformal map
z → z2 combined with two shifts. It will be convenient in the following discussion
to use complex notation for the unit disk: B = {z ∈ C ; |z| < 1}. The appropriate
conformal map from B ⊂ C to Ωa ⊂ R2 is then given by

ha : B → Ωa,

η �→ x = (
Re(η + aη2), Im(η + aη2)

)
.

(3)

The fact that this conformal map is quadratic, and hence that ∂Ω is a quartic curve,
seems to allow an explicit Green function. This makes the limaçon a special case.
For the clamped-plate equation with constant f on domains bounded by quartic
curves, see [13].

2.1. Behaviour of the Green function

In [10, Supplement] one finds the explicit formula of the Green function for (1),
which we will denote by Ga. For x, y ∈ Ωa we may rewrite this function as follows:

Ga (x, y) = 1
2 a2s2r2

[
log

(
r2

r2
1

)
+ r2

1
r2 − 1 − a2

1−2a2
r2

s2

(
r2
1

r2 − 1
)2

]
, (4)

where, with η, ξ ∈ B such that x = ha (η) and y = ha (ξ), the r, r1 and s are given
by

r2 = |η − ξ|2 , r2
1 = |1 − ηξ̄|2, s2 = ∣∣η + ξ + 1

a

∣∣2
. (5)

We want to study when the function Ga is of fixed sign in Ωa × Ωa. For
establishing this positivity we will need to consider the function

F (β, q) := log
(

1

q

)
+ q − 1 − β

(q − 1)2

q
. (6)

Note that q = r2
1/r2 ≥ 1.
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Lemma 1. Set Iβ := {q ≥ 1 : F (β, q) ≤ 0}. It holds that

• Iβ = {1} for β ∈ [
0, 1

2

] ;
• Iβ = [

1, qβ

]
with qβ > 1 for β ∈ ( 1

2 , 1
) ;

• Iβ = [1,∞) for β ∈ [1,∞) .

1 qβ

0 ≤ β ≤ 1
2

1
2 < β < 1

β ≥ 1

Fig. 2. Graphs of q �→ F(β, q)

Remark 3. Note that β �→ F (β, q) is decreasing and, hence, that β �→ qβ is
non-decreasing.

It will be convenient to work with functions defined in the disk. If f is a function
defined on Ωa, then f̃a will denote the function f̃a := f ◦ ha defined on the disk.

We fix the auxiliary function

H̃a (η, ξ) := a2

1−2a2

r2
1

s2
= a2

1−2a2

|1 − ηξ̄|2
|η + ξ + 1

a |2 , (7)

and hence the Green function in (4) becomes

G̃a (η, ξ) := 1
2 a2s2r2 F

(
H̃a (η, ξ) ,

r2
1

r2

)

= 1
2 a2s2r2 F

(
H̃a (η, ξ) ,

∣∣∣1−ηξ̄

∣∣∣2
|η−ξ|2

)
. (8)

The preceding Lemma 1 gives that if

sup
η,ξ∈B

H̃a (η, ξ) ≤ 1

2
, (9)

then F and, hence, Ga are positive. Note that (9) gives a condition on the parameter
a which is a sufficient condition for the positivity of the function. In the following
discussion we will see that this condition is also necessary.

First we will reduce the dimension of the problem. The following lemma states
that it is sufficient to study the behaviour of H̃a for couples of conjugate points.
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Lemma 2. Let a < 1
2 and define the sets �η,ξ for (η, ξ) ∈ B × B by

�η,ξ =
{
χ = χ1 + iχ2 ∈ B : χ1 = η1+ξ1

2 , |χ| ≥ max {|η| , |ξ|}
}

, (10)

where η = η1 + iη2 and ξ = ξ1 + iξ2.
If H̃a (η, ξ) > 1

2 , then for every χ ∈ �η,ξ it holds that H̃a(χ, χ̄) > 1
2 .

η •

ξ •

�η,ξ

Fig. 3. A set �η,ξ and its image within a limaçon

Proof. By hypothesis one has

H̃ (η, ξ) = a2

1 − 2a2

(1 − η1ξ1 − η2ξ2)
2 + (η1ξ2 − η2ξ1)

2

(
η1 + ξ1 + 1

a

)2 + (η2 + ξ2)
2

>
1

2
,

which is equivalent to

2a2 (
1 + η2

1ξ
2
1 + η2

2ξ
2
2 − 2η1ξ1 − 2η2ξ2 + η2

1ξ
2
2 + η2

2ξ
2
1

)
>(

1 − 2a2) (
η2

1 + ξ2
1 + 1

a2 + 2η1ξ1 + 2
aη1 + 2

aξ1 + η2
2 + ξ2

2 + 2η2ξ2
)
,

or similarly

2a2(1 + |η|2)(1 + |ξ|2) >

(η1 + ξ1)
2 + (η2 + ξ2)

2 + 1
a2 + 2

a (η1 + ξ1) − 2 − 4a(η1 + ξ1). (11)

For χ ∈ �η,ξ, we have

H̃(χ, χ̄) − 1
2 = a2

1−2a2

(
1 − χ2

1 + χ2
2

)2 + 4χ2
1χ2

2(
2χ1 + 1

a

)2 − 2χ2
1 + 1

2a2 + 2
aχ1(

2χ1 + 1
a

)2

= a2

1−2a2

1+χ4
1+χ4

2−2χ2
1+2χ2

2 −2χ2
1χ2

2+4χ2
1χ2

2− 2
a2 χ2

1− 1
2a4 − 2

a3 χ1+4χ2
1+ 1

a2 + 4
a χ1(

2χ1+ 1
a

)2

= 1
1−2a2

1(
2χ1+ 1

a

)2

(
a2(1 + |χ|2)2 − (

2χ2
1 + 1

2a2 + 2
aχ1 − 1 − 4aχ1

))
. (12)

By the definition of �η,ξ and (11) it follows that the last term is positive:

(1 + |χ|2)2 ≥ (1 + |η|2)(1 + |ξ|2) > 1
a2

(
2χ2

1 + 1
2a2 + 2

aχ1 − 1 − 4aχ1
)
. 
�
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Remark 4. Note that (12) implies that H̃a
(
χ, χ̄

)
is increasing in |χ2| .

We are now able to prove that (9) also gives a necessary condition for the
positivity of F and, hence, of Ga.

Lemma 3. Let a < 1
2 .

i. If H̃a(v, v̄) > 1
2 , then there is χ ∈ �v,v̄ such that

F
(

H̃a
(
χ, χ̄

)
,

|1−χ2|2
|χ−χ̄|2

)
< 0. (13)

ii. If (13) holds, then F
(

H̃a
(
z, z̄

)
,

|1−z2|2
|z−z̄|2

)
< 0 for every z ∈ �χ,χ̄ .

Proof. First claim: Since the function β �→ F (β, q) is decreasing, see (6), and the
function H̃a(z, z̄) is increasing in |z2|, by Remark 4, one gets that

F
(

H̃a
(
z, z̄

)
,

|1−z2|2
|z−z̄|2

)
≤ F

(
H̃a

(
v, v̄

)
,

|1−z2|2
|z−z̄|2

)
for every z ∈ �v,v̄. (14)

In F
(

H̃a
(
v, v̄

)
,

|1−z2|2
|z−z̄|2

)
the first argument does not depend on z; it is a fixed

coefficient which is larger then 1/2 by hypothesis. Hence, applying Lemma 1 one
has that there exists a qH̃a(v,v̄) > 1 such that

F
(

H̃a
(
v, v̄

)
, |1−z2|2

|z−z̄|2
)

< 0, ∀z ∈ �v,v̄ with |1−z2|2
|z−z̄|2 < qH̃a(v,v̄). (15)

Note that the function |z2| �→ |1−z2|2
|z−z̄|2 is decreasing since

∂

∂z2

|1 − z2|2
|z − z̄|2 = − 1

2z3
2

(
1 − |z|2 + 2z2

2

)
(1 − |z|2). (16)

Hence, since |1−z2|2
|z−z̄|2 is equal to 1 at the boundary, it follows that there exists χ ∈ �v,v̄

such that
|1−χ2|2
|χ−χ̄|2 < qH̃a(v,v̄). (17)

Combining (14), (15) and (17) the first claim follows.

Second claim: If F
(

H̃a(χ, χ̄),
|1−χ2|2
|χ−χ̄|2

)
< 0 we can deduce from Lemma 1 that

H̃a(χ, χ̄) > 1
2 and |1−χ2|2

|χ−χ̄|2 < qH̃a(χ,χ̄). (18)

Since H̃a(z, z̄) is increasing in |z2| (Remark 4) and the function |z2| �→ |1−z2|2
|z−z̄|2 is

decreasing, see (16), from (18) one gets that

H̃a(z, z̄) > 1
2 and |1−z2|2

|z−z̄|2 < qH̃a(χ,χ̄) for every z ∈ �χ,χ̄ . (19)

Since β �→ qβ is increasing (Remark 3), from (19) we have that

|1−z2|2
|z−z̄|2 < qH̃a(z,z̄) for every z ∈ �χ,χ̄ . (20)

By (19), (20) and Lemma 1 it follows that F
(

H̃a(z, z̄), |1−z2|2
|z−z̄|2

)
< 0 for every

z ∈ �χ,χ̄ . 
�
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The previous results show that, if the function Ga(x, y) is negative for some
x, y ∈ Ωa, then Ga will be negative somewhere near opposite boundary points. To
be precise:

Corollary 1. Suppose that Ga(x, y) < 0 for some x, y ∈ Ωa; then for all ε > 0
there is xε ∈ Ωa with dΩa(xε) < ε such that

Ga
((

xε
1, xε

2

)
,
(
xε

1,−xε
2

))
< 0.

By dΩ(x) we denote the distance of x to the boundary of Ω:

dΩ(x) = inf
{|x − x∗|; x∗ ∈ ∂Ω

}
. (21)

Proof. If G̃a(η, ξ) < 0, Lemma 1 gives that necessarily H̃a(η, ξ) > 1
2 . Hence, one

has from Lemma 2 that H̃a(z, z̄) > 1
2 for every z ∈ �η,ξ . The claim follows directly

from Lemma 3. 
�

2.2. Positivity of the Green function

Using the results of the previous section, we have seen that the function H̃a in
(7) plays a crucial role for the positivity of the Green function. Let us collect this
result.

Corollary 2. The Green function for the clamped-plate equation on a limaçon is
positive if and only if

sup
η,ξ∈B

H̃a (η, ξ) = a2

1 − 2a2
sup

η,ξ∈B

|1 − ηξ̄|2∣∣η + ξ + 1
a

∣∣2 ≤ 1

2
. (22)

Condition (22) gives an upper bound for the parameter a. In the following
lemma we give the explicit value of this upper bound.

Lemma 4. Inequality (22) is satisfied if and only if a ≤ 1
6

√
6.

Proof. Lemma 2 implies that it is sufficient to verify (22) for couples of conjugate
points, that is:

sup
χ∈B

H̃a(χ, χ̄) = a2

1−2a2 sup
χ∈B

∣∣1 − χ2
∣∣2

∣∣χ + χ̄ + 1
a

∣∣2 ≤ 1

2
.

By (12) we find

H̃a(χ, χ̄) − 1
2 = 1

1−2a2

a2(1 + |χ|2)2 + 1 + 4aχ1(
2χ1 + 1

a

)2 − 1
1−2a2

1
2 ,

which gives

sup
χ∈B

H̃a(χ, χ̄) − 1
2 = 1

1−2a2 sup
χ∈B

4a2 + 1 + 4aχ1(
2χ1 + 1

a

)2 − 1
1−2a2

1
2 . (23)
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A straightforward computation shows that the maximum in (23) is attained for
χ1 = −2a (and |χ| = 1). We obtain

sup
χ∈B

H̃a(χ, χ̄) − 1
2 = a2

1−2a2

1

−4a2 + 1
− 1

1−2a2
1
2 = 1

1−2a2

6a2 − 1

2(1 − 4a2)
,

which is non-negative for a > 1
6

√
6. 
�

2.3. Sharp estimates for the Green function

The Green function for the biharmonic problem in two dimensions does not have
a singularity in the L∞ sense: (x, y) �→ G(x, y) is uniformly bounded. However,
a natural solution space concerning the Dirichlet boundary condition (u = ∂

∂ν
u =0;

see [1]) is the Banach lattice (with the natural ordering):

Ce(Ω̄) =
{

u ∈ C(Ω̄); ‖u‖e := sup
x∈Ω

∣∣∣∣ u(x)

d2
Ω(x)

∣∣∣∣ < ∞
}
,

where dΩ(.) is as in (21). However (x �→ G (x, .)) from Ω̄ into Ce(Ω̄) does show
‘a singularity’ when x → ∂Ω. Precise information for the singularity of polyhar-
monic Dirichlet Green functions on balls inRn , where the Green function is known
to be positive, can be found in [9].

The next theorem shows how the estimate of Ga from below changes depending
on a. It is interesting to see that, although the Green function becomes negative, no
‘boundary-singularity’ from below appears.

Note that Theorem 1 is a direct consequence of Theorem 2.

Theorem 2. For every (η, ξ) ∈ B × B the following estimates hold:

i. for all a ∈ [
0, 1

2

]
there exists c1 > 0 such that

G̃a (η, ξ) ≤ c1 dB (η) dB (ξ) min
{

1,
dB (η) dB (ξ)

|η − ξ|2
}

. (24)

ii. for all a ∈ [
0, 1

6

√
6
]

there exists c2 > 0 such that

G̃a (η, ξ) ≥ c2
(

1
6

√
6 − a

)
dB (η) dB (ξ) min

{
1,

dB (η) dB (ξ)

|η − ξ|2
}

. (25)

iii. for a ∈ ( 1
6

√
6, 1

2

]
there exists (η∗, ξ∗) ∈ B × B such that

G̃a
(
η∗, ξ∗) < 0.

iv. for all a ∈ ( 1
6

√
6, 1

2

]
there exists c3 > 0 such that

G̃a (η, ξ) ≥ −c3
(
a − 1

6

√
6
)
dB (η)2 dB (ξ)2 , (26)

where the constants c1 and c2 do not depend on a.
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Remark 5. Let us observe that for every ε > 0 there exist two constants mε, M
such that for every η, ξ ∈ B and a ∈ [

0, 1
2 − ε

]
it holds that

mε . |η − ξ| ≤ |ha (η) − ha (ξ)| ≤ M . |η − ξ| ,
mε . d (η, ∂B) ≤ d (ha (η) , ∂Ωa) ≤ M . d (η, ∂B) .

(27)

Using (27) one can prove estimates for Ga similar to the one proven for G̃a in
Theorem 2. Near the cusp (when a → 1

2 ) the estimate from below in (27) breaks
down.

Remark 6. One may derive that for a ∈ [
0, 1

6

√
6
]

there exist constants c4, c5,
independently of a, such that

c4
(

1
6

√
6 − a

)
D(x, y) ≤ Ga (x, y) ≤ c5 D(x, y),

where D(x, y) = d (x) d (y) min
{

1,
d(x)d(y)
|x−y|2

}
and d(·) = dΩa(·).

Remark 7. Note that the Green function is positive on the diagonal. This follows
from the eigenfunction expansion and taking x = y:

G(x, y) =
∑

i

1

λi
ϕi(x)ϕi(y).

Here λi , ϕi are the eigenvalues/functions of the corresponding eigenvalue problem.
Note that λi > 0 holds for all i.

Proof. We will prove the statements separately.

i. One has from (4) that

G̃a (η, ξ) ≤ 1
2 a2s2

[
−r2 log

(
r2

1

r2

)
+ r2

1 − r2
]

≤ 2
[
−r2 log

(
r2

1

r2

)
+ r2

1 − r2
]

. (28)

The term inside the brackets on the right-hand side of (28) is the Green function
for the clamped-plate equation on the disk. Inequality (24) follows using the
estimate in [7, Prop. 2.3(iii)].

ii. Let a0 = 1
6

√
6 and s0 = |η + ξ + 1

a0
|. Using that s is decreasing in a for all

η, ξ ∈ B when a < 1
2 , one finds for a ∈ [

1
4 , 1

6

√
6
]

that

G̃a (η, ξ) ≥ 1
2 a2

(
s2

0r2 log

(
r2

r2
1

)
+ s2

0

(
r2

1 − r2) − a2

1 − 2a2

(
r2

1 − r2)2
)

= a4

1−2a2
1−2a2

0
a4

0
G̃a0 (η, ξ)

+ 1
2 a2s2

0

(
1 − a2

1−2a2
1−2a2

0
a2

0

)[
−r2 log

(
r2

1

r2

)
+ r2

1 − r2
]

≥ 1
2 a2s2

0

(
1 − 4 a2

1−2a2

) [
−r2 log

(
r2

1

r2

)
+ r2

1 − r2
]
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since G̃a0 (η, ξ) ≥ 0 (Corollary 2 and Lemma 4). For a ∈ [ 1
4 , 1

6

√
6
]

one has
1
2 a2s2

0(1 − 4 a2

1−2a2 ) ≥ 1
50 ( 1

6

√
6 − a); hence by using [7, Prop. 2.3(iii)] one gets

G̃a (η, ξ) ≥ c2
( 1

6

√
6 − a

)
dB (η) dB (ξ) min

{
1,

dB (η) dB (ξ)

|η − ξ|2
}

.

For a ∈ [0, 1
4 ] the claim follows from (4) by a direct computation.

iii. This claim follows from Corollary 2 and Lemma 4.
iv. Let a0 = 1

6

√
6 and s0 = |η + ξ + 1

a0
|. We have

G̃a (η, ξ) = 1

2
a2 s2

s2
0

(
r2s2

0 log

(
r2

r2
1

)
+ s2

0

(
r2

1 − r2) − a2
0

1 − 2a2
0

(
r2

1 − r2)2
)

+ 1

2
a2

(
s2

s2
0

a2
0

1 − 2a2
0

− a2

1 − 2a2

) (
r2

1 − r2)2

≥ 1

2
a2

(
s2

s2
0

1

4
− a2

1 − 2a2

) (
r2

1 − r2)2
(29)

since G̃a0 is positive in the entire domain. Using that s2
0 ≥ (

√
6 − 2)2 one gets

that

1

2
a2

(
s2

s2
0

1

4
− a2

1 − 2a2

)
= 1

8
a2

(
1 − 6a2

1 − 2a2
+ s2 − s2

0

s2
0

)

≥ −1

8
a2

(
1 + √

6a

1 − 2a2

√
6 + 1

(
√

6 − 2)2

(
1

a
+ √

6 + 4
) √

6

a

) (
a − 1

6

√
6
)

≥ −7

(
a − 1

6

√
6

)
. (30)

Hence, from (29) and (30) it follows that there exists a constant c3 > 0 such
that

G̃a (η, ξ) ≥ −c3

(
a − 1

6

√
6
)

dB (η)2 dB (ξ)2

for a ∈ ( 1
6

√
6, 1

2 ) . 
�

A. Green function for the limaçon

As promised in the introduction, this appendix contains a proof that the function
supplied by Hadamard is indeed the Green function for the limaçons. For x, y ∈ R2,
let R = |x − y|. The function U = R2 log(R) satisfies ∆2U(·) = δy(·) inR2. Then,
writing

Ga (x, y) = R2 log (R) + Ja (x, y) , (31)

the function

Ja(x, y) := −R2 log (ar1s) + a2

2 s2 (
r2

1 − r2) − a4

2(1−2a2)

(
r2

1 − r2)2
(32)

should be biharmonic and such that Ga satisfies the boundary condition.
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Note that (31) follows from (4) using that ars = R. In fact one has

R = ∣∣(η + aη2) − (
ξ + aξ2)∣∣ = a

∣∣η2 + η

a − ξ2 − ξ

a

∣∣ =
= a |η − ξ| ∣∣η + ξ + 1

a

∣∣ = ars.

A.1. Boundary condition

Let us rewrite (31) as

Ga (x, y) = 1
2 a2s2

[
r2 log

(
r2

r2
1

)
+ r2

1 − r2
]

− a4

2(1−2a2)

(
r2

1 − r2)2
. (33)

When x ∈ ∂Ωa, then η ∈ ∂D, and it holds that r1 = r. It follows from (33)
that Ga (x, y) = 0 at the boundary. Now we are interested in ∂

∂ν
Ga (x, y) on ∂Ωa.

One observes that the term
(
r2

1 − r2
)2

gives no contribution because it is a zero of
order two at the boundary. The remaining term is a product of two factors: one that
is non-zero at the boundary and the other that is identically zero. Hence, when we
look at the normal derivative at the boundary the only relevant term will be

∂
∂ν

[
r2 log

(
r2

r2
1

)
+ r2

1 − r2
]

. (34)

Using that the term inside the brackets in (34) is the Green function for the disk,
see [2], one gets that also the second Dirichlet boundary condition is satisfied.

A.2. The function Ja (x, y) is biharmonic on Ωa

To prove the biharmonicity of Ja, it is convenient to consider separately the term
with the logarithm and the remaining part.

We first observe that log (ar1s) is a harmonic function on Ωa. From this the
identity ∆2

(
R2 log (ar1s)

) = 0 follows using that, if v is a harmonic function, then
R2v is biharmonic.

Lemma 5. It holds that

∆2
x

(
s2 (

r2
1 − r2) − a2

1−2a2

(
r2

1 − r2)2
)

= 0.

Proof. Next to ha : B ⊂ C→ R
2 we will use ha (η) : C→ C defined by ha (η) =

η + aη2 with η = η1 + iη2.
Let us consider

K (x, y) := ∣∣h−1
a (x) + h−1

a (y) + 1
a

∣∣2 (
1 − ∣∣h−1

a (x)
∣∣2 )

− a2

1−2a2

(
1 − ∣∣h−1

a (x)
∣∣2 )2(

1 − ∣∣h−1
a (y)

∣∣2 )
,

and then s2
(
r2

1 − r2
) − a2

1−2a2

(
r2

1 − r2
)2 = (1 − |h−1

a (y)|2)K(x, y), and

Y (η, ξ) := K (ha (η) , ha (ξ)) = ∣∣η + ξ + 1
a

∣∣2 (
1 − |η|2)

− a2

1−2a2

(
1 − |η|2)2 (

1 − |ξ|2) .
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Since h is a conformal map, it holds that

∆ηY (η, ξ) = ∣∣h′
a (η)

∣∣2
(∆x K) (ha (η) , ha (ξ)) , (35)

∆2
ηY (η, ξ) = ∆η

∣∣h′
a (η)

∣∣2
∆x K (ha (η) , ha (ξ))

+ 2
2∑

i=1

∂
∂ηi

∣∣h′
a (η)

∣∣2 ∂
∂ηi

(∆x K) (ha (η) , ha (ξ))

+ ∣∣h′
a (η)

∣∣4 (
∆2

x K
)
(ha (η) , ha (ξ)) . (36)

The idea is to use (36) to calculate
(
∆2

x K
)
(ha (η) , ha (ξ)) in terms of ∆2

ηY (η, ξ) .

Since ∆η = 4 ∂
∂η̄

∂
∂η

, one has

∂
∂η

Y (η, ξ) = (
η̄ + ξ̄ + 1

a

)
(1 − |η|2) − η̄

∣∣η + ξ + 1
a

∣∣2

+ 2a2

1−2a2 η̄(1 − |η|2)(1 − |ξ|2),
∂2

∂η̄∂η
Y (η, ξ) = (1 − |η|2) − η

(
η̄ + ξ̄ + 1

a

) − ∣∣η + ξ + 1
a

∣∣2− η̄
(
η + ξ + 1

a

)
+ 2a2

1−2a2 (1 − |η|2)(1 − |ξ|2) − 2a2

1−2a2 η̄η(1 − |ξ|2),
∂3

∂η∂η̄∂η
Y (η, ξ) = −2η̄ − 2

(
η̄ + ξ̄ + 1

a

) − 4a2

1−2a2 η̄(1 − |ξ|2),
∂4

∂η̄∂η∂η̄∂η
Y (η, ξ) = −4 − 4a2

1−2a2 (1 − |ξ|2),
which gives

∆ηY (η, ξ) = 4(1 − 3 |η|2) − 4η
(
ξ̄ + 1

a

) − 4
∣∣η + ξ + 1

a

∣∣2 − 4η̄
(
ξ + 1

a

)
+ 8a2

1−2a2 (1 − 2 |η|2)(1 − |ξ|2),
∆2

ηY (η, ξ) = −64 − 64a2

1−2a2 (1 − |ξ|2).
By the definition of the conformal map ha in (3) and from (35) we obtain that∣∣h′

a (η)
∣∣2 = |2aη + 1|2, ∆η

∣∣h′
a (η)

∣∣2 = 16a2 and

(∆x K) (ha (η) , ha (ξ)) = 4
|2aη+1|2

(
(1 − 3 |η|2) − η

(
ξ̄ + 1

a

) − ∣∣η + ξ + 1
a

∣∣2
)

+ 4
|2aη+1|2

(
−η̄

(
ξ + 1

a

) + 2a2

1−2a2 (1 − 2 |η|2)(1 − |ξ|2)
)

.

We find
2∑

i=1

∂
∂ηi

∣∣h′
a (η)

∣∣2 ∂
∂ηi

(∆x K) (ha (η) , ha (ξ))

= − 64a2

|2aη+1|2
( − 4η2

1 − 4η2
2 − 4η1ξ1 − 4

aη1 − 4η2ξ2 − 1
a2 − 4

a ξ1 + 1 − |ξ|2 )
− 64a2

|2aη+1|2
2a2

1−2a2 (1 − 2 |η|2)(1 − |ξ|2) + 32a2

|2aη+1|2
(−8η2

2 − 4ξ2η2
)

+ 16a
|2aη+1|2

(−8η1 − 4ξ1 − 4
a − 16aη2

1 − 8aη1ξ1 − 8η1
)

+ 16a
|2aη+1|2

2a2

1−2a2

(−8aη2
1 − 4η1 − 8aη2

2

)
(1 − |ξ|2)
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= − 64a2

|2aη+1|2
(−2η1ξ1 − 2η2ξ2 − 1

aξ1 + 1 − |ξ|2)
− 64a2

|2aη+1|2
2a2

1−2a2

(
1 + η1

a

)
(1 − |ξ|2).

Hence from (36) we get

− 1 − a2

1−2a2 (1 − |ξ|2) =
= a2

|2aη+1|2
( − 4η2

1 − 4η2
2 − 4η1ξ1 − 4

aη1 − 4η2ξ2 − 1
a2 − 4

aξ1 + 1 − |ξ|2 )
+ a2

|2aη+1|2
2a2

1−2a2 (1 − 2 |η|2)(1 − |ξ|2) − 2a2

|2aη+1|2
2a2

1−2a2

(
1 + η1

a

)
(1 − |ξ|2)

− 2a2

|2aη+1|2
(−2η1ξ1 − 2η2ξ2 − 1

aξ1 + 1 − |ξ|2)
+ ∣∣h′

a (η)
∣∣4 (

∆2
x K

)
(ha (η) , ha (ξ)) ,

− 1 − a2

1−2a2 (1 − |ξ|2) =
= − 1

|2aη+1|2 |2aη + 1|2 − 4a2

|2aη+1|2
(
η1ξ1 + η2ξ2 + 1

aξ1
) + a2

|2aη+1|2 (1 − |ξ|2)
+ a2

|2aη+1|2
2a2

1−2a2 (1 − |ξ|2) − a2

|2aη+1|2
4a2

1−2a2 |η|2 (1 − |ξ|2)
− 2a2

|2aη+1|2
2a2

1−2a2 (1 − |ξ|2) − 2a2

|2aη+1|2
2a

1−2a2 η1(1 − |ξ|2)
− 2a2

|2aη+1|2 (1 − |ξ|2) − 2a2

|2aη+1|2
(−2η1ξ1 − 2η2ξ2 − 1

aξ1
)

+ ∣∣h′
a (η)

∣∣4 (
∆2

x K
)
(ha (η) , ha (ξ)) ,

− a2

1−2a2 (1 − |ξ|2) =
= − a2

|2aη+1|2 (1 − |ξ|2) − a2

|2aη+1|2
1

1−2a2 (1 − |ξ|2) |2aη + 1|2

+ a2

|2aη+1|2
1

1−2a2 (1 − |ξ|2) − a2

|2aη+1|2
2a2

1−2a2 (1 − |ξ|2)
+ ∣∣h′

a (η)
∣∣4 (

∆2
x K

)
(ha (η) , ha (ξ)) ,

0 = + a2

|2aη+1|2 (1 − |ξ|2)
(
−1 + 1

1−2a2 − 2a2

1−2a2

)

+ ∣∣h′
a (η)

∣∣4 (
∆2

x K
)
(ha (η) , ha (ξ)) ,

which gives the claim. 
�
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Note added in proof. The function −∆x∆yGΩ(x, y) is called the Bergman kernel
function. In e.g. [5, p. 510] one finds that

GΩ(x, y) ≥ 0 in Ω2 ⇒ −∆x∆yGΩ(x, y) ≤ 0

for (x, y) ∈ ∂Ω × ∂Ω \ {(z, z) : z ∈ ∂Ω} .
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It is an open problem whether the converse holds. A direct computation shows
that in the case of the limaçons this converse does hold. Indeed for a > 1

6

√
6 and

η ∈ ∂B with Re(η) = −2a one obtains that −∆x∆yGΩa(ha(η), ha(η̄)) > 0.
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Jacques Hadamard, Tomes III, Éditions du Centre National de la Recherche Scientifique,
Paris 1968, pp. 1297–1299. Reprint of: IV Congr. Math. (1908) Rome

12. Schot, S.H.: The Green’s Functions Method for the Supported Plate Boundary Value
Problem. Z. Anal. Anwend. 11, 359–370 (1992)

13. Sen, B.: Note on the bending of thin uniformly loaded plates bounded by cardioids,
lemniscates and certain other quartic curves. Z. Angew. Math. Mech. 20, 99–103 (1940)

14. Sweers, G.: When is the first eigenfunction for the clamped plate equation of fixed sign?
Electron. J. Differ. Equ. 6, 285–296 (2001)

15. Szegö, G.: On membranes and plates. Proc. Natl. Acad. Sci. USA 36, 210–216 (1950)


