Hardy spaces $\boldsymbol{H}^{\mathbf{1}}$ for Schrödinger operators with compactly supported potentials ${ }^{\star}$

Received: July 28, 2003; accepted: November 3, 2003
Published online: September 21, 2004 - © Springer-Verlag 2004

Abstract

Let $L=-\Delta+V$ be a Schrödinger operator on $\mathbb{R}^{d}, d \geq 3$, where V is a nonnegative compactly supported potential that belongs to L^{p} for some $p>d / 2$. Let $\left\{K_{t}\right\}_{t>0}$ denote the semigroup of linear operators generated by $-L$. For a function f we define its H_{L}^{1}-norm by $\|f\|_{H_{L}^{1}}=\left\|\sup _{t>0}\left|K_{t} f(x)\right|\right\|_{L^{1}(d x)}$. It is proved that for a properly defined weight w a function f belongs to H_{L}^{1} if and only if $w f \in H^{1}\left(\mathbb{R}^{d}\right)$, where $H^{1}\left(\mathbb{R}^{d}\right)$ is the classical real Hardy space.

Mathematics Subject Classification (2000). 42B30, 35J10, 42B25
Key words. Hardy spaces - atomic decomposition - Schrödinger operators

1. Introduction

Let

$$
\begin{equation*}
L f(x)=-\Delta f(x)+V(x) f(x) \tag{1.1}
\end{equation*}
$$

be a Schrödinger operator on $\mathbb{R}^{d}, d \geq 3$, where V is a non-negative potential. Throughout this paper we shall assume that the potential V is compactly supported, say supp $V \subset B(0,1)=\{x:|x|<1\}$, and belongs to $L^{p}\left(\mathbb{R}^{d}\right)$ for some $p>d / 2$. It is well known that $-L$ generates a semigroup $\left\{K_{t}\right\}_{t>0}$ of linear operators acting on $L^{r}\left(\mathbb{R}^{d}\right), 1 \leq r<\infty$. By the Feynman-Kac formula the integral kernels $K_{t}(x, y)$ of the semigroup $\left\{K_{t}\right\}_{t>0}$ satisfy

$$
\begin{equation*}
0 \leq K_{t}(x, y) \leq P_{t}(x-y), \tag{1.2}
\end{equation*}
$$

where $P_{t}(x-y)=(4 \pi t)^{-d / 2} \exp \left(-\frac{|x-y|^{2}}{4 t}\right)$ are the integral kernels of the classical heat semigroup $\left\{P_{t}\right\}_{t>0}$. Let

$$
K^{*} f(x)=\sup _{t>0}\left|K_{t} f(x)\right|
$$

[^0][^1]be the maximal operator associated with the semigroup $\left\{K_{t}\right\}_{t>0}$. We say that an L^{1}-function f belongs to H_{L}^{1} if its norm defined by
$$
\|f\|_{H_{L}^{1}}=\left\|K^{*} f\right\|_{L^{1}}
$$
is finite.
Define
\[

$$
\begin{equation*}
w(x)=\lim _{s \rightarrow \infty} K_{s} \mathbf{1}(x) \tag{1.3}
\end{equation*}
$$

\]

The limit in (1.3) exists because the function $s \mapsto K_{s} \mathbf{1}(x)$ is monotonic. Indeed, by (1.2),

$$
\begin{equation*}
0 \leq K_{s+t} \mathbf{1}(x)=K_{s} K_{t} \mathbf{1}(x) \leq K_{s} \mathbf{1}(x) \leq 1 \tag{1.4}
\end{equation*}
$$

We shall show that there exists a constant $0<\delta<1$ such that $\delta \leq w(x) \leq 1$. The following theorem is the main result of the present paper:

Theorem 1.5. There exists a constant $C>0$ such that

$$
\begin{equation*}
C^{-1}\|f\|_{H_{L}^{1}} \leq\|w f\|_{H^{1}\left(\mathbb{R}^{d}\right)} \leq C\|f\|_{H_{L}^{1}}, \tag{1.6}
\end{equation*}
$$

where $\|g\|_{H^{1}\left(\mathbb{R}^{d}\right)}=\left\|\sup _{t>0}\left|P_{t} g(x)\right|\right\|_{L^{1}(d x)}$ is the norm in the classical real Hardy space $H^{1}\left(\mathbb{R}^{d}\right)$.

We say that a function b is an H_{L}^{1}-atom if there exists a ball $B\left(y_{0}, r\right)=\{y \in$ $\left.\mathbb{R}^{d}:\left|y-y_{0}\right|<r\right\}$ such that $\operatorname{supp} b \subset B\left(y_{0}, r\right),\|b\|_{L^{\infty}} \leq\left|B\left(y_{0}, r\right)\right|^{-1}$, and $\int b(y) w(y) d y=0$. The atomic norm $\|f\|_{H_{L}^{1} \text { atom }}$ is defined by

$$
\begin{equation*}
\|f\|_{H_{L}^{1} \text { atom }}=\inf \sum_{j}\left|\lambda_{j}\right|, \tag{1.7}
\end{equation*}
$$

where the infimum is taken over all representations $f=\sum_{j} \lambda_{j} b_{j}$, where b_{j} are H_{L}^{1}-atoms.

As a consequence of Theorem 1.5 we have
Corollary 1.8. There exists a constant $C>0$ such that

$$
\begin{equation*}
C^{-1}\|f\|_{H_{L}^{1}} \leq\|f\|_{H_{L}^{1} \text { atom }} \leq C\|f\|_{H_{L}^{1}} \tag{1.9}
\end{equation*}
$$

Let us mention that in contrast with the one-dimensional case or in the case of V satisfying a reverse Hölder inequality (cf. [1]-[4]) the atoms for H_{L}^{1} considered in the present paper are not variants of local atoms.

Finally we would like to remark that if $V \neq \tilde{V}$ are compactly supported $L^{p_{-}}$ potentials, $p>d / 2$, then the corresponding spaces H_{L}^{1} and $H_{\tilde{L}}^{1}$ do not coincide. We shall discuss this property at the end of the paper.

Acknowledgement. The authors wish to thank the referee for valuable remarks.

2. Properties of the weight w

Let
(2.1) $\Gamma(x, y)=\int_{0}^{\infty} K_{t}(x, y) d t$ and $\Gamma_{0}(x, y)=-\int_{0}^{\infty} P_{t}(x-y) d t$ be the fundamental solutions for L and Δ, respectively. Obviously,

$$
0 \leq \Gamma(x, y)=\Gamma(y, x) \leq-\Gamma_{0}(x, y)=-\Gamma_{0}(y, x) .
$$

The perturbation formula asserts

$$
\begin{equation*}
P_{t}=K_{t}+\int_{0}^{t} P_{t-s} V K_{s} d s \tag{2.2}
\end{equation*}
$$

Hence, by (1.3),

$$
\begin{align*}
\int V(x) \Gamma(x, y) d x & =\lim _{t \rightarrow \infty} \int_{0}^{t} \iint P_{t-s}(z-x) V(x) K_{s}(x, y) d z d x d s \\
& =\lim _{t \rightarrow \infty} \int\left(P_{t}(z-y)-K_{t}(z, y)\right) d z \tag{2.3}\\
& =1-w(y) .
\end{align*}
$$

Lemma 2.4. The function $w(x)$ has the following properties:

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} w(x)=1, \tag{2.5}
\end{equation*}
$$

(2.6) $|w(x)-w(y)| \leq C_{\gamma}|x-y|^{\gamma}$, provided $0<\gamma<2-d / p, \quad \gamma \leq 1$.

Moreover, there exists a constant δ such that

$$
\begin{equation*}
0<\delta \leq w(x) \leq 1 \tag{2.7}
\end{equation*}
$$

Proof. From (2.3) we conclude

$$
\begin{equation*}
0 \leq 1-w(x) \leq C \int \frac{V(y)}{|x-y|^{d-2}} d y \leq \frac{C}{|x|^{d-2}}\|V\|_{L^{1}} \tag{2.8}
\end{equation*}
$$

for $|x|>2$, which gives (2.5).
In order to prove (2.6), let us note that

$$
\begin{equation*}
w(x)=\lim _{s \rightarrow \infty} K_{t} K_{s} \mathbf{1}(x)=K_{t} w(x) \text { for all } t>0 . \tag{2.9}
\end{equation*}
$$

Let $q_{t}(x, y)=P_{t}(x-y)-K_{t}(x, y)$. Since

$$
\begin{aligned}
|w(x+h)-w(x)| & =\left|\lim _{s \rightarrow \infty} \iint\left(K_{1}(x+h, y)-K_{1}(x, y)\right) K_{s}(y, z) d z d y\right| \\
& \leq \int\left|K_{1}(x+h, y)-K_{1}(x, y)\right| d y
\end{aligned}
$$

and

$$
\int\left|P_{1}(x+h-y)-P_{1}(x, y)\right| d y \leq C_{\gamma}|h|^{\gamma}
$$

it suffices to verify that

$$
\begin{equation*}
\int\left|q_{1}(x+h, y)-q_{1}(x, y)\right| d y \leq C_{\gamma}|h|^{\gamma} \tag{2.10}
\end{equation*}
$$

By the perturbyation formula

$$
\begin{aligned}
& \int\left|q_{1}(x+h, y)-q_{1}(x, y)\right| d y \\
& \quad=\int\left|\int_{0}^{1} \int\left(P_{s}(x+h-z)-P_{s}(x-z)\right) V(z) K_{1-s}(z, y) d z d s\right| d y \\
& \quad \leq \int_{0}^{1} \int s^{-d / 2}\left|P_{1}\left(\frac{x+h-z}{\sqrt{s}}\right)-P_{1}\left(\frac{x-z}{\sqrt{s}}\right)\right| V(z) d z d s \\
& \quad \leq \int_{0}^{1} s^{-d / 2+d /\left(2 p^{\prime}\right)}\left(\int\left|P_{1}\left(\frac{x+h}{\sqrt{s}}-z\right)-P_{1}\left(\frac{x}{\sqrt{s}}-z\right)\right|^{p^{\prime}} d z\right)^{1 / p^{\prime}}\|V\|_{L^{p}} d s \\
& \quad \leq C \int_{0}^{1} s^{-d /(2 p)}\left(\frac{|h|}{\sqrt{s}}\right)^{\gamma} d s \\
& \quad \leq C_{\gamma}|h|^{\gamma}
\end{aligned}
$$

which completes the proof of (2.6).
Clearly, (2.6) implies that the function w is continuous. Therefore, according to (2.5), the estimate (2.7) will be proved if we show that

$$
\begin{equation*}
w(x)>0 \text { for all } x . \tag{2.11}
\end{equation*}
$$

On account of (2.9) and (2.5) we shall have established (2.11) if we prove that there exists $t>0$ such that $K_{t}(x, y)>0$.

Lemma 2.12. For every $t>0$

$$
\begin{equation*}
K_{t}(x, y)>0 \tag{2.13}
\end{equation*}
$$

Proof. The lemma is well known. For completeness of the paper we present the proof. By (1.2), (2.2), and the Hölder inequality we have

$$
\begin{align*}
0 \leq q_{\varepsilon}(x, y) \leq & \int_{0}^{\varepsilon} \int P_{\varepsilon-s}(x-z) V(z) P_{s}(z-y) d z d s \\
\leq & \int_{0}^{\varepsilon / 2} C_{d} \varepsilon^{-d / 2}\|V\|_{L^{p}}\left\|P_{s}\right\|_{L^{p^{\prime}}} d s \tag{2.14}\\
& +\int_{\varepsilon / 2}^{\varepsilon}\left\|P_{\varepsilon-s}\right\|_{L^{p^{\prime}}}\|V\|_{L^{p}} C_{d} \varepsilon^{-d / 2} d s \\
= & C_{d}^{\prime} \varepsilon^{-d / 2} \varepsilon^{(2 p-d) / 2 p}\|V\|_{L^{p}}
\end{align*}
$$

Clearly, there exists $c_{0}>0$ such that

$$
\begin{equation*}
P_{\varepsilon}(x-y) \geq c_{0} \varepsilon^{-d / 2} \text { for }|x-y|<\sqrt{\varepsilon} . \tag{2.15}
\end{equation*}
$$

From (2.14) and (2.15) we conclude that there exists $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
K_{\varepsilon}(x, y) \geq \frac{c_{0}}{2} \varepsilon^{-d / 2} \text { provided }|x-y|<\sqrt{\varepsilon}, \quad 0<\varepsilon<\varepsilon_{0} . \tag{2.16}
\end{equation*}
$$

Applying (2.16) and the semigroup property we get

$$
\begin{equation*}
K_{n \varepsilon}(x, y)>0 \text { for }|x-y|<\sqrt{\varepsilon} n, \quad \varepsilon<\varepsilon_{0} . \tag{2.17}
\end{equation*}
$$

Now (2.13) follows by taking $n>\max \left(\frac{|x-y|^{2}}{t}, \frac{t}{\varepsilon_{0}}\right)$ and $\varepsilon=t n^{-1}$.
Corollary 2.18. There exists a constant $\delta>0$ such that

$$
\left\|V L^{-1} f\right\|_{L^{1}} \leq(1-\delta)\|f\|_{L^{1}}
$$

Proof. The corollary is an immediate consequence of (2.7). Indeed,

$$
\left\|V L^{-1}\right\|_{L^{1} \rightarrow L^{1}} \leq \sup _{y} \int V(x) \Gamma(x, y) d x=1-w(y) \leq 1-\delta .
$$

3. Estimates of maximal functions

Since the compactly supported function V belongs to $L^{p}\left(\mathbb{R}^{d}\right)$ for some $p>d / 2$ and $\Delta^{-1}: L^{1}\left(\mathbb{R}^{d}\right) \rightarrow L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{d}\right)$ for every $q<d /(d-2)$, we get that $V \Delta^{-1}$ is bounded on $L^{1}\left(\mathbb{R}^{d}\right)$. Moreover, direct calculations show that

$$
\begin{equation*}
\left(I-V L^{-1}\right)\left(I-V \Delta^{-1}\right)=\left(I-V \Delta^{-1}\right)\left(I-V L^{-1}\right)=I . \tag{3.1}
\end{equation*}
$$

Here and subsequently L^{-1} and Δ^{-1} are the operators with the integral kernels Γ and Γ_{0}, respectively (cf. (2.1)).

Using (2.2) we get

$$
\begin{aligned}
P_{t} & =K_{t}+\int_{0}^{t}\left(P_{t-s}-P_{t}\right) V K_{s} d s-\int_{t}^{\infty} P_{t} V K_{s} d s+\int_{0}^{\infty} P_{t} V K_{s} d s \\
& =K_{t}+\int_{0}^{t}\left(P_{t-s}-P_{t}\right) V K_{s} d s-\int_{t}^{\infty} P_{t} V K_{s} d s+P_{t} V L^{-1} .
\end{aligned}
$$

Thus

$$
\begin{align*}
P_{t}\left(I-V L^{-1}\right) & =K_{t}-\int_{0}^{t}\left(P_{t}-P_{t-s}\right) V K_{s} d s-\int_{t}^{\infty} P_{t} V K_{s} d s \tag{3.2}\\
& =K_{t}-R_{t}-Q_{t}
\end{align*}
$$

We shall show that the maximal operators associated with the families $\left\{R_{t}\right\}_{t>0}$ and $\left\{Q_{t}\right\}_{t>0}$ are bounded on $L^{1}\left(\mathbb{R}^{d}\right)$.

Lemma 3.3. There exists a constant $C>0$ such that

$$
\begin{equation*}
\left\|\sup _{t>2}\left|R_{t} f(x)\right|\right\|_{L^{1}(d x)} \leq C\|f\|_{L^{1}} \tag{3.4}
\end{equation*}
$$

Proof. Let $R_{t}(x, y)$ denote the integral kernel of the operator R_{t}. Put $\beta=8 / 9$. Then for $t>2$ we have

$$
\begin{aligned}
R_{t}(x, y) & =\int_{0}^{t} \int\left(P_{t}(x-z)-P_{t-s}(x-z)\right) V(z) K_{s}(z, y) d z d s=\int_{0}^{t^{\beta}}+\int_{t^{\beta}}^{t} \\
& =R_{t}^{[1]}(x, y)+R_{t}^{[2]}(x, y)
\end{aligned}
$$

Clearly for every $0<c<1$ there is a non-negative function ϕ that belongs to the Schwartz class $\delta\left(\mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
\left|P_{t}(x)-P_{t-s}(x)\right| \leq \frac{s}{t} \phi_{t}(x) \text { for } 0<s<c t \tag{3.5}
\end{equation*}
$$

where $\phi_{t}(x)=t^{-d / 2} \phi\left(t^{-1 / 2} x\right)$. Hence there exists $\phi \in f\left(\mathbb{R}^{d}\right), \phi \geq 0$, such that for $t>2$ we have

$$
\begin{aligned}
\left|R_{t}^{[1]}(x, y)\right| & \leq \int t^{\beta-1} \phi_{t}(x-z) V(z) \int_{0}^{t^{\beta}} K_{s}(z, y) d s d z \\
& \leq C \int t^{\beta-1} \phi_{t}(x-z) V(z)|z-y|^{2-d} d z
\end{aligned}
$$

Since $\sup _{t>2} t^{\beta-1} \phi_{t}(x-z) \leq C(1+|x-z|)^{-d-1+\beta}$, we get

$$
\begin{align*}
\int \sup _{t>2}\left|R_{t}^{[1]}(x, y)\right| d x & \leq \iint_{|z|<1}(1+|x-z|)^{-d-1+\beta}|z-y|^{2-d} V(z) d z d x \\
& \leq C\|V\|_{L^{p}} \leq C . \tag{3.6}
\end{align*}
$$

We now turn to estimate $R_{t}^{[2]}$

$$
\begin{align*}
\left|R_{t}^{[2]}(x, y)\right| \leq & \int_{t^{\beta}}^{t} \int P_{t}(x-z) V(z) K_{s}(z, y) d z d s \\
& +\int_{t^{\beta}}^{t} \int P_{t-s}(x-z) V(z) K_{s}(z, y) d z d s \tag{3.7}\\
= & R^{\left[2^{\prime}\right]}(x, y)+R^{\left[2^{\prime \prime}\right]}(x, y)
\end{align*}
$$

For $s \geq t^{\beta}$ we have $K_{s}(z, y) \leq C t^{-\beta d / 2}$. Therefore

$$
0 \leq R_{t}^{\left[2^{\prime}\right]}(x, y) \leq C \int P_{t}(x-z) V(z) t^{1-\beta d / 2} d z
$$

and, consequently,

$$
\begin{equation*}
\left\|\sup _{t>2} R_{t}^{\left[2^{\prime}\right]}(x, y)\right\|_{L^{1}(d x)} \leq C . \tag{3.8}
\end{equation*}
$$

Likewise,

$$
\begin{aligned}
0 \leq R_{t}^{\left[2^{\prime \prime}\right]}(x, y) & \leq \int_{t^{\beta}}^{t} \int P_{t-s}(x-z) V(z) t^{-\beta d / 2} d z d s \\
& \leq C t^{-\beta d / 2} \iint_{0}^{t} P_{s}(x-z) V(z) d s d z \\
& \leq C \int t^{-\beta d / 2} V(z)|x-z|^{2-d} e^{-c|x-z|^{2} / t} d z
\end{aligned}
$$

Since $\sup _{t>2} t^{-\beta d / 2} e^{-c|x-z|^{2} / t} \leq C(1+|x-z|)^{-\beta d}$, we obtain

$$
\begin{align*}
\left\|\sup _{t>2} R_{t}^{\left[2^{\prime \prime}\right]}(x, y)\right\|_{L^{1}(d x)} & \leq C \iint(1+|x-z|)^{-\beta d}|x-z|^{2-d} V(z) d z d x \tag{3.9}\\
& \leq C\|V\|_{L^{1}}
\end{align*}
$$

The lemma follows from (3.6)-(3.9).
Lemma 3.10. There exists a constant $C>0$ such that

$$
\begin{equation*}
\left\|\sup _{0<t \leq 2}\left|R_{t} f(x)\right|\right\|_{L^{1}(d x)} \leq C\|f\|_{L^{1}} \tag{3.11}
\end{equation*}
$$

Proof. Fix $y \in \mathbb{R}^{d}$.

$$
\begin{aligned}
R_{t}(x, y)= & \int_{0}^{t / 2} \int\left(P_{t}(x-z)-P_{t-s}(x-z)\right) V(z) K_{s}(z, y) d z d s \\
& +\int_{t / 2}^{t} \int\left(P_{t}(x-z)-P_{t-s}(x-z)\right) V(z) K_{s}(z, y) d z d s \\
= & R_{t}^{[3]}(x, y)+R_{t}^{[4]}(x, y)
\end{aligned}
$$

Similarly to that what was done above there exists $\psi \in \varsigma\left(\mathbb{R}^{d}\right), \psi \geq 0$, such that

$$
\begin{align*}
\left|R_{t}^{[3]}(x, y)\right| & \leq \int_{0}^{1} \int \psi_{t}(x-z) V(z) K_{s}(z, y) d s d z \tag{3.12}\\
& \leq \int \psi_{t}(x-z) V(z)|z-y|^{2-d} d z
\end{align*}
$$

Let us note that for any fixed $r, 1<r<d p /(d p+d-2 p)$, the function $z \mapsto|z-y|^{2-d} V(z)$ is supported by the unit ball and its L^{r}-norm is bounded by a constant independent of y. Then, by using standard methods, we obtain

$$
\begin{equation*}
\left\|\sup _{t<2}\left|R_{t}^{[3]}(x, y)\right|\right\|_{L^{1}(d x)} \leq C . \tag{3.13}
\end{equation*}
$$

To estimate $R_{t}^{[4]}$, we observe that for $2^{-m-1}<t \leq 2^{-m}$ we have $\left|R_{t}^{[4]}(x, y)\right| \leq \int_{t / 2}^{t} \int\left(P_{t}(x-z) V(z) \phi_{t}(z-y)+P_{t-s}(x-z) V(z) \phi_{t}(z-y)\right) d z d s$

$$
\begin{align*}
\leq & C \int\left(t P_{t}(x-z)+|x-z|^{2-d} e^{-c|x-z|^{2} / t}\right) V(z) \phi_{t}(z-y) d z \tag{3.14}\\
\leq & C \int\left(2^{-m} P_{2^{-m}}(x-z)+2^{-m(2-d) / 2}\left(\frac{|x-z|}{2^{-m / 2}}\right)^{2-d} e^{-c 2^{m}|x-z|^{2}}\right) \\
& \times V(z) \phi_{2^{-m}}(z-y) d z
\end{align*}
$$

where ϕ is a non-negative Schwartz class function. Therefore applying (3.14) and the Hölder inequality, we obtain

$$
\begin{aligned}
\int \sup _{0<t \leq 2}\left|R_{t}^{[4]}(x, y)\right| d x & \leq \sum_{m \geq-1} \int \sup _{2^{-m-1}<t \leq 2^{-m}}\left|R_{t}^{[4]}(x, y)\right| d x \\
& \leq C \sum_{m \geq-1} 2^{-m}\|V\|_{L^{p}}\| \| \phi_{2^{-m}}(z, y) \|_{L^{p^{\prime}}(d z)} \\
& \leq C\|V\|_{L^{p}} \sum_{m \geq-1} 2^{-m+m d /(2 p)} \\
& \leq C\|V\|_{L^{p}} .
\end{aligned}
$$

This ends the proof of the lemma.
Lemma 3.15. There exists a constant $C>0$ such that

$$
\left\|\sup _{t>0}\left|Q_{t} f(x)\right|\right\|_{L^{1}(d x)} \leq C\|f\|_{L^{1}} .
$$

Proof. We shall show that $\int \sup _{t>0} Q_{t}(x, y) d x \leq C$ with C independent of y, where $Q_{t}(x, y)$ denotes the integral kernel of Q_{t}. Let us note that

$$
\begin{align*}
0 \leq Q_{t}(x, y) & \leq \iint_{t}^{\infty} P_{t}(x-z) V(z) P_{s}(z-y) d s d z \tag{3.16}\\
& \leq C \int P_{t}(x-z) \frac{V(z)}{\left(t^{1 / 2}+|z-y|\right)^{d-2}} d z
\end{align*}
$$

Fix $y \in \mathbb{R}^{d}$. Then

$$
\begin{aligned}
\int \sup _{t>1} Q_{t}(x, y) d x & \leq C \iint \sup _{t>1} t^{(2-d) / 2} P_{t}(x-z) V(z) d z d x \\
& \leq C \iint(1+|x-z|)^{-d-d+2} V(z) d z d x \\
& \leq C\|V\|_{L^{1}}
\end{aligned}
$$

To deal with $\sup _{0<t \leq 1} Q_{t}(x, y)$, let us observe that for $0<t \leq 1$ we have

$$
Q_{t}(x, y) \leq C \int P_{t}(x, y) V(z)|z-y|^{2-d} d z
$$

Thus we can repeat the same arguments as we used for the estimation of $R_{t}^{[3]}$ in the proof of Lemma 3.10 and obtain

$$
\left\|\sup _{t \leq 1} Q_{t}(x, y)\right\|_{L^{1}(d x)} \leq C .
$$

This completes the proof of the lemma.
As a consequence of (3.2), Lemmata 3.3, 3.10, 3.15, and Corollary 2.18, we get:
Corollary 3.17. A function f belongs to H_{L}^{1} if and only if $\left(I-V L^{-1}\right) f \in H^{1}\left(\mathbb{R}^{d}\right)$. Moreover,

$$
\|f\|_{H_{L}^{1}} \sim\left\|\left(I-V L^{-1}\right) f\right\|_{H^{1}\left(\mathbb{R}^{d}\right)} .
$$

4. Proof of Theorem 1.5

Before we start the proof of Theorem 1.5 we recall some basic facts from the theory of the classical Hardy spaces $H^{1}\left(\mathbb{R}^{d}\right)$ (see [6]). Let $1<q \leq \infty$. We say that that a function a is a $(1, q)$-atom if there exists a ball $B\left(y_{0}, r\right)$ such that

$$
\begin{gather*}
\operatorname{supp} a \subset B\left(y_{0}, r\right), \tag{4.1}\\
\int a(x) d x=0, \tag{4.2}\\
\|a\|_{L^{q}} \leq\left|B\left(y_{0}, r\right)\right|^{\frac{1}{q}-1} . \tag{4.3}
\end{gather*}
$$

The atomic $\|f\|_{H_{(q)}^{1}}$-norm is defined by

$$
\begin{equation*}
\|f\|_{H_{(q)}^{1}}=\inf \sum_{j}\left|\lambda_{j}\right|, \tag{4.4}
\end{equation*}
$$

where the infimum is taken over all representations $f=\sum_{j} \lambda_{j} a_{j}$, where a_{j} are $(1, q)$-atoms. This is well known that for every $1<q \leq \infty$ there exists a constant $C_{q}>0$ such that

$$
\begin{equation*}
C_{q}^{-1}\|f\|_{H_{(q)}^{1}} \leq\|f\|_{H^{1}\left(\mathbb{R}^{d}\right)} \leq C_{q}\|f\|_{H_{(q)}^{1}} . \tag{4.5}
\end{equation*}
$$

Proof of the second inequality in (1.6). In order to prove the second inequality in (1.6) it suffices to show, by (3.1) and Corollary 3.17, that for every a being a classical $(1, \infty)$-atom the function $w b$ belongs to $H^{1}\left(\mathbb{R}^{d}\right)$, where $b=\left(I-V \Delta^{-1}\right) a$, and

$$
\begin{equation*}
\|w b\|_{H^{1}\left(\mathbb{R}^{d}\right)}=\left\|w a-w V \Delta^{-1} a\right\|_{H^{1}\left(\mathbb{R}^{d}\right)} \leq C \tag{4.6}
\end{equation*}
$$

with a constant C independent of a. Let a be a $(1, \infty)$-atom associated with a ball $B\left(y_{0}, r\right)$. Then, by (2.3) and (3.1),

$$
\begin{equation*}
\int w(x) b(x) d x=0 \tag{4.7}
\end{equation*}
$$

We shall consider three cases. We would like to remark that we shall use only the estimate $\left|\Gamma_{0}(x, y)\right| \leq C|x-y|^{2-d}$ for the fundamental solution Γ_{0} of Δ.

Case 1. $r \geq 1,\left|y_{0}\right| \leq 4 r$.
Then supp $b \subset B\left(y_{0}, 5 r\right)$. Moreover,

$$
\begin{equation*}
\left|\Delta^{-1} a(x)\right| \leq C r^{-d} \int_{|y| \leq 5 r}|x-y|^{2-d} d y \leq C r^{2-d} \tag{4.8}
\end{equation*}
$$

Therefore, setting $q=d / 2$ and using (2.7), we get

$$
\begin{equation*}
\|w b\|_{L^{q}}=\left\|w\left(I-V \Delta^{-1}\right) a\right\|_{L^{q}} \leq C r^{-d+2}=C\left|B\left(y_{0}, 5 r\right)\right|^{\frac{1}{q}-1} . \tag{4.9}
\end{equation*}
$$

We conclude from (4.7) and (4.9) that $w b$ is a multiple of a $(1, q)$-atom associated with the ball $B\left(y_{0}, 5 r\right)$. Hence (4.6) holds.

Case 2. $r \geq 1,\left|y_{0}\right|>4 r$.
We write

$$
\begin{align*}
w(x) b(x)= & \left(w(x) a(x)-c_{0} w(x) \chi_{B\left(y_{0}, r\right)}(x)\right) \\
& +\left(c_{0} w(x) \chi_{B\left(y_{0}, r\right)}(x)-w(x) V(x) \Delta^{-1} a(x)\right) \tag{4.10}\\
= & a_{1}(x)+a_{2}(x)
\end{align*}
$$

where $c_{0}=\left(\int_{B\left(y_{0}, r\right)} w(x) d x\right)^{-1}\left(\int w(x) a(x) d x\right)$.
Obviously,

$$
\left|\Delta^{-1} a(x)\right| \leq C\left|y_{0}\right|^{2-d} \quad \text { for }|x| \leq 1 .
$$

Since, by (4.7) and (2.7),

$$
\left|\int w(x) a(x) d x\right|=\left|\int w(x) V(x) \Delta^{-1} a(x) d x\right| \leq C\left|y_{0}\right|^{2-d}
$$

we have $\left|c_{0}\right| \leq C\left|y_{0}\right|^{2-d}\left|B\left(y_{0}, r\right)\right|^{-1}$. Therefore a_{1} is a multiple of a $(1, \infty)$-atom associated with the ball $B\left(y_{0}, r\right)$.

Next observe that a_{2} is a multiple of a $\left(1, \frac{d}{2}\right)$-atom associated with $B\left(y_{0}, 2\left|y_{0}\right|\right)$. Indeed, $\operatorname{supp} a_{2} \subset B\left(y_{0}, 2\left|y_{0}\right|\right)$,

$$
\int a_{2}(x) d x=0
$$

and

$$
\left\|a_{2}\right\|_{L^{d / 2}} \leq C\left|c_{0}\right|\left|B\left(y_{0}, r\right)\right|^{2 / d}+C\left|y_{0}\right|^{2-d} \leq C\left|y_{0}\right|^{2-d} .
$$

Thus (4.6) is satisfied.
Case 3. $r \leq 1$.
Let us note that

$$
\begin{equation*}
\left|w(x) V(x) \Delta^{-1} a(x)\right| \leq C V(x)\left|x-y_{0}\right|^{2-d} . \tag{4.11}
\end{equation*}
$$

Set $s=\left[\log _{2} r^{-1}\right]$. Then

$$
\begin{align*}
w(x) a(x)= & \left(w(x) a(x)-c_{0} \chi_{B\left(y_{0}, r\right)}(x)\right) \\
& +\sum_{j=0}^{s}\left(c_{j} \chi_{B\left(y_{0}, 2^{j} r\right)}(x)-c_{j+1} \chi_{B\left(y_{0}, 2^{j+1} r\right)}(x)\right) \tag{4.12}\\
& +c_{s+1} \chi_{B\left(y_{0}, 2^{s+1} r\right)}(x),
\end{align*}
$$

where

$$
c_{0}=\left|B\left(y_{0}, r\right)\right|^{-1} \int w(x) a(x) d x, \quad c_{j}=c_{0}\left|B\left(y_{0}, r\right)\right|\left|B\left(y_{0}, 2^{j} r\right)\right|^{-1}
$$

Applying (2.6), we obtain

$$
\begin{equation*}
\left|c_{0}\right| \leq C r^{\gamma}\left|B\left(y_{0}, r\right)\right|^{-1}, \quad\left|c_{j}\right| \leq C r^{\gamma}\left|B\left(y_{0}, 2^{j} r\right)\right|^{-1} . \tag{4.13}
\end{equation*}
$$

We check at once that

$$
\begin{equation*}
\left\|w a-c_{0} \chi_{B\left(y_{0}, r\right)}\right\|_{H^{1}\left(\mathbb{R}^{d}\right)} \leq C, \tag{4.14}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=0}^{s}\left\|c_{j} \chi_{B\left(y_{0}, 2^{j} r\right)}-c_{j+1} \chi_{B\left(y_{0}, 2^{\left.j+1_{r}\right)}\right.}\right\|_{H^{1}\left(\mathbb{R}^{d}\right)} \leq C s r^{\gamma} \leq C . \tag{4.15}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\int\left(w(x) V(x) \Delta^{-1} a(x)-c_{s+1} \chi_{B\left(y_{0}, 2^{s+1} r\right)}\right) d x=0 . \tag{4.16}
\end{equation*}
$$

We easily observe, using (4.11) and (4.16), that

$$
\left|c_{s+1}\right| \leq C\left(1+\left|y_{0}\right|\right)^{2-d} .
$$

Therefore if $\left|y_{0}\right| \leq 3$, then $\operatorname{supp}\left(w V \Delta^{-1} a-c_{s+1} \chi_{B\left(y_{0}, 2^{s+1}{ }_{r}\right)}\right) \subset B(0,5)$ and

$$
\begin{equation*}
\left\|w V \Delta^{-1} a-c_{s+1} \chi_{B\left(y_{0}, 2^{s+1 r}\right)}\right\|_{L^{q}} \leq C_{q} \tag{4.17}
\end{equation*}
$$

provided $1<q<\frac{d p}{d+(d-2) p}$. From (4.16) and (4.17) we see that

$$
\begin{equation*}
\left\|w V \Delta^{-1} a-c_{s+1} \chi_{B\left(y_{0}, 2^{s+1_{r}}\right)}\right\|_{H^{1}\left(\mathbb{R}^{d}\right)} \leq C . \tag{4.18}
\end{equation*}
$$

If $\left|y_{0}\right|>3$, then $\operatorname{supp}\left(w V \Delta^{-1} a-c_{s+1} \chi_{B\left(y_{0}, 2^{s+1} r\right)}\right) \subset B\left(0,2\left|y_{0}\right|\right)$. Moreover,

$$
\begin{equation*}
\left\|w V \Delta^{-1} a-c_{s+1} \chi_{B\left(y_{0}, 2^{s+1} r\right)}\right\|_{L^{q}} \leq C_{q}\left|y_{0}\right|^{2-d} \tag{4.19}
\end{equation*}
$$

with $q=\frac{d}{2}$. The estimate (4.19) together with (4.16) imply that the function $w V \Delta^{-1} a-c_{s+1} \chi_{B\left(y_{0}, 2^{s+1} r\right)}$ is a multiple of a (1, $\left.\frac{d}{2}\right)$-atom. Therefore (4.6) is proved. The proof of the second inequality in (1.6) is complete.

Our task is now to prove the first inequality in (1.6). Assume that $w f \in H^{1}\left(\mathbb{R}^{d}\right)$. Then $w f=\sum_{j} \lambda_{j} a_{j}, \sum\left|\lambda_{j}\right| \leq C\|w f\|_{H^{1}\left(\mathbb{R}^{d}\right)}$, where a_{j} are classical $(1, \infty)$ atoms. Thus $f=\sum \lambda_{j} b_{j}$, where $b_{j}=a_{j} / w$ are H_{L}^{1}-atoms. Hence it suffices to verify that

$$
\begin{equation*}
\|b\|_{H_{L}^{1}} \leq C \tag{4.20}
\end{equation*}
$$

for every b being an H_{L}^{1}-atom. By Corollary 3.17 the proof of (4.20) reduces to proving that

$$
\begin{equation*}
\left\|b-V L^{-1} b\right\|_{H^{1}\left(\mathbb{R}^{d}\right)} \leq C \tag{4.21}
\end{equation*}
$$

Let us observe that

$$
\begin{equation*}
\int\left(b(x)-V(x) L^{-1} b(x)\right) d x=0 \tag{4.22}
\end{equation*}
$$

Since $|\Gamma(x, y)| \leq c|x-y|^{2-d}$ and the function $w_{1}(x)=w(x)^{-1}$ is Hölder and satisfies $1 \leq w_{1}(x) \leq C$, the proof of (4.21) goes by the same analysis as the proof of (4.6). The details are omitted.

We now turn to show that if $V \neq \tilde{V}$ are compactly supported L^{p}-potentials, then the corresponding H_{L}^{1} and $H_{\tilde{L}}^{1}$ spaces do not coincide. Assume that $H_{L}^{1}=H_{\tilde{L}}^{1}$ for some compactly supported non-negative function V and \tilde{V} that belong to $L^{p}\left(\mathbb{R}^{d}\right)$ for some $p>d / 2$. Then Theorem 1.5 combined with (2.5) imply $w=\tilde{w}$. Using (3.1) and (2.3) we obtain

$$
\begin{aligned}
& 1=\left(I-\Delta^{-1} V\right) w \\
& 1=\left(I-\Delta^{-1} \tilde{V}\right) w
\end{aligned}
$$

and, consequently,

$$
0=\Delta^{-1}((V-\tilde{V}) w)
$$

Since $(V-\tilde{V}) w$ is a compactly supported L^{p}-function, we get $V=\tilde{V}$, by (2.7).

References

1. Dziubański, J., Zienkiewicz, J.: Hardy spaces associated with some Schrödinger operators. Stud. Math. 125, 149-160 (1998)
2. Dziubański, J., Zienkiewicz, J.: Hardy space H^{1} associated to Schrödinger operator with potential satisfying reverse Hölder inequality. Rev. Mat. Iberoam. 15, 279-296 (1999)
3. Dziubański, J., Zienkiewicz, J.: H^{p} spaces for Schrödinger operators. Fourier Analysis and Related Topics, Banach Cent. Publ. 56, 45-53 (2002)
4. Dziubański, J., Zienkiewicz, J.: H^{p} spaces associated with Schrödinger operators with potentials from reverse Hölder classes. Colloq. Math. 98, 5-38 (2003)
5. Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46, 27-42 (1979)
6. Stein, E.: Harmonic analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton, NJ: Princeton University Press 1993

[^0]: J. Dziubański (corresponding author), J. Zienkiewicz: Institute of Mathematics, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland,
 e-mail: jdziuban@math.uni.wroc.pl, zenek@math.uni.wroc.pl

[^1]: * Research partially supported by the European Commission via Harmonic Analysis and Related Problems network, Polish Grants 5P03A05020, 5P03A02821 from KBN, and Foundation for Polish Sciences, Subsidy 3/99.

