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Abstract Closely related species of fish often exhibit

different migration patterns. Even within species, anadro-

mous and resident populations can be found in a diverse

number of taxa. Although several environmental factors

that regulate behavioral and physiological changes associ-

ated with fish migration have been identified, the genetic

mechanisms underlying the variation in the ability to

respond to these environmental cues in fishes that show

different migratory behaviors are not well known. The

three-spined stickleback Gasterosteus aculeatus (Linnaeus

1758) is a good model system for elucidation of the genetic

basis for variation in migratory behaviors and other phys-

iological changes associated with migration. First, the

three-spined stickleback exhibits great inter-population

variation in migration patterns. Second, genetic and geno-

mic tools are now available for studying this species. In the

present study, variation in the migration patterns among

G. aculeatus populations and the recent progress in our

understanding of the genetic and physiological basis for

variation in traits important for G. aculeatus migration are

reviewed.

Keywords Gasterosteus aculeatus � Anadromy �
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Introduction

Fishes exhibit great diversity in their migration patterns

(McKeown 1984; McDowall 1988; Dodson 1997; Hendry

and Stearns 2004). Migration has both advantages and

disadvantages. Advantages include optimal foraging,

avoidance of unfavorable environments, and increased

reproductive output, while disadvantages include energetic

costs, osmoregulatory shocks, and increased predation

(McKeown 1984; McDowall 1988; Dodson 1997; Hendry

and Stearns 2004). Optimal trade-offs between benefits and

costs may differ between environments and can lead to

diversity in migratory behaviors. For example, anadromy is

more common in temperate regions, while catadromy is

more common in tropical regions (Gross et al. 1988). This

pattern can be explained by the difference in productivity

between freshwater and marine environments, with oceans

being more productive than freshwater environments in

temperate regions and vice versa in tropical regions. When

there are two or more optimal strategies, alternative life

histories with different migration patterns can evolve

within populations (Gross 1985; Chapman et al. 2011).

Compared to the theoretical and ecological studies on the

driving forces of diverse migratory behaviors (Gross 1985,

1997; Dodson 1997; Hendry and Stearns 2004), surpris-

ingly little is known about the genetic mechanisms

underlying variation in migratory behaviors.

Diadromous migration comprises multiple behavioral

traits (Hoar 1958, 1976; McKeown 1984; Quinn 2005),

including salinity preference (Baggerman 1957; Houston

1957; McInerney 1964; Iwata et al. 1986), response to

water current (rheotaxis) (Hensleigh and Hendry 1998),

response to light (Hoar et al. 1957), response to overhead

cover (Kemp et al. 2005), and magnetoreception (Quinn

2005). Divergence in some of these behavioral traits has
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been observed among closely related species of several

taxa, including Oncorhynchus (Hoar et al. 1957; Houston

1957; Hoar 1958; Taylor and McPhail 1985; Hutchinson

and Iwata 1997) and Gasterosteidae (Audet et al. 1985).

These behavioral traits are usually regulated by environ-

mental factors, such as photoperiod and temperature,

internal factors, such as hormones, and their interactions

(McKeown 1984; Iwata 1995; McCormick 2001;

Ramenofsky and Wingfield 2007). Therefore, elucidation

of the genetic mechanisms by which the endocrine system

of migratory and non-migratory species responds differ-

ently to environmental cues is indispensable for a better

understanding of the genetic and molecular mechanisms

underlying the variation in diadromous migration.

The three-spined sticklebacks Gasterosteus aculeatus

(Linnaeus 1758) provides a good model system for

understanding the genetic mechanisms underlying variation

in migratory behaviors (Fig. 1). First, tremendous diversi-

fication of G. aculeatus in the last few million years has

resulted in the evolution of phenotypically and ecologically

divergent forms, which can often exhibit different migra-

tion patterns (Wootton 1976, 1984; Bell and Foster 1994;

McKinnon and Rundle 2002; Östlund-Nilsson et al. 2007).

Second, genetic and genomic tools, such as linkage maps,

whole-genome sequencing, microarrays, single-nucleotide

polymorphism (SNP) arrays, restriction-site-associated

DNA sequencing (sequenced RAD), and transgenics are

available for studying G. aculeatus (Hosemann et al. 2004;

Peichel 2005; Cresko et al. 2006; Kingsley and Peichel

2007; Geoghegan et al. 2008; Kitano et al. 2009, 2010;

Leder et al. 2009; Chan et al. 2010; Hohenlohe et al. 2010;

Jones et al. 2012a, b). Recent genetic studies have eluci-

dated molecular mechanisms underlying morphological

divergence between anadromous and freshwater-resident

forms of G. aculeatus (Shapiro et al. 2004; Colosimo et al.

2005; Miller et al. 2007; Chan et al. 2010). However, little

is known about the genetic and molecular mechanisms

underlying variation in behavioral and physiological traits

involved in fish migration or the photoperiodic response of

the endocrinological system in G. aculeatus. This study

reviews variation in migratory behaviors among and within

G. aculeatus populations and recent progress in the genetic

and genomic studies on the physiological divergence

between anadromous and freshwater-resident G. aculeatus.

Diversity of migration in Gasterosteus aculeatus

Substantial variation in migration patterns exist among

Gasterosteus aculeatus populations. First, the G. aculeatus

species complex includes both anadromous and freshwater-

resident forms of G. aculeatus (Bell and Foster 1994;

McKinnon and Rundle 2002). The ancestral forms of

G. aculeatus are considered anadromous, whereas fresh-

water-resident forms have evolved independently from the

anadromous forms in multiple lineages (Haglund et al.

1992; Orti et al. 1994; Taylor and McPhail 1999, 2000;

McKinnon et al. 2004; Colosimo et al. 2005). The anad-

romous forms of G. aculeatus usually migrate to freshwater

or estuaries in spring (Table 1), while juveniles migrate to

the sea in fall (Table 2), although there are substantial

variation in the timing of migration (Tables 1, 2). Inter-

estingly, the timing of spawning migration tends to be

earlier in populations at lower latitudes than in populations

at higher latitudes (Table 1). Although we did not see any

clear latitudinal trends of the timing of juvenile migration,

the Japan Sea forms likely descend earlier than the Pacific

Ocean forms in Japan (Kume and Kitamura 2003; Table 2).

Variation also exists in the offshore distance during

migration among anadromous G. aculeatus populations

(Table 3), but the precise migratory routes in marine

environments have not been systematically investigated.

Freshwater-resident forms are sometimes completely

landlocked and never come in contact with the anadromous

forms (Fig. 2a). In other cases, habitats of freshwater-res-

ident forms are connected to the sea; when anadromous

Fig. 1 Pictures of anadromous (upper panel) and stream-resident

forms (lower panel) of Gasterosteus aculeatus
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forms migrate to spawning sites in the coastal regions, their

spawning sites overlap with those of the resident forms

(Fig. 2b). Although the extent of gene flow between

anadromous and resident forms varies according to the

geography of the location, anadromous and resident forms

are often reproductively isolated and genetically differen-

tiated because of multiple isolating barriers, including eco-

geographical isolation (Hagen 1967), temporal isolation

(Hagen 1967), sexual isolation (Hay and McPhail 1975;

McKinnon et al. 2004), and postzygotic isolation against

hybrids (Jones et al. 2006, 2008).

Partial anadromous migration (i.e., part of a population

migrates, while the other part does not) is also found in

Japanese lakes. At least two lake populations, Lake

Table 1 Variation in the timing of upstream migration between anadromous populations

Population Month Latitude References

Japan Sea form from Nagata River, Japan Apr. 34 Amaoka and Haruta (1972)

Japan Sea form from Mimi River, Japan Mar.–Apr. 35.6 Mori, pers. obs.

Japan Sea form from Kuriyama River, Japan Feb.–Apr. 36 Kume (2008)

Japan Sea form from Kahoku Lagoon, Japan Mar.–Apr. 36.6 Mori (1987)

Japan Sea form from Niigata, Japan Feb.–Mar. 38 Ikeda (1937)

Japan Sea form from Mogami River, Japan Mar.–May 39 Mori, pers. obs.

Japan Sea form from Oga Peninsula, Japan Apr.–May 40 Mori, pers. obs.

Japan Sea form from Lake Ogawara, Japan Apr.–May 40.8 Katayama et al. (2000)

Pacific Ocean form from Akkeshi, Japan Apr.–May 43 Kume and Kitamura (2003), Kume et al. (2005)

Japan Sea form from Akkeshi, Japan Apr.–May 43 Kume and Kitamura (2003), Kume et al. (2005)

Little Campbell River in British Columbia, Canada June–July 49 Hagen (1967)

Långskär and Vindskär Bays in Baltic Sea, Finland May–July 60 Candolin and Voigt (2003)

Table 2 Variation in the timing of seaward migration between anadromous populations

Population Month Latitude References

Japan Sea form from Lake Shibayama, Japan June–July 36.3 Mori, pers. obs.

Japan Sea form from Lake Kahoku, Japan June–July 36.6 Mori, pers. obs.

Navarro River in California, USA Sep. 39 Snyder and Dingle (1989)

Japan Sea form from Lake Ogawara, Japan July 40.8 Katayama et al. (2000)

Japan Sea form from Akkeshi, Japan July–Aug. 43 Kume and Kitamura (2003)

Japan Sea form from Biwase, Japan July–Aug. 43 Kume and Mori (2009)

Pacific Ocean form from Akkeshi, Japan Nov.–Dec. 43 Kume and Kitamura (2003), Kitamura et al. (2006)

Duwamish estuary, Washington, USA Sep. 47.5 Kitano, pers. obs.

Shilshole Bay, Washington, USA Sep. 47.6 Kitano, pers. obs.

Island of Tholen and Yerseke, The Netherlands July 51.5 van Mullen and van der Vlugt (1964)

England Oct. 52 Craig-Bennett (1931)

Northern Germany Sep. 53.5 Leiner (1930)

Table 3 Records of Gasterosteus aculeatus caught at sea

Collection site Distance from the nearest

land (km)

Season Depth (m) References

North Atlantic Ocean 145–160 Dec.–Jan. 221–232 Jones and John (1978)

North Pacific Ocean \945 May–Oct. 36–127 Quinn and Light (1989)

Bay of Fundy \100 Winter \0.18 Williams and Delbeek (1989)

New York Bright \110 May–July \2 Cowen and Chiarella (1991)

North Pacific Ocean,

Bering Sea, Okhotsk Sea

[22 ND ND Morita et al. (2009)

ND not described
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Harutori, and Lake Hyotan populations, exhibit polymor-

phism of anadromy and residency (Fig. 2c) (Mori 1990;

Kitamura et al. 2006). No significant genetic differentiation

in nuclear markers has been observed between the

anadromous and resident forms in these two lakes (Higuchi

et al. 1996; Kitano et al. 2007; Ishikawa and Kitano,

unpublished data). Early growth rate may determine the

migratory fate of each fish, as in the Atlantic salmon (Jones

1959; Hutchings and Myers 1994), because juvenile G.

aculeatus descending a river are smaller than the juvenile

G. aculeatus that remain in a pond (Kitamura et al. 2006).

Populations that show partial migration are particularly

suitable for investigating the genetic basis of migratory

behavior, because such polymorphic populations maintain

genetic variation in traits important for both migration and

residency (Berthold 1993; Pulido 2011).

Physiological basis for stickleback migration

Several physiological and behavioral traits important for

anadromous migration diverge between anadromous and

resident forms (Table 4). Divergence in salinity preference

may contribute to the divergence in migratory behaviors.

Other traits related to migration, such as metabolic rate,

swimming endurance, and osmoregulation, also diverge

between anadromous and resident forms. The expression of

these traits is regulated by hormones (Table 5). Thyroid

hormone signaling pathways are one of the most exten-

sively characterized systems that have been compared

between anadromous and resident forms (Fig. 3). Anad-

romous forms have higher plasma thyroxine and triiodo-

thyronine levels than resident forms (Kitano et al. 2010).

Thyroid hormone increases the metabolic rate and swim-

ming activity in Gasterosteus aculeatus (Gutz 1970; Kitano

et al. 2010). Therefore, higher thyroid hormone levels may

be adaptive for longer distance migration in anadromous

forms; such migrations require more energy than that

required by resident forms. Importantly, thyroid hormone

not only regulates swimming activity (Kitano et al. 2010),

but also salinity preference behavior (Baggerman 1957).

Although thyroid hormones do not exhibit photoperiodic

changes in either anadromous or resident forms, mRNA

expression levels of the thyroid stimulating hormone-b2

(TSHb2) in the pituitary gland exhibit striking photoperi-

odic changes only in anadromous forms (Kitano et al.

2010). Because TSH regulates the synthesis and release of

thyroid hormones in thyroid gland, and the sensitivity of

thyroid hormones in peripheral tissues (Wu et al. 1985),

thyroid hormone signaling pathways may be an important

regulator of migratory behavior in G. aculeatus.

The genetic basis for divergence in thyroid hormone

signaling pathways between anadromous and resident

forms has also been investigated. Pyrosequencing of

TSHb2 transcripts in hybrids between anadromous and

resident forms revealed that divergence in the cis-regula-

tory regions of the TSHb2 gene can partially explain the

Fig. 2 a Complete geographical isolation between anadromous and

resident forms. b Reproductive isolation with various levels of gene

flow between anadromous and resident forms. c Polymorphism of

anadromy and residency within a population
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differential expression of TSHb2 (Kitano et al. 2010). In

addition, a signature of divergent selection was also

observed at the TSHb2 locus: most anadromous forms from

multiple geographical regions have one type of allele,

whereas most stream-resident forms have another type of

allele (Kitano et al. 2010). A similar signature of divergent

selection was observed at the ectodysplasin (Eda) and the

kit ligand (kitlg) genes, which are responsible for repeated

evolution of the low-armored phenotype (Colosimo et al.

2005) and reduced pigmentation (Miller et al. 2007),

respectively, in freshwater-resident forms of G. aculeatus.

The TSHb2, Eda, and kitlg genes are located on different

chromosomes. Therefore, divergent natural selection acted

on various chromosomal regions leading to parallel evo-

lution of multiple phenotypic traits.

The signaling pathways of other hormones may also

diverge between migratory and resident forms. For exam-

ple, prolactin is important for freshwater adaptation;

injections of prolactin increase the survival rate of anad-

romous forms in fresh water (Lam 1968; Lam and Lea-

therland 1969a, 1970). Prolactin regulates the osmotic

influx of water in isolated gills (Lam 1969a) and structural

changes in the kidney (Lam and Leatherland 1969b;

Wendelaar Bonga and Veenhuis 1974; Wendelaar Bonga

1976) in anadromous forms. Other hormones, such as

gonadal steroids, also play important roles in migration,

such as in the migration of eels (Lokman et al. 1998;

Lokman and Young 1998; Sudo et al. 2011) and salmonids

(Munakata et al. 2001, 2002). However, divergence in the

signalling pathways of prolactin or gonadal steroids

between anadromous and freshwater-resident forms has not

yet been characterized, but it should be investigated in the

future.

The future of physiological genomics of fish migration

Studies on TSHb2 demonstrate that the search for a

genomic signature of divergent selection between different

migratory forms will be useful for identifying the candidate

genes important for divergence in migratory behaviors

(Fig. 4a). By using microsatellite markers, divergent loci

between anadromous and freshwater forms, including

genes potentially important for physiological adaptation,

have been identified (Mäkinen et al. 2008; DeFaveri et al.

2011; Shimada et al. 2011). Recent progress in next-gen-

eration sequencers is making it possible to find an

increasing number of genetic markers at relatively low

costs (Hudson 2008; Stapley et al. 2010; Davey et al. 2011;

Elmer and Meyer 2011). For example, SNP analysis with

sequenced RAD is a powerful method to identify a signa-

ture of divergent selection (Baird et al. 2008; Hohenlohe

et al. 2010; Roesti et al. 2012). Because the genome

sequences of Gasterosteus aculeatus are relatively small

(\450 Mb) and the reference genome sequence is available

(Kingsley and Peichel 2007; Jones et al. 2012b), whole-

genome re-sequencing of G. aculeatus is relatively easy by

using next-generation sequencers (Jones et al. 2012b). The

presence of multiple phylogenetically independent pairs of

anadromous and freshwater-resident sticklebacks provide

us great opportunities to scan the genome for regions that

contribute to the repeated evolution of adaptive traits

importance for freshwater residency (Jones et al. 2012a, b;

Elmer and Meyer 2011).

Studies on TSHb2 also demonstrate that transcriptome

analysis will be useful in identifying genes potentially

involved in the initial switch to migration (Fig. 4b).

Transcriptomic studies of salmon migration have been

extensively conducted (Aubin-Horth et al. 2005, 2009;

Giger et al. 2006; Bernier et al. 2008; Miller et al. 2009,

2011; Seear et al. 2010). Microarrays of G. aculeatus,

which have been used to investigate the effects of endo-

crine disruptors (Geoghegan et al. 2008; Williams et al.

2009; Katsiadakia et al. 2010), sex-biased gene expression

(Leder et al. 2010), the transcriptomic response to preda-

tors (Sanogo et al. 2011), comparison of gill transcripts

between anadromous and stream-resident forms (Kitano

et al. 2010), and comparison of testis transcripts between

incipient species (Kitano et al. 2011), are also useful

for transcriptome analyses of divergent migratory forms of

G. aculeatus at various migratory stages.

Quantitative trait loci (QTL) mapping, performed for

Oncorhynchus mykiss (Walbaum 1792) (Nichols et al.

2008), is also useful in identifying the genomic regions

responsible for divergence in behavioral traits and photo-

periodic response between migratory and resident forms of

G. aculeatus (Fig. 4c). Gasterosteus aculeatus is a suitable

model system for QTL mapping because its body size,

Fig. 3 Schema of thyroid hormone signaling pathways in anadro-

mous and resident forms of three-spined sticklebacks
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genome size, and generation time are smaller than those of

salmonids. QTL mapping of several morphological and

behavioral traits has been successfully performed for

G. aculeatus (Peichel et al. 2001; Colosimo et al. 2004,

2005; Cresko et al. 2004; Shapiro et al. 2004; Albert et al.

2008; Kitano et al. 2009; Greenwood et al. 2011).

Finally, it should be noted that rapid advances in next-

generation sequencers are making it possible to obtain a

large amount of sequence data, even for non-model

organisms (Hudson 2008; Stapley et al. 2010; Davey et al.

2011; Elmer and Meyer 2011). Therefore, the gap between

model and non-model organisms is becoming increasingly

blurred. Next-generation sequencers would facilitate gen-

ome scan analyses by using sequenced RAD (Baird et al.

2008; Hohenlohe et al. 2010; Rowe et al. 2011; Roesti et al.

2012) and transcriptome analyses by RNA-sequencing in

non-model organisms (Vera et al. 2008). Applications of

such genomic tools to non-model organisms that exhibit

diverse migratory behaviors will enable us to elucidate

whether the same sets of genes are important in the

divergence of migratory behaviors across diverse taxa.
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