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Abstract. Let L = −∆ + V be a Schrödinger operator on Rd , d ≥ 3, where V is a non-
negative compactly supported potential that belongs to L p for some p > d/2. Let {Kt}t>0
denote the semigroup of linear operators generated by −L . For a function f we define its
H1

L -norm by ‖ f ‖H1
L

= ‖ supt>0 |Kt f(x)|‖L1(dx) . It is proved that for a properly defined

weight w a function f belongs to H1
L if and only if w f ∈ H1(Rd ), where H1(Rd ) is the

classical real Hardy space.
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1. Introduction

Let

L f(x) = −∆ f(x) + V(x) f(x)(1.1)

be a Schrödinger operator on Rd , d ≥ 3, where V is a non-negative potential.
Throughout this paper we shall assume that the potential V is compactly supported,
say supp V ⊂ B(0, 1) = {x : |x| < 1}, and belongs to L p(Rd) for some p > d/2. It
is well known that −L generates a semigroup {Kt}t>0 of linear operators acting on
Lr(Rd), 1 ≤ r < ∞. By the Feynman–Kac formula the integral kernels Kt(x, y)
of the semigroup {Kt}t>0 satisfy

0 ≤ Kt(x, y) ≤ Pt(x − y),(1.2)

where Pt(x − y) = (4πt)−d/2 exp
(
− |x−y|2

4t

)
are the integral kernels of the classical

heat semigroup {Pt}t>0. Let

K∗ f(x) = sup
t>0

|Kt f(x)|

J. Dziubański (corresponding author), J. Zienkiewicz: Institute of Mathematics, University
of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland,
e-mail: jdziuban@math.uni.wroc.pl,zenek@math.uni.wroc.pl

� Research partially supported by the European Commission via Harmonic Analysis
and Related Problems network, Polish Grants 5P03A05020, 5P03A02821 from KBN, and
Foundation for Polish Sciences, Subsidy 3/99.
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be the maximal operator associated with the semigroup {Kt}t>0. We say that an
L1-function f belongs to H1

L if its norm defined by

‖ f ‖H1
L

= ‖K∗ f ‖L1

is finite.
Define

w(x) = lim
s→∞ Ks1(x).(1.3)

The limit in (1.3) exists because the function s 	→ Ks1(x) is monotonic. Indeed,
by (1.2),

0 ≤ Ks+t1(x) = Ks Kt1(x) ≤ Ks1(x) ≤ 1.(1.4)

We shall show that there exists a constant 0 < δ < 1 such that δ ≤ w(x) ≤ 1. The
following theorem is the main result of the present paper:

Theorem 1.5. There exists a constant C > 0 such that

C−1‖ f ‖H1
L

≤ ‖w f ‖H1(Rd ) ≤ C‖ f‖H1
L
,(1.6)

where ‖g‖H1(Rd ) = ‖ supt>0 |Pt g(x)|‖L1(dx) is the norm in the classical real Hardy
space H1(Rd ).

We say that a function b is an H1
L-atom if there exists a ball B(y0, r) = {y ∈

R
d : |y − y0| < r} such that supp b ⊂ B(y0, r), ‖b‖L∞ ≤ |B(y0, r)|−1, and∫
b(y)w(y) dy = 0. The atomic norm ‖ f ‖H1

L atom is defined by

‖ f ‖H1
L atom = inf

∑
j

|λ j |,(1.7)

where the infimum is taken over all representations f = ∑
j λ jb j , where b j are

H1
L-atoms.

As a consequence of Theorem 1.5 we have

Corollary 1.8. There exists a constant C > 0 such that

C−1‖ f ‖H1
L

≤ ‖ f ‖H1
L atom ≤ C‖ f ‖H1

L
.(1.9)

Let us mention that in contrast with the one-dimensional case or in the case of
V satisfying a reverse Hölder inequality (cf. [1]–[4]) the atoms for H1

L considered
in the present paper are not variants of local atoms.

Finally we would like to remark that if V 
= Ṽ are compactly supported L p-
potentials, p > d/2, then the corresponding spaces H1

L and H1
L̃

do not coincide.
We shall discuss this property at the end of the paper.

Acknowledgement. The authors wish to thank the referee for valuable remarks.
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2. Properties of the weight w

Let

Γ(x, y) =
∫ ∞

0
Kt(x, y) dt and Γ0(x, y) = −

∫ ∞

0
Pt(x − y) dt(2.1)

be the fundamental solutions for L and ∆, respectively. Obviously,

0 ≤ Γ(x, y) = Γ(y, x) ≤ −Γ0(x, y) = −Γ0(y, x).

The perturbation formula asserts

Pt = Kt +
∫ t

0
Pt−sVKs ds.(2.2)

Hence, by (1.3),
∫

V(x)Γ(x, y) dx = lim
t→∞

∫ t

0

∫ ∫
Pt−s(z − x)V(x)Ks(x, y) dz dx ds

= lim
t→∞

∫
(Pt(z − y) − Kt(z, y)) dz

= 1 − w(y).

(2.3)

Lemma 2.4. The function w(x) has the following properties:

lim|x|→∞ w(x) = 1,(2.5)

|w(x) − w(y)| ≤ Cγ |x−y|γ , provided 0 < γ < 2 − d/p, γ ≤ 1.(2.6)

Moreover, there exists a constant δ such that

0 < δ ≤ w(x) ≤ 1.(2.7)

Proof. From (2.3) we conclude

0 ≤ 1 − w(x) ≤ C
∫

V(y)

|x − y|d−2
dy ≤ C

|x|d−2
‖V‖L1 ,(2.8)

for |x| > 2, which gives (2.5).
In order to prove (2.6), let us note that

w(x) = lim
s→∞ Kt Ks1(x) = Ktw(x) for all t > 0.(2.9)

Let qt(x, y) = Pt(x − y) − Kt(x, y). Since

|w(x + h) − w(x)| = ∣∣ lim
s→∞

∫ ∫ (
K1(x + h, y) − K1(x, y)

)
Ks(y, z) dz dy

∣∣

≤
∫

|K1(x + h, y) − K1(x, y)| dy
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and ∫
|P1(x + h − y) − P1(x, y)| dy ≤ Cγ |h|γ ,

it suffices to verify that
∫

|q1(x + h, y) − q1(x, y)| dy ≤ Cγ |h|γ .(2.10)

By the perturbyation formula
∫

|q1(x + h, y) − q1(x, y)| dy

=
∫ ∣∣∣

∫ 1

0

∫
(Ps(x + h − z) − Ps(x − z))V(z)K1−s(z, y) dz ds

∣∣∣ dy

≤
∫ 1

0

∫
s−d/2

∣∣∣∣P1

(
x + h − z√

s

)
− P1

(
x − z√

s

)∣∣∣∣ V(z) dzds

≤
∫ 1

0
s−d/2+d/(2p′)

(∫ ∣∣∣∣P1

(
x + h√

s
− z

)
− P1

(
x√
s

− z

)∣∣∣∣
p′

dz

)1/p′

‖V‖L p ds

≤ C
∫ 1

0
s−d/(2p)

( |h|√
s

)γ

ds

≤ Cγ |h|γ ,

which completes the proof of (2.6).

Clearly, (2.6) implies that the function w is continuous. Therefore, according
to (2.5), the estimate (2.7) will be proved if we show that

w(x) > 0 for all x.(2.11)

On account of (2.9) and (2.5) we shall have established (2.11) if we prove that there
exists t > 0 such that Kt(x, y) > 0.

Lemma 2.12. For every t > 0

Kt(x, y) > 0.(2.13)

Proof. The lemma is well known. For completeness of the paper we present the
proof. By (1.2), (2.2), and the Hölder inequality we have

0 ≤ qε(x, y) ≤
∫ ε

0

∫
Pε−s(x − z)V(z)Ps(z − y) dzds

≤
∫ ε/2

0
Cdε

−d/2‖V‖L p‖Ps‖L p′ ds

+
∫ ε

ε/2
‖Pε−s‖L p′ ‖V‖L p Cdε

−d/2 ds

= C′
dε

−d/2ε(2p−d)/2p‖V‖L p .

(2.14)
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Clearly, there exists c0 > 0 such that

Pε(x − y) ≥ c0ε
−d/2 for |x − y| <

√
ε.(2.15)

From (2.14) and (2.15) we conclude that there exists ε0 > 0 such that

Kε(x, y) ≥ c0

2
ε−d/2 provided |x − y| <

√
ε, 0 < ε < ε0.(2.16)

Applying (2.16) and the semigroup property we get

Knε(x, y) > 0 for |x − y| <
√

εn, ε < ε0.(2.17)

Now (2.13) follows by taking n > max(
|x−y|2

t , t
ε0

) and ε = tn−1. �
Corollary 2.18. There exists a constant δ > 0 such that

‖VL−1 f ‖L1 ≤ (1 − δ)‖ f ‖L1 .

Proof. The corollary is an immediate consequence of (2.7). Indeed,

‖VL−1‖L1→L1 ≤ sup
y

∫
V(x)Γ(x, y) dx = 1 − w(y) ≤ 1 − δ. �

3. Estimates of maximal functions

Since the compactly supported function V belongs to L p(Rd ) for some p > d/2
and ∆−1 : L1(Rd ) → Lq

loc(R
d ) for every q < d/(d − 2), we get that V∆−1 is

bounded on L1(Rd). Moreover, direct calculations show that

(I − VL−1)(I − V∆−1) = (I − V∆−1)(I − VL−1) = I.(3.1)

Here and subsequently L−1 and ∆−1 are the operators with the integral kernels Γ

and Γ0, respectively (cf. (2.1)).
Using (2.2) we get

Pt = Kt +
∫ t

0
(Pt−s − Pt)VKs ds −

∫ ∞

t
Pt VKsds +

∫ ∞

0
Pt VKs ds

= Kt +
∫ t

0
(Pt−s − Pt)VKs ds −

∫ ∞

t
Pt VKsds + Pt VL−1.

Thus

Pt(I − VL−1) = Kt −
∫ t

0
(Pt − Pt−s)VKs ds −

∫ ∞

t
Pt VKsds

= Kt − Rt − Qt .

(3.2)

We shall show that the maximal operators associated with the families {Rt}t>0 and
{Qt}t>0 are bounded on L1(Rd ).
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Lemma 3.3. There exists a constant C > 0 such that

‖ sup
t>2

|Rt f(x)|‖L1(dx) ≤ C‖ f ‖L1 .(3.4)

Proof. Let Rt(x, y) denote the integral kernel of the operator Rt . Put β = 8/9.
Then for t > 2 we have

Rt(x, y) =
∫ t

0

∫ (
Pt(x − z) − Pt−s(x − z)

)
V(z)Ks(z, y) dz ds =

∫ tβ

0
+

∫ t

tβ

= R[1]
t (x, y) + R[2]

t (x, y).

Clearly for every 0 < c < 1 there is a non-negative function φ that belongs to
the Schwartz class S(Rd ) such that

|Pt(x) − Pt−s(x)| ≤ s

t
φt(x) for 0 < s < ct,(3.5)

where φt(x) = t−d/2φ(t−1/2x). Hence there exists φ ∈ S(Rd ), φ ≥ 0, such that for
t > 2 we have

∣∣R[1]
t (x, y)

∣∣ ≤
∫

tβ−1φt(x − z)V(z)
∫ tβ

0
Ks(z, y) ds dz

≤ C
∫

tβ−1φt(x − z)V(z)|z − y|2−d dz.

Since supt>2 tβ−1φt(x − z) ≤ C(1 + |x − z|)−d−1+β , we get
∫

sup
t>2

∣∣R[1]
t (x, y)

∣∣ dx ≤
∫ ∫

|z|<1
(1 + |x − z|)−d−1+β|z − y|2−d V(z) dz dx

≤ C‖V‖L p ≤ C.(3.6)

We now turn to estimate R[2]
t

∣∣R[2]
t (x, y)

∣∣ ≤
∫ t

tβ

∫
Pt(x − z)V(z)Ks(z, y) dz ds

+
∫ t

tβ

∫
Pt−s(x − z)V(z)Ks(z, y) dz ds

= R[2′](x, y) + R[2′′](x, y).

(3.7)

For s ≥ tβ we have Ks(z, y) ≤ Ct−βd/2. Therefore

0 ≤ R[2′]
t (x, y) ≤ C

∫
Pt(x − z)V(z)t1−βd/2 dz

and, consequently,

∥∥ sup
t>2

R[2′]
t (x, y)

∥∥
L1(dx) ≤ C.(3.8)
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Likewise,

0 ≤ R[2′′]
t (x, y) ≤

∫ t

tβ

∫
Pt−s(x − z)V(z)t−βd/2 dz ds

≤ Ct−βd/2
∫ ∫ t

0
Ps(x − z)V(z) ds dz

≤ C
∫

t−βd/2V(z)|x − z|2−de−c|x−z|2/t dz.

Since supt>2 t−βd/2e−c|x−z|2/t ≤ C(1 + |x − z|)−βd , we obtain

∥∥ sup
t>2

R[2′′]
t (x, y)

∥∥
L1(dx) ≤ C

∫ ∫
(1 + |x − z|)−βd|x − z|2−d V(z) dz dx

≤ C‖V‖L1 .

(3.9)

The lemma follows from (3.6)–(3.9). �

Lemma 3.10. There exists a constant C > 0 such that

‖ sup
0<t≤2

|Rt f(x)|‖L1(dx) ≤ C‖ f ‖L1 .(3.11)

Proof. Fix y ∈ Rd .

Rt(x, y) =
∫ t/2

0

∫ (
Pt(x − z) − Pt−s(x − z)

)
V(z)Ks(z, y) dz ds

+
∫ t

t/2

∫ (
Pt(x − z) − Pt−s(x − z)

)
V(z)Ks(z, y) dz ds

= R[3]
t (x, y) + R[4]

t (x, y).

Similarly to that what was done above there exists ψ ∈ S(Rd), ψ ≥ 0, such that

∣∣R[3]
t (x, y)

∣∣ ≤
∫ 1

0

∫
ψt(x − z)V(z)Ks(z, y) ds dz

≤
∫

ψt(x − z)V(z)|z − y|2−d dz.

(3.12)

Let us note that for any fixed r, 1 < r < dp/(dp + d − 2p), the function
z 	→ |z − y|2−d V(z) is supported by the unit ball and its Lr-norm is bounded
by a constant independent of y. Then, by using standard methods, we obtain

∥∥ sup
t<2

∣∣R[3]
t (x, y)

∣∣∥∥
L1(dx) ≤ C.(3.13)
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To estimate R[4]
t , we observe that for 2−m−1 < t ≤ 2−m we have

|R[4]
t (x, y)| ≤

∫ t

t/2

∫ (
Pt(x − z)V(z)φt(z − y) + Pt−s(x − z)V(z)φt(z − y)

)
dz ds

≤ C
∫ (

tPt(x − z) + |x − z|2−de−c|x−z|2/t
)
V(z)φt(z − y) dz

(3.14)

≤ C
∫ (

2−m P2−m (x − z) + 2−m(2−d)/2
( |x − z|

2−m/2

)2−d

e−c2m |x−z|2
)

× V(z)φ2−m (z − y) dz,

where φ is a non-negative Schwartz class function. Therefore applying (3.14) and
the Hölder inequality, we obtain

∫
sup

0<t≤2

∣∣R[4]
t (x, y)

∣∣ dx ≤
∑

m≥−1

∫
sup

2−m−1<t≤2−m

∣∣R[4]
t (x, y)

∣∣ dx

≤ C
∑

m≥−1

2−m‖V‖L p‖‖φ2−m (z, y)‖L p′
(dz)

≤ C‖V‖L p

∑
m≥−1

2−m+md/(2p)

≤ C‖V‖L p .

This ends the proof of the lemma. �
Lemma 3.15. There exists a constant C > 0 such that

‖ sup
t>0

|Qt f(x)|‖L1(dx) ≤ C‖ f ‖L1 .

Proof. We shall show that
∫

supt>0 Qt(x, y) dx ≤ C with C independent of y,
where Qt(x, y) denotes the integral kernel of Qt . Let us note that

0 ≤ Qt(x, y) ≤
∫ ∫ ∞

t
Pt(x − z)V(z)Ps(z − y) ds dz

≤ C
∫

Pt(x − z)
V(z)

(t1/2 + |z − y|)d−2
dz.

(3.16)

Fix y ∈ Rd . Then
∫

sup
t>1

Qt(x, y) dx ≤ C
∫ ∫

sup
t>1

t(2−d)/2 Pt(x − z)V(z) dz dx

≤ C
∫ ∫

(1 + |x − z|)−d−d+2V(z)dz dx

≤ C‖V‖L1 .

To deal with sup0<t≤1 Qt(x, y), let us observe that for 0 < t ≤ 1 we have

Qt(x, y) ≤ C
∫

Pt(x, y)V(z)|z − y|2−d dz.
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Thus we can repeat the same arguments as we used for the estimation of R[3]
t in

the proof of Lemma 3.10 and obtain

‖ sup
t≤1

Qt(x, y)‖L1(dx) ≤ C.

This completes the proof of the lemma. �
As a consequence of (3.2), Lemmata 3.3, 3.10, 3.15, and Corollary 2.18, we

get:

Corollary 3.17. A function f belongs to H1
L if and only if (I −VL−1) f ∈ H1(Rd).

Moreover,

‖ f ‖H1
L

∼ ‖(I − VL−1) f ‖H1(Rd ).

4. Proof of Theorem 1.5

Before we start the proof of Theorem 1.5 we recall some basic facts from the theory
of the classical Hardy spaces H1(Rd ) (see [6]). Let 1 < q ≤ ∞. We say that that
a function a is a (1, q)-atom if there exists a ball B(y0, r) such that

supp a ⊂ B(y0, r),(4.1)
∫

a(x) dx = 0,(4.2)

‖a‖Lq ≤ |B(y0, r)| 1
q −1

.(4.3)

The atomic ‖ f ‖H1
(q)

-norm is defined by

‖ f ‖H1
(q)

= inf
∑

j

|λ j |,(4.4)

where the infimum is taken over all representations f = ∑
j λ ja j , where a j are

(1, q)-atoms. This is well known that for every 1 < q ≤ ∞ there exists a constant
Cq > 0 such that

C−1
q ‖ f ‖H1

(q)
≤ ‖ f ‖H1(Rd ) ≤ Cq‖ f ‖H1

(q)
.(4.5)

Proof of the second inequality in (1.6). In order to prove the second inequality in
(1.6) it suffices to show, by (3.1) and Corollary 3.17, that for every abeing a classical
(1,∞)-atom the function wb belongs to H1(Rd ), where b = (I − V∆−1)a, and

‖wb‖H1(Rd ) = ‖wa − wV∆−1a‖H1(Rd ) ≤ C(4.6)

with a constant C independent of a. Let a be a (1,∞)-atom associated with a ball
B(y0, r). Then, by (2.3) and (3.1),∫

w(x)b(x) dx = 0.(4.7)

We shall consider three cases. We would like to remark that we shall use only the
estimate |Γ0(x, y)| ≤ C|x − y|2−d for the fundamental solution Γ0 of ∆.
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Case 1. r ≥ 1, |y0| ≤ 4r.
Then supp b ⊂ B(y0, 5r). Moreover,

|∆−1a(x)| ≤ Cr−d
∫

|y|≤5r
|x − y|2−d dy ≤ Cr2−d .(4.8)

Therefore, setting q = d/2 and using (2.7), we get

‖wb‖Lq = ‖w(I − V∆−1)a‖Lq ≤ Cr−d+2 = C|B(y0, 5r)| 1
q −1

.(4.9)

We conclude from (4.7) and (4.9) that wb is a multiple of a (1, q)-atom associated
with the ball B(y0, 5r). Hence (4.6) holds.

Case 2. r ≥ 1, |y0| > 4r.
We write

w(x)b(x) = (
w(x)a(x) − c0w(x)χB(y0,r)(x)

)

+ (
c0w(x)χB(y0,r)(x) − w(x)V(x)∆−1a(x)

)

= a1(x) + a2(x),

(4.10)

where c0 = ( ∫
B(y0,r) w(x) dx

)−1( ∫
w(x)a(x) dx

)
.

Obviously,

|∆−1a(x)| ≤ C|y0|2−d for |x| ≤ 1.

Since, by (4.7) and (2.7),

∣∣
∫

w(x)a(x) dx
∣∣ = ∣∣

∫
w(x)V(x)∆−1a(x) dx

∣∣ ≤ C|y0|2−d,

we have |c0| ≤ C|y0|2−d|B(y0, r)|−1. Therefore a1 is a multiple of a (1,∞)-atom
associated with the ball B(y0, r).

Next observe that a2 is a multiple of a (1, d
2 )-atom associated with B(y0, 2|y0|).

Indeed, supp a2 ⊂ B(y0, 2|y0|),
∫

a2(x) dx = 0

and

‖a2‖Ld/2 ≤ C|c0||B(y0, r)|2/d + C|y0|2−d ≤ C|y0|2−d.

Thus (4.6) is satisfied.

Case 3. r ≤ 1.
Let us note that

|w(x)V(x)∆−1a(x)| ≤ CV(x)|x − y0|2−d .(4.11)
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Set s = [log2 r−1]. Then

w(x)a(x) = (
w(x)a(x) − c0χB(y0,r)(x)

)

+
s∑

j=0

(
c jχB(y0,2 j r)(x) − c j+1χB(y0,2 j+1r)(x)

)

+ cs+1χB(y0,2s+1r)(x),

(4.12)

where

c0 = |B(y0, r)|−1
∫

w(x)a(x) dx, c j = c0|B(y0, r)|∣∣B
(
y0, 2 jr

)∣∣−1
.

Applying (2.6), we obtain

|c0| ≤ Crγ |B(y0, r)|−1, |c j | ≤ Crγ
∣∣B

(
y0, 2 jr

)∣∣−1
.(4.13)

We check at once that

‖wa − c0χB(y0,r)‖H1(Rd ) ≤ C,(4.14)
s∑

j=0

‖c jχB(y0,2 j r) − c j+1χB(y0,2 j+1r)‖H1(Rd ) ≤ Csrγ ≤ C.(4.15)

Moreover,
∫ (

w(x)V(x)∆−1a(x) − cs+1χB(y0,2s+1r)

)
dx = 0.(4.16)

We easily observe, using (4.11) and (4.16), that

|cs+1| ≤ C(1 + |y0|)2−d.

Therefore if |y0| ≤ 3, then supp
(
wV∆−1a − cs+1χB(y0,2s+1r)

) ⊂ B(0, 5) and

∥∥wV∆−1a − cs+1χB(y0,2s+1r)

∥∥
Lq ≤ Cq(4.17)

provided 1 < q <
dp

d+(d−2)p . From (4.16) and (4.17) we see that

∥∥wV∆−1a − cs+1χB(y0,2s+1r)

∥∥
H1(Rd )

≤ C.(4.18)

If |y0| > 3, then supp
(
wV∆−1a − cs+1χB(y0,2s+1r)

) ⊂ B(0, 2|y0|). Moreover,

∥∥wV∆−1a − cs+1χB(y0,2s+1r)

∥∥
Lq ≤ Cq|y0|2−d,(4.19)

with q = d
2 . The estimate (4.19) together with (4.16) imply that the function

wV∆−1a−cs+1χB(y0,2s+1r) is a multiple of a (1, d
2 )-atom. Therefore (4.6) is proved.

The proof of the second inequality in (1.6) is complete.



326 J. Dziubański, J. Zienkiewicz

Our task is now to prove the first inequality in (1.6). Assume that w f ∈ H1(Rd ).
Then w f = ∑

j λ ja j ,
∑ |λ j | ≤ C‖w f ‖H1(Rd ), where a j are classical (1,∞)-

atoms. Thus f = ∑
λ jb j , where b j = a j/w are H1

L-atoms. Hence it suffices to
verify that

‖b‖H1
L

≤ C,(4.20)

for every b being an H1
L-atom. By Corollary 3.17 the proof of (4.20) reduces to

proving that

‖b − VL−1b‖H1(Rd ) ≤ C.(4.21)

Let us observe that
∫ (

b(x) − V(x)L−1b(x)
)

dx = 0.(4.22)

Since |Γ(x, y)| ≤ c|x − y|2−d and the function w1(x) = w(x)−1 is Hölder and
satisfies 1 ≤ w1(x) ≤ C, the proof of (4.21) goes by the same analysis as the proof
of (4.6). The details are omitted. �

We now turn to show that if V 
= Ṽ are compactly supported L p-potentials, then
the corresponding H1

L and H1
L̃

spaces do not coincide. Assume that H1
L = H1

L̃
for

some compactly supported non-negative function V and Ṽ that belong to L p(Rd )

for some p > d/2. Then Theorem 1.5 combined with (2.5) imply w = w̃. Using
(3.1) and (2.3) we obtain

1 = (I − ∆−1V )w,

1 = (I − ∆−1Ṽ )w,

and, consequently,

0 = ∆−1((V − Ṽ )w
)
.

Since (V − Ṽ )w is a compactly supported L p-function, we get V = Ṽ , by (2.7).
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