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Abstract Selenium (Se) contamination of aquatic

resources and its mitigation is of global concern. Anaerobic

bioreactors are the most promising method for treating Se-

laden water in end-pit lakes resulting from intensive coal

mining and waste rock leachate in the Canadian Rockies.

This study assessed the suitability of a bioreactor system to

treat non-acidic, coal mine effluent containing 85 lg/L of

Se, near Grande Cache, AB, Canada, while making the

system as cheap as possible using locally available mate-

rials. We successfully used a sediment inoculum from the

same end-pit lake as the effluent source to obtain sulfur/Se-

reducing bacteria and mixed the inoculum with mulch,

manure, gravel, limestone, and bone meal to comprise the

‘active substrate’ for the bioreactors. The anaerobic bio-

reactors reduced[95 % of the total Se in the inflow water

with a flow rate of &0.2 m3/h. Se removal was not related

to water temperature, which declined from 17 to &2 �C in

November, suggesting water can be treated regardless of

temperature. The use of manure as a bacterial carbon/

nitrogen source introduced Escherichia coli into the

downstream environment, but after a short elevated con-

centration, the abundance of E. coli dropped below water

quality guidelines. We were able to show that successful Se

reduction can be achieved using an anaerobic bioreactor

design and locally available material. This design kept the

building and maintenance price lower than previous reac-

tors, making the approach promising for larger scale

applications and making bioreactors a more cost accessible

remediation technology for non-acidic end-pit lakes.

Keywords Bioremediation �Mining effluent � Non-acidic

pit lakes � Selenium reduction � Water treatment

Introduction

Selenium (Se) is an important micronutrient for all living

organisms (Winkel et al. 2011), yet a slight increase in

concentration makes it toxic to many mammals, birds, and

fish (Lemly 1993a). In aquatic communities, the most

prevalent effects of Se contamination are teratogenic

deformities (Conley et al. 2009; Debruyn and Chapman

2007; Hamilton 2004) and a lack of reproductive success

(Deforest et al. 2011). These effects are of particular con-

cern in fish, which are sensitive to small increases in Se

concentrations (Janz 2011; Lemly 2002). In fish, Se causes

severe head, mouth, fin, and spinal deformities (Lemly

1993b) and has been linked to the extirpation of several fish

populations (Janz 2011). Se is a contaminant of global

concern and discharge of Se into freshwater ecosystems

must be controlled.

Common sources of Se contamination are fly ash from

coal power plants (Lemly 1997; Ruhl et al. 2012), leachate

from irrigated seleniferous soils, including agricultural

lands of the western USA (Banuelos et al. 2002; Wu 2004),
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and rock drainage from open pit mines, including those in

the American and Canadian Rockies, the Appalachian

Mountains, and their foothills (Griffith et al. 2012; Kelly

and Janz 2009). In Canada, for example, the larger rivers

draining the eastern slopes of the Rockies, i.e. the Elk,

McLeod, and Athabasca Rivers, are increasingly affected

by Se discharged into their tributaries by mining operations

in their headwaters (Dessouki and Ryan 2010; Orr et al.

2006). The amount of Se in the Elk River has increased

continuously since the 1980s, presently averaging over

5 lg/L (Dessouki and Ryan 2010). At a base flow of

approximately 50 m3/s, this means 21.6 kg of Se/day

moving down the Elk River alone (data used from Dess-

ouki and Ryan 2010). On this scale, the amount of Se

released downstream is basically untreatable.

Clearly, effective, long-term, cost efficient methods are

required to treat large volumes of Se-laden discharge. Thus

far, research has focused on three broad approaches to

remove Se from wastewater: (1) physical methods includ-

ing nanofiltration or reverse osmosis (Kharaka et al. 1996),

(2) direct chemical treatments using zero-valent iron or

ferrous hydroxides (Frankenberger et al. 2004; Zhang et al.

2005), and (3) various biological treatment options. Bio-

logical treatments range from Se extraction or precipitation

using artificial or constructed wetlands (Thompson et al.

2003; Zhang and Frankenberger 2003), to phytoremedia-

tion using bio-engineered plants (Banuelos et al. 2002;

Berken et al. 2002; Terry et al. 2003), to bacterial reduction

in bioreactors or sludge reactors (Fujita et al. 2002; Lenz

et al. 2008; Macy et al. 1993). The anaerobic sulfate-

reducing bacteria cultured inside bioreactors are efficient at

reducing aquatic selenites and selenates (Se oxyanions) to

elemental Se (Cantafio et al. 1996; Hockin and Gadd 2006;

Macy et al. 1993). These bacteria preferentially substitute

sulfates with Se oxyanions as electron sources due to the

chemical similarity of Se to sulfur and the higher energy

potential of Se (Steinberg et al. 1992). While several

treatment options reduce selenates and selenites to ele-

mental Se using bacteria, this approach using bioreactors

has thus far been the most successful at removing Se from

wastewater (Lenz and Lens 2009).

While several experimental (small-scale) bioreactors

have tested the potential of sulfate-reducing bacterial

communities to treat Se-laden effluents (Hockin and Gadd

2006; Lenz et al. 2008; Zhang and Frankenberger 2006), a

number of lab-sized approaches tested the performance of

specific bacteria (Hunter and Manter 2009; Oremland et al.

1994). Most of these experiments were conducted under

very controlled environments with lactate or acetate as the

carbon source and were designed for warm to temperate

climates. Furthermore, the designed reactors were elabo-

rate constructs with high building and maintenance costs.

For one of these test reactors, Cantafio et al. (1996)

estimated the price of the acetate feed at US $0.62/m3 of

water treated. Therefore, to treat one effluent source with a

low discharge rate of 0.5 m3/s, it would cost nearly US $1

million/year for the acetate feed alone. To treat the Elk

River at 50 m3/s (Dessouki and Ryan 2010), it would cost

10 times that amount (US $10 million/year) just for the

carbon source. Realistically, treatment must be imple-

mented at the discharge source, e.g. mine outflows and

small tributaries, to reduce the volume of water requiring

treatment. Various large-scale reactors have been built and

tested (Gusek et al. 2008; Rutkowski et al. 2013) but

challenges remain for efficient treatment and long-term

feasibility (Lenz and Lens 2009).

Anaerobic bioreactors were recently deemed the most

promising method for the passive treatment of Se-laden

effluent from intensive coal mining in the Canadian

Rockies in Alberta, Canada (Alberta Environment 2006).

Of particular concern for remediation are end-pit lakes,

drainage collection pools that remain after open-pit mining

has ceased, which have high water concentrations of Se and

represent a major Se contamination source for Albertan

rivers and their watersheds. The current study assessed the

suitability of a bioreactor system to field-treat Se-laden

coal mine effluent from a non-acidic end-pit lake, near

Grade Cache, in west-central Alberta, while making the

reactor as cheap as possible. To reduce the cost, the bio-

reactor system was of simple design and used, wherever

possible, locally available materials, including a sediment

inoculum (bacterial source) from the same end-pit mine

lake used as the effluent source. We identified three key

features needed for successful Se reduction in an anaerobic

bioreactor and evaluated the performance of our model

reactor along them: first, the required environment within

the reactor is anoxic; second, the bacterial community

needs to be capable of reducing selenites and selenates to

elemental Se and; third, the substrate of the reactor needs to

be able to support the growth of the required bacterial

community. This study was a proof-of-concept for recla-

mation of Se-laden, coal mine effluent and provides

important considerations for future full-scale treatment

designs using end-pit lakes.

Methods

Field Site Description

The bioreactor system was built on the property of Grande

Cache Coal Inc., approximately 20 km north of Grande

Cache, AB, and about 440 km west of Edmonton, AB,

Canada. The section of mine hosting the bioreactor system

is currently undergoing reclamation and was chosen due to

its consistent discharge of Se-laden water (0.5 m3/s) as
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well as its accessibility. Water for the reactor was diverted

from the creek outflow of an end-pit lake (Dyno Lake),

which exhibits particularly high levels of waterborne Se

due to its position in the lower end of the drainage system

of the mine. The average Se content of the water flowing

out of Dyno Lake is 92.3 lg/L. Additional water quality

and sediment properties of Dyno Lake are shown in

Table 1. Water treatment at this site is further complicated

by a sub-arctic climate; below-freezing temperatures and

winter snow arrives at the beginning of October.

Bioreactor Design

The bioreactor system was a simple flow-return design

(Fig. 1a), wherein water was diverted from the outflow of

Dyno Lake, treated, and then returned to the creek. Spe-

cifically, a 15.2 cm (600) diameter PVC pipe diverted water

from the creek into a 1,022 L (270 gal) plastic sump tank.

The creek end of this pipe was placed facing upstream and

parallel to the creek flow for maximum collection effi-

ciency. The sump functioned to buffer irregular discharge

from the creek and thereby maintained a constant flow into

the two bioreactors. The bioreactors were connected to the

sump, in parallel, by 2.5 cm (100) diameter plastic pipes

while a T-junction in these pipes connected two 6.4 mm (1/

400) diameter ethylene glycol feeds (clear plastic tubing)

from a 341 L (90 gal) storage tank. The storage tank was

elevated on a wooden platform, approximately 45.7 cm

(1800) off the ground, to ensure flow of the viscous ethylene

glycol (Univar, Edmonton, AB, Canada) addition to the

creek water before it reached the reactors. Ethylene glycol

was added to each reactor for two reasons. Primarily,

ethylene glycol was considered to be an additional carbon

source for the bacteria, and second, ethylene glycol is a

non-toxic antifreeze product, which had the potential to

maintain the operations of the reactor in below-freezing

temperatures. Ethylene glycol was added as 0.1 % of the

creek water volume (vol/vol) and was regulated by a needle

valve at the source tank. The use of ethylene glycol,

however, was found to be of minimal impact and necessity

during the experiment and was discontinued early on. A

photo of the bioreactor system in field operation can be

seen in Fig. 1b.

The bioreactors (Fig. 1c) were wooden boxes measuring

5 m long by 1 m wide by 1 m high (16.40 9 3.30 9 3.30)
and containing an active substrate mixture. The bioreactors

were placed into the ground so that the top edge of the

reactors was at ground level. The bioreactors were lined

with waterproof HDPE tarp of 3.2 mm (1/800) thickness,

which was secured to the top edge with nails. This design

used the ground to support the contents of the reactors,

thereby minimizing material costs. To create a diffuser, a

T-junction connected another piece of 2.5 cm (100) diameter

pipe, which was the width of the reactor chamber, to the

end of the inflow pipe from the sump. This pipe was placed

just above the bottom of the reactor and four 6.4 mm (1/400)
diameter holes (outlets) were drilled equidistant from the

T-junction. A gravel anchor covered the diffuser in the first

quarter of the reactor and the gravel was held in place by a

heavy screen. This screen and gravel baffle assembly

served to protect the contents of the main compartment of

the reactor from washouts. The main compartment of each

reactor was filled with an active substrate composed of a

mixture of mulch (carbon source), manure (nitrogen source

and a secondary carbon source), washed gravel (bacterial

growth surface), limestone (pH buffer), and bone meal

(phosphorus source), as well as the bacterial inoculum

(Table 2). The active substrate differed slightly in the

proportion of mulch and manure between the two reactors

(Table 2). The inoculum added to each bioreactor was

sediment (soft mud) collected from a shallow wetland at

one end of Dyno Lake. The organic, anaerobic nature of the

sediment, and the high sulfur content of the water (Table 1)

suggested a community of sulfur reducing, anaerobic

bacteria was present in Dyno’s sediment, later confirmed

by microbiological testing (personal communication, A.

Sobolewski). The bioreactor’s active ingredients were well

mixed using a small skid-steer loader prior to filling each

reactor. A flap of the tarp liner was used to cover the top of

the bioreactors. Water flow through the bioreactors was

maintained by gravity at a slope of approximately 2 %

(Fig. 1b). A ditch collected discharge from the reactor

outflows [two short pieces of 11.4 cm (4.500) diameter pipe

placed near the top of the downstream end of each reactor],

and directed the treated water back into the creek. The

retention time in the reactor chambers was varied by

Table 1 Selected sediment and water quality metrics of Dyno Lake,

the source of the bacterial inoculum and the Se-laden mine water

treated in the bioreactor system

Parameters Value

Water Total Se 92.3 lg/L

Dissolved sulfur 762 mg/L

Total phosphorus 3 lg/L

TKN 0.15 mg/L

DOC 1 mg/L

pH 7.65

Sediment Total Se 8.95 lg/g

Total iron 21.3 mg/g

TIC 2 %

TOC 6.5 %

TC 8.5 %

TIC, TOC, and TC were calculated as percent total of dried sediment

TKN total Kjeldahl nitrogen, DOC dissolved organic carbon, TIC total

inorganic carbon, TOC total organic carbon, TC total carbon

Mine Water Environ (2014) 33:295–306 297

123



manipulating inflow rates through gate valves and was set

to &48 h.

Monitoring and Analysis

The performance of the bioreactor system was monitored

weekly from August to November 2008. Water samples

were taken from the inflow and from the outflows of each

bioreactor on a weekly basis for 10 weeks post start-up.

Field measurements were taken for pH, temperature,

conductivity, and dissolved oxygen (DO). Water samples

were preserved in the field and submitted to a certified

laboratory (ALS Environment, Edmonton, AB, Canada)

for analysis within 48 h. Water was analyzed for nutrients

(i.e. total phosphorus, total Kjeldahl nitrogen (TKN),

dissolved nitrate/nitrite (combined), and dissolved sul-

phate) using ion chromatography. Total Se concentration

was analyzed by inductively coupled plasma mass spec-

troscopy. Biological parameters measured were biological

oxygen demand (BOD), dissolved organic carbon (DOC),

and abundance of Escherichia coli and fecal coliform

bacteria.

Data were analyzed using R, an open-source, statistical

software (R Core Team 2012) and plotted using the R

visualization package, ggplot2 (Wickham 2009). For all

tests, statistical significance was accepted at p B 0.05.

Hereon, for simplicity, the outflows of Bioreactors 1 and 2

shall be referred to as Outflows 1 and 2, respectively.

Results

Reactor Performance

Water quality underwent distinct visible changes in the first

few days of operation of the bioreactor system. For the first

day of operation, the outflow of both bioreactors was a

turbid, muddy brown color as a result of fine sediment and

organic matter washing out of the active substrate. After

this time, the discharged water was a clear, slightly yellow–

brown color. With a retention time of 48 h, the mean flow

Fig. 1 The bioreactor system

and components. a Components

of the bioreactor system, b field

photo of the bioreactor system,

c detailed schematic of one

bioreactor and its parts (see

‘‘Methods’’ for measurement

equivalents)

Table 2 Amounts of solid ingredients combined to make the active

substrate (percent total volume of substrate) and inoculum within

each bioreactor

Ingredients Bioreactor 1 Bioreactor 2

Active substrate

Mulch 40 % 57 %

Manure 32 % 15 %

Gravel 24 % 24 %

Limestone 2.7 % 2.7 %

Bone meal 1.3 % 1.3 %

Bacterial source

Inoculuma 4.5 L 4.5 L

a Sediment from Dyno Lake
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per reactor was approximately 94 L/h. This meant that the

total volume of water treated was 2,250 L/day or

157,500 L for the duration of the 10 week pilot program

and a projected 819,000 L (819 m3)/year.

Changes in Water Chemistry

The bioreactor system reduced Se, nitrate/nitrite, and some

sulfate in the creek water. The average Se concentration in

the inflow water was reduced by [95 %. The inflow into

the reactor system had an average Se concentration of

84.5 lg/L (SE = 1.46), while the outflows contained an

average of 5.52 lg/L (Outflow 1, SE = 0.75) and 2.13 lg/

L (Outflow 2, SE = 1.00) of total Se (Fig. 2). A repeated-

measures ANOVA was used to compare Se concentrations

of the inflow and outflows over time (F2,25 = 1,647;

p \ 0.0001). A Tukey’s HSD test revealed that total Se

concentrations were significantly different between the

inflow and both outflows (Inflow and Outflow 1:

p \ 0.001; Inflow and Outflow 2: p \ 0.001); however,

there was no significant difference between the Se con-

centrations of the two outflows (Outflow 1 and Outflow 2:

p = 0.112). As with Se, nitrate/nitrite levels were strongly

reduced in the bioreactors. Nitrate/nitrite concentrations in

the inflow water was around 5 mg/L but was reduced to

close to, and often below, detection limits (\0.01 mg/L) in

both outflows (Fig. 2). Dissolved sulfate levels (Fig. 2),

however, fluctuated during the experiment but overall,

sulfate levels in the inflow were always significantly higher

than those of the outflows (repeated-measures ANOVA

F2,25 = 9.292; p \ 0.001; Tukey HSD: Inflow and Outflow

1: p = 0.063; Inflow and Outflow 2: p = 0.002). Sulfate

was not reduced to the same magnitude as Se or nitrate/

nitrite. Although ambient water temperature declined over

the 10 week program, from &14 �C down to 2 �C (Fig. 3),

temperature did not affect Se reduction (regression, Out-

flow 1: R2 = 0.26, p = 0.155; Outflow 2: R2 = 0.04,

p = 0.623).

Field measurements of pH and conductivity did not

show any changes over the course of the experiment.

Median pH values of the water at the inflow, Outflow 1,

and Outflow 2 were 8.29 (range 8.14–8.39), 6.95 (range

5.89–7.40), and 7.30 (range 6.69–7.57), respectively.

Water flowing out of the two bioreactors, was significantly

Fig. 2 Change in total Se,

dissolved nitrate/nitrite, and

dissolved sulphate

concentrations of untreated

(inflow) and bioreactor treated

(Outflow 1 and 2) mine water

throughout the 2008 pilot

program
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more acidic than inflowing water (repeated-measures

ANOVA: F2,25 = 102.2; p \ 0.0001; Tukey HSD: Inflow

and Outflow 1: p \ 0.0001; Inflow and Outflow 2:

p \ 0.0001). Conductivity of the inflow water remained

constant at 1,997.7 lS/cm (SE = 22.93) throughout the

experiment and conductivity of both outflows was the same

as the inflow (Outflow 1: 2,393.2 lS/cm, SE = 247.09;

Outflow 2: 1,945.0 lS/cm, SE = 61.26).

DO concentrations exhibited some variation in the

inflow and outflows (Fig. 4). Generally in the outflows, DO

was near 3 mg/L in the first 5 weeks, after which it was

around 9 mg/L. DO levels were always lower in the out-

flows than in the inflow. DO levels at the outflow might be

overestimated due to sampling of the outflow water after it

surfaces out of the reactor, giving it a chance to mix with

atmospheric oxygen again.

Dissolved phosphorus and TKN shared similar trends

over time. Phosphorus and TKN levels declined during the

course of the experiment but were always higher in both

outflows than in the inflow (Fig. 5).

Biological parameters generally decreased over time but

showed a similar pattern of being always higher in the

outflows compared to the inflow of the bioreactors. BOD

was generally below detection limit at the inflow (\1 mg/

L), while bacterial growth in the reactor elevated oxygen

demand at the outflow considerably (Fig. 6). DOC in both

outflows was around three orders of magnitude higher than

in the inflow at the beginning of the experiment and

declined to around one order of magnitude higher at the

end of the experiment (Fig. 6). Bacteria concentrations in

the water were highly elevated in the outflows of both

bioreactors. While amounts of E. coli and fecal coliform

bacteria in the inflow were close to detection limits, their

concentration was three to four orders of magnitude higher

in both outflows (Fig. 7).

Operating Costs

The total cost for constructing and operating the bioreactor

system over the 10 week trial period was $45,000. The

material cost was $4,500, including hardware to construct

the bioreactor system ($1,500), the ingredient mixture

($1,100), and the ethylene glycol, which was discontinued

($1,900 for 341 L or 90 gal). The rest of the costs went to a

consulting company to oversee the initial setup of the

reactor, a construction company that was hired to build the

bioreactor system according to our design, and equipment

rental fees (e.g. the skid-steer loader).

Discussion

Bioreactor Efficiency

The bioreactor system was very successful in eliminating

Se from Dyno Lake mine effluent. It achieved a 94 %

(Outflow 1) and 98 % (Outflow 2) reduction. Se reduction

in both bioreactors happened in an environment where

sulfate was present in amounts four to five orders of

magnitude higher than Se concentrations, showing a strong

bacterial preference for Se as an energy source as com-

pared to sulfate (Lenz et al. 2008; Zhang and

Fig. 3 Water temperature over the course of the monitoring period
Fig. 4 Dissolved oxygen over the monitoring period
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Frankenberger 2003). The simultaneous reduction of Se

oxyanions and nitrate/nitrites suggests potential competi-

tion between these substrates during the reduction process,

as it was previously determined that nitrate reduction pre-

cedes selenite reduction (Steinberg et al. 1992). However,

additional evidence (reviewed in Macy et al. 1993), has

shown that the terminal reductases used to reduce selenate

and nitrate are different. Moreover, nitrite reductase is used

by some bacteria, e.g. Thaurea selenatis, to catalyze the

reduction of selenate to selenite, indicating that the pre-

sence of nitrite is required before selenate can be reduced.

Oremland and Blum (1999) determined that the reduction

of Se oxyanions and nitrate/nitrites in other bacteria is

poorly understood but is likely dependent on more pro-

cesses than is controlled by only one or two enzymes. As

we did not identify the bacterial species responsible for Se

reduction in our study, we supplied manure as a nitrogen

source. However, the reduction of nitrate/nitrites did not

affect the reduction of Se in either of the bioreactors

(Fig. 2). Moreover, the observed Se removal efficiency of

the bioreactors was comparable to previous pilot studies of

similar size (Cantafio et al. 1996; Lenz et al. 2008) and a

lab-bench study (Fujita et al. 2002), while it performed

more efficiently than a large scale field test of a bio-

chemical reactor pit, a related technology (Golder Asso-

ciates 2010).

Physico-Chemical Changes in the Reactor

While previous studies have used known bacteria grown in

controlled laboratory settings as inoculants (Hunter and

Kuykendall 2007; Ikram and Faisal 2010), we obtained our

bacterial inoculant from the organic sediment of the same

water body from which we treated effluent. In doing so, we

have shown that the anaerobic portion of the sediment in a

water body rich in Se and sulfur can host a bacterial

community capable of reducing sulfur and Se oxyanions.

The bacteria were very effective at removing Se from the

mine water and are likely well adapted to the local envi-

ronment and water chemistry. Our results support the use

Fig. 5 Total phosphorus concentration and TKN (biologically available nitrogen), in untreated and bioreactor treated water during the

experiment. Missing values for the inflow were below detection limits
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of local bacterial communities present in Se-affected areas

for use in treatment.

The observed Se reduction process in our bioreactors

was the result of reducing Se oxyanions to elemental Se, a

precipitate, which was then deposited within the reactors’

active substrate. If the bioreactor system ran longer than in

this experiment, an additional stage, such as a flocculation

barrier, may have to be added in which elemental Se could

be caught after periodically flushing the bioreactors (Can-

tafio et al. 1996). Long-term operation of the reactor

requires replacing the substrate periodically, drying and

processing the removed substrate to remove remaining

organic matter and concentrate the precipitated Se. The

concentrate can then be taken out of the environment for

final deposition or the Se could be extracted and recycled

for industrial use.

Lenz et al. (2008) showed that bioreactors work under

controlled temperature conditions in warmer climates, but

our experiment shows that Se-reducing bacteria, present in

the local environment, can be used to reduce Se oxyanions

under field conditions in a sub-arctic environment. Se

removal remained constant even though the inflow water

temperature declined from 17 to 2 �C at the end of the

experiment. Our results agree with those of a related

technology, tested in a different part of the Alberta Rockies

which experienced similarly low temperatures (Golder

Associates 2010). In general, the temperature within the

bioreactors will be slightly warmer than the surrounding

environment, due to the in-ground construction. This kept

the bioreactors working in sub-freezing ambient tempera-

tures and assures that inflowing water would freeze before

the reactor, thereby providing continuous water treatment.

We conclude that as long as the mine water is not frozen, it

can be treated effectively at near-freezing temperatures

with no significant effect on Se removal rates.

DO readings were lower in the reactor effluent than in

the inflow; however, outflow measurements never reached

anoxic conditions. This is attributed to water turbulence

Fig. 6 Biological oxygen demand (BOD) and dissolved organic carbon (DOC) in untreated and bioreactor treated water during the pilot

program. Missing values for the inflow were below detection limits
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right after the water exited the reactor, i.e. the point of

measurement, where immediate mixing with air enriched

DO in the water. Although a confounding point from a

research perspective, it is a sign that treated water rejoining

the creek will not be oxygen deprived at the point of dis-

charge into the ecosystem.

Conductivity remained fairly unchanged when passing

through the reactor, while sulfates and nitrates were

removed. The likely reason for the unchanged conductivity

is the high calcium carbonate content in the water, which

remained in the water after passing through the reactor.

Environmental Challenges of the Design

There were several metrics of potential environmental

concern related to the bioreactors, i.e. E. coli, fecal coli-

forms, BOD, DOC, TKN, and total phosphorus, which

were at high concentrations in the outflows while not

present in the inflow water, or present in very low con-

centrations. E. coli accounted for nearly all of the fecal

coliform bacteria (Fig. 7). The source of the E. coli, which

is restricted to human or animal feces (Health Canada

2006), was the manure used in the bioreactor. The presence

of these bacteria in a potential drinking water source is not

tolerable (Health Canada 2006). Cell counts declined over

time and were mostly under the water quality guidelines

[100 cells/100 mL for E. coli and 1,000 cells/100 mL for

fecal coliforms (Alberta Environment 1999, 2000)] after

the first 5 weeks of operation. The increase in bacterial

abundance in the outflow resulted in a significantly higher

BOD for much of the pilot program. While above guideline

values in the beginning of the experiments, BOD fell below

the required maximum of 100 mg/L after the first 5 weeks

of operation (Alberta Environment 1999, 2000). The out-

flows also showed increases in DOC, TKN, and total

phosphorus compared to the inflow. These changes were all

due to the choice of active substrate ingredients for the

reactor, i.e. the manure and mulch. Alternative carbon and

nitrogen sources need to be found in order to reduce risks

of E. coli contamination and eutrophication of downstream

Fig. 7 Concentrations of E. coli and fecal coliform bacteria in water for the duration of the experiment. Missing values for the inflow was below

detection limits
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systems. In addition to mulch and manure, possible alter-

native carbon sources are synthetically derived ones such

as acetate (Macy et al. 1993), or natural by-products of the

food industry including molasses (Cantafio et al. 1996),

lactate (Hockin and Gadd 2006; Lenz et al. 2008), or whey

(Koschorreck et al. 2011). These carbon sources would

allow for more stoichiometric dose control; however,

especially in remote settings, these more refined ingredi-

ents would increase treatment costs substantially. Less

processed, potential carbon sources that are more readily

available and are cheaper, include old hay or leaf litter,

which could be obtained from local farmers or municipal

waste collection, as well as cleared vegetation from over-

burden on the mine-site (Kumar et al. 2011). The manure,

which is a nitrogen source as well as a carbon source,

should be replaced by an alternative with adequate nitrogen

content. Commercial liquid fertilizers would be an easy

way to add a nitrogen source, but again, would have a

higher cost than waste products. In our opinion, the best

nitrogen source is manure and agricultural waste, but a

treatment to limit E. coli contamination, i.e. pasteurizing

and drying of the manure is necessary prior to use. Finally,

it is important to note that although the above biological

and nutrient parameters were still higher in the outflows

than the inflow, and while some exceeded environmental

limits even at the end of the pilot program, the data trends

indicate that these parameters would be likely have all been

within acceptable limits after a few more weeks of

monitoring.

Large-Scale Applications

Our results show that simpler designed reactors work in

small field settings, but the treatable volume needs to

increase drastically to address rising Se discharge vol-

umes (Dessouki and Ryan 2010). Our pilot-sized biore-

actor system treated mine water at a rate of 0.2 m3/h;

however, a full-scale system would need to treat a

minimum discharge flow of 0.5 m3/s, or 1,800 m3/h, to

treat Dyno Lake’s average discharge. However, this end-

pit lake is only one of many effluent sources at this mine

site. While scaling up the size of the bioreactor system

appears to be a logical step, we estimate that the size

needed to achieve successful treatment of present Se

concentrations (Table 1) and discharge volumes between

0.5 and 1 m3/s, reactors the size of a small end-pit lake

would be needed.

Since most discharges, especially from mine sites, flow

out of end-pit lakes or settling ponds, we suggest using

these water bodies themselves as in situ bioreactors.

Organic content in the lake can be increased significantly

by adding plant waste products (e.g. woodchips, hay, leaf

litter, compost, municipal sewage, agricultural waste), to

provide carbon and nitrogen sources for the sulfur/Se

reducing bacteria (McCullough and Lund 2011). We have

shown that the desired Se reducing bacteria are already

present in an end-pit lake laden with Se. Supplementary

addition of phosphorus and/or nitrogen through fertilization

(dependent on ambient ratios and concentrations) can

induce a strong phytoplankton bloom (Schindler 1980),

which will reduce DO in the hypolimnion, thereby creating

an anoxic environment for the bacterial community. Vari-

ation in water levels and discharge volumes, which were

addressed through reservoir tanks in the small-scale

experiment, require special consideration during the design

of a large treatment facility. Fluctuations in the water table

would not be too much of a concern, as long as anaerobic

conditions within the pit do not get disturbed. Provided the

treatment pit is situated at the bottom of the watershed,

management of the inflowing water sources upstream can

dampen extreme events and ensure continuous successful

Se treatment.

We suggest that using end-pit lakes as in situ bioreactors

would be the next step in cost efficiency and that this

approach would require even less effort than constructing

ground-level bioreactors next to lake outflows. While

in situ remediation of end-pit lakes has already been tried

for acid mine drainage (AMD) lakes (Koschorreck et al.

2011; Lessmann et al. 2003), our results suggest that non-

acidic lakes are even more suitable for this approach and

should be further investigated.

Conclusions

In our model approach, we applied the general mechanisms

of anaerobic bioreactors in the cheapest way possible,

together with locally available resources. In our pilot-scale

project, we showed effective Se reduction in the field,

reducing the concentration of Se in non-acidic mine water

by 95 %, even at a water temperature of 2 �C. We high-

lighted three major factors required for successful Se

removal: an aquatic anoxic environment, organic matter

providing a carbon and nitrogen source as a bacterial

substrate, and sulfur/Se reducing bacteria. Moreover, we

showed that those three prerequisites can be met while

keeping overall costs low. By assessing the local environ-

ment, a field source of Se-reducing bacteria can be col-

lected for use without expensive microbiological testing,

laboratory rearing, or purchasing of a commercial inocu-

lant. The overall costs of construction and maintenance of

the reactor remained comparatively low by using easily

accessible organic substrate manure as well as integrating

simple building materials into the landscape. The results

are promising for larger-scale applications and the use of

existing industrial structures, such as settling ponds or

304 Mine Water Environ (2014) 33:295–306

123



small end-pit lakes, can make increases in scale feasible

and integration into mine remediation processes possible.
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