
LONG PAPER

Seamless semantic enrichment of services in assistive
environments

Daniel Zmuda • Jacek Psiuk • Marek Psiuk

Published online: 2 September 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract The paper proposes a methodology and a tool-

based support for the development of semantic services in

ambient-assisted living (AAL)-oriented assistive environ-

ments. A review of existing approaches in this area is

conducted. The review covers a variety of AAL platforms

from which universAAL has been chosen for the experi-

mental implementation. The paper presented the iterative

development methodology of service semantics, which

facilitates the efficient creation of error-free services in

AAL platforms. The features needed for the realization of

the methodology are implemented as a universAAL plat-

form extension named the annotation-based semantic

enrichment. The proposed approach is assessed in the

context of a sample scenario in which the services pro-

moting universal access for elderly people or otherwise

impaired persons are developed. The assessment results are

used to highlight the added value of the presented work and

to identify potential areas of future improvement.

Keywords Ambient-assisted living � AAL platforms �
Seamless environment enrichment � Semantic annotations �
Development process simplification

1 Introduction

An important group of people on which recent research on

universal access is focusing is the elderly [2, 14]. This is

caused by the demographic changes—particularly in Eur-

ope—which result in the increasing population of the

elderly people in society [7]. The concept of universal

access is addressed, among others, by assistive environ-

ments which—in addition to enhancing accessibility—

increase the general quality of life. A research domain on

assistive environments directed at elderly people is referred

to as ambient-assisted living (AAL). In response to the

demographic changes, AAL leverages the potential of

Information and Communication Technologies (ICT) to

extend the period during which elderly people and people

with disabilities can enjoy a healthy, safe and happy life on

their own [1, 31].

There were many research initiatives focusing on the

exploitation of ICT in applications from the AAL domain

[6, 18, 19, 21–23, 26, 30, 34]. Unfortunately, developing

AAL applications without a common framework has pro-

ven itself to be ineffective and cumbersome [32]. There-

fore, the aforementioned initiatives tried to standardize the

development process by introducing the concept of a

platform [3, 12]. The exact definition of the AAL platform

varies, but the common denominator is that it typically

provides an environment for constructing applications from

a set of reusable business services, which can be easily

composed and supported by the system services provided

by the platform itself.

An important feature that should be provided by the

AAL platform is a mechanism for expressing and handling

service semantics. The semantic information is crucial for

the effective composition of the services and choosing the

service instance, which is the most appropriate for the

D. Zmuda (&) � J. Psiuk � M. Psiuk

Department of Computer Science, Faculty of Computer Science,

Electronics and Telecommunications, AGH University of

Science and Technology, al. A. Mickiewicza 30,

30-059 Kraków, Poland

e-mail: zmuda@agh.edu.pl

J. Psiuk

e-mail: jacek.psiuk@agh.edu.pl

M. Psiuk

e-mail: marek@psiuk.pl

123

Univ Access Inf Soc (2016) 15:85–99

DOI 10.1007/s10209-014-0376-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s10209-014-0376-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10209-014-0376-x&domain=pdf

current situation [11]. This is especially important in the

context of universal access. For example, when a visually

impaired person approaches a tourist information terminal,

the terminal should detect the disability and automatically

select the voice modality channel as the service providing

the most appropriate user interface from the semantic point

of view.

The existing AAL platforms provide support for creat-

ing and managing various aspects of service semantics.

However, the process that a developer has to follow is not

straightforward. It involves many steps and the resulting

implementation cannot be fully tested until the process is

finished. This significantly decreases the potential of

semantics in AAL applications and the effective value that

an AAL platform can bring to the domain of accessibility

support. In order to address this issue, the following con-

tribution is provided:

• The Iterative Development Methodology of Service

Semantics which simplifies the development process

and makes it less error-prone. The Methodology can be

applied to any AAL platform;

• The extension of the universAAL platform, named

annotation-based semantic enrichment (AAPI) that

allows for realization of the Iterative Methodology;

• Critical evaluation of the Methodology and its imple-

mentation (AAPI) in a meaningful scenario from the

universal access domain.

Throughout the paper, the process of adding semantic

meta-data to the services is often referred to as develop-

ment or implementation of the semantics. This allows the

text to be more concise without losing its full meaning.

The structure of the paper is as follows. Section 2 pre-

sents a review of research in the field of AAL platforms

and highlights the aspects related to semantics. The Itera-

tive Development Methodology of Service Semantics is

described in Sect. 3. The description is divided into moti-

vation— Sect. 3.1 and the actual Methodology descrip-

tion— Sect. 3.2. Section 4 presents the Annotation-based

Semantic Enrichment (AAPI), which allows for realization

of the Iterative Methodology in practice. The evaluation of

the proposed solutions in a real-life scenario is presented in

Sect. 5. Finally, Sect. 6 concludes the presented research

and discusses the improvements which will be addressed in

the context of future work.

2 Related work

Many research initiatives attempt to address issues related

to universal access with the use of semantics. Some of

them, such as [9, 17], describe solutions that provide uni-

versal accessibility and interoperability in the context of

user interaction allowing for adaptation of the application

interfaces to specific user needs. Others [8, 25] leverage the

concept of the Semantic Web to propose an approach for

profile-dependent accessibility of data for end users.

Since the paper’s contribution is focused on the AAL

domain, the following section analyzes available AAL

platforms and their features related to development of

semantic aspects of services.

SOPRANO is an AAL platform oriented toward intel-

ligent context adaptation by gluing high-level abstraction

layers, such as planning and context, with lower layers,

e.g., service and hardware, by means of a common

SOPRANO ontology [11]. The process of gathering events,

reasoning about certain situation and, finally, invoking

appropriate actions is decomposed into the following

architectural components [33]: (1) Procedural Manager—

maintains high-level actions— procedures—and allows for

triggering their invocation by Composer and Context

Manager; (2) Composer— applies Match-making algo-

rithms to choose service instances fitting an abstract

semantic description; (3) Context Manager—receives

events from sensors and stores them; it also enables sub-

scribing to an event pattern.

The development process in the SOPRANO platform

involves several roles, two of which are specifically related

to semantics: Device technology provider and Software

developer. The Device technology provider creates and

maintains implementations of sensors and actuators, which

are exposed as services inside OSGi bundles [29]. The

Provider has to ensure that the services are semantically

enriched with information from the SOPRANO ontology.

This allows the Software developer to use sensors and

actuators to combine, augment and aggregate context

information into a rich and reliable semantic knowledge

base which is then exposed to higher layers. Tasks related

to managing the implementation of semantic aspects per-

formed by the Device technology provider and the Soft-

ware developer are demanding, yet the platform does not

explicitly provide any mechanisms to reduce their

complexity.

One of the main objectives of the OASIS Project [10]

was to provide an implementation of an Ontology-driven

Open Reference Architecture that supports interoperability,

connectivity and context sharing between services relevant

to the domain of the elderly. The OASIS platform com-

prises several building blocks directly related to semantics:

(1) Common Ontological Framework (COF)—stores the

specification of relations between different ontology mod-

ules in OOR (OASIS Ontology Repository) and allows

users to define a Hyper-Ontology, which optimizes the

integration of different ontologies; (2) AMI Framework—

provides seamless interactivity between services, applica-

tions and ontologies stored by COF; (3) Content Anchoring

86 Univ Access Inf Soc (2016) 15:85–99

123

and Alignment Tool (CAAT)—aligns the functionality of

specific services with ontologies stored in the repository;

(4) Content Connector Module (CCM)—supports auto-

matic integration of newly created services with incoming

service requests using the AMI Framework.

The process of developing solutions in the OASIS

platform assumes the integration of services delivered by

different providers in accordance with requirements spec-

ified by end users. Different functional parts of services can

be composed into applications by exporting their func-

tionality in the form of web-services that then are corre-

lated by the AMI Framework with hyper-ontology to match

the user expectations. The exposition and matchmaking of

service functionality with user requirements is done auto-

matically in a seamless way by the CCM. However, the

overall process of services or device descriptions mapping

to ontologies assumes manual approach and is time-

consuming.

The approach assumed in MonAMI [15]—another

OSGi-based AAL platform—focuses on simplifying the

business environment for developing AAL services and, as

a consequence, fostering the creation of relevant ecosys-

tems [13]. MonAMI achieves this goal by proposing an

interoperability framework—OSGi4AMI where informa-

tion and context are mediated in a seamless and transparent

way. OSGi4AMI defines a comprehensive ontology, cov-

ering various devices and service types which are mapped

to specific Java interfaces. The ontology brings clear sep-

aration between the application logic, device logic and

other system components. This is a very valuable feature

that greatly simplifies the work of developers during initial

implementation of services and devices, as well as during

system evolution, where a given service/device imple-

mentation may need to be exchanged. Unfortunately, the

granularity offered by the OSGi4AMI ontology is very

coarse—only interfaces and not the specific features are

defined. Therefore, managing the ontology in a large-scale

system covering many networks, nodes and diverse ser-

vices becomes difficult.

PERSONA project introduces a framework for sup-

porting context awareness. This framework is implemented

as an open middleware-based distributed system, based

upon the OSGi technology. It offers semantic RPC and

Match-making features [4] in the form of data buses (e.g.,

context bus, service bus). PERSONA enables the service

provider to define ontological descriptions of services

(ServiceProfiles) , which are then used by developers to

develop business logic for specific profiles (ServiceCallees

components). The client may use semantic information to

describe the requested services and pass requests to the bus.

Internal framework mechanisms perform semantic Match-

making [27] between requests and the registered Service-

Profiles, select an appropriate ServiceProfile, and

communicate the response to the caller. The proposed

approach is very mature and offers advanced features for

describing services in a semantic manner. However, the

inherent complexity of developing ontologies and mapping

them to specific implementations makes it error-prone and

difficult to use. Moreover, support for evaluating the

validity of request/service matches remains rudimentary.

The universAAL project [5] aims at providing an open

platform and reference specification of AAL on the basis of

several projects (including SOPRANO, Oasis and PER-

SONA). One of the key goals of the project is to enable

developers to easily create applications and reuse existing

platform services that are shared within the developer

community. To achieve this, universAAL heavily relies on

ontologies and semantic descriptions of services. The

process of applying semantic descriptions is simplified by

providing several tools capable of transforming ontologies

between different representations, such as OWL-s, UML,

and Java. The platform provides mechanisms for semantic

interoperability and Match-making, very similar to the ones

introduces in the Persona project. However, the complexity

of mapping semantic descriptions to specific business logic

components remains high and requires broad knowledge

about the ontologies themselves as well as the way in

which they apply to a particular implementation.

The presented study of ongoing work related to assistive

environments indicates that there are many existing plat-

forms and solutions which address enrichment of services

with semantic meta-data. However, in all cases the inherent

development process is either too cumbersome and error-

prone (e.g., Oasis, Persona) or too much simplified for

supporting real-life cases (e.g., MonAMI). This problem is

addressed by a methodology proposed in the following

section.

3 Iterative development methodology of service

semantics

This section firstly presents the paper’s contribution by

describing a regular process of implementing semantics in

AAL platform services. All problems and inconveniences

of the process are described from the developer’s point of

view. Subsequently, the section presents the Iterative

Development Methodology of Service Semantics, which

aims at automating some parts of the process and ensures

constant control over the implementation’s validity.

3.1 Motivation

The platforms discussed in Sect. 2 handle service seman-

tics in various ways; however, on the abstract level, all

these approaches have several essential aspects in common.

Univ Access Inf Soc (2016) 15:85–99 87

123

Such aspects are grasped in Fig. 1. Semantics are invari-

ably based on an ontology. The ontology defines the

Semantic Concepts which, in the AAL Domain, most

commonly represent some fragments of the physical world

[16]. The Semantic Concepts are used to describe a Service

from both the provider’s and the consumer’s point of view.

The provider defines a Service Description that can be

perceived as a contract, whose fulfillment is guaranteed.

For instance, the contract may state that the invocation of

the service will change the state of a given instance of an

element modeled by the ontology. In turn, the consumer

defines a Service Expectation, which represents a contract

the consumer would like to see fulfilled. For instance, by

invoking the service, the Consumer may expect to read the

current room temperature from an appropriate sensor

covered in the ontology. Both elements— the Service

Description and the Service Expectation— constitute input

data upon which the Match-making algorithm operates.

The goal of the algorithm is to process Service Descrip-

tions available in the current context (e.g., on a platform

node or network segment) and choose the service (or

multiple services, if permitted) which represents the best

semantic match for the given Service Expectation. Of

course, a situation may arise in which no Service

Descriptions match a given Expectation—in such cases the

expectation simply cannot be fulfilled by the platform.

Figure 1 illustrates the elements of service semantics

and their interrelations and the responsibilities for devel-

oping them. The developer at a provider side is responsible

for the creation of the Provider Implementation. Such

Implementation has to cover the service business logic and

its Semantic Description. The Service Implementation has

to be registered by the provider in the platform to expose

the Service Description for the purposes of Match-making,

and to allow for realization of service invocations. The

consumer developer is responsible for implementing the

relevant business logic at the consumer side and for adding

there a suitable invocation taking into account the desired

Service Expectation. The development of the ontology and

the related Semantic Concepts is a shared responsibility.

While most of the time, it would be handled by the pro-

vider, this is not mandatory.

Analysis of the development responsibilities leads to the

identification of the following steps that need to be covered

by different developers:

1. Implementing business logic on the provider’s and

consumer’s side;

2. Modeling the ontology;

3. Creating Service Description;

4. Implementing service at provider’s side;

5. Formulating Service Expectation;

6. Implementing service invocation at consumer’s side.

Two essential problems can be identified in the context of

the development steps presented. The first identified

problem is that the steps may prove complex and time-

consuming, and there is no clear distinction between the

business logic and the implementation of semantics. Often

those two elements are tightly coupled with each other

which makes either of them hard to reuse for other pur-

poses. The second problem is that only after all the process

steps are finished, the implemented code can be deployed

to the platform and launched for the purpose of testing its

correctness. If something goes wrong, it is very hard to

determine who is responsible for the error—the consumer,

the provider or perhaps the creator of the ontology, who

may have committed a mistake during the modeling phase.

3.2 Methodology

In order to solve the problems identified in the previous

section, the Iterative Development Methodology is pro-

posed. The Methodology is presented in Fig. 2. It divides

the development process into four iterations: A–D. Fol-

lowing each iteration, a certain status is guaranteed, as

presented on the right-hand side of the figure. The Meth-

odology assumes that the application is developed with the

use of the Semantic Framework, which itself is an integral

part of the AAL platform. In order to make each iteration

as developer-friendly as possible, the Semantic Framework

should provide a set of expected features. These features

are listed on the left-hand side of Fig. 2 and are mapped to

iterations in which they are needed. Owing to these fea-

tures, the steps comprising each iteration result in attaining

the desired status.
Fig. 1 Concept map presenting an abstract view of semantic service

aspects

88 Univ Access Inf Soc (2016) 15:85–99

123

The intensity of color tags in Fig. 2 reflects the amount

of semantics present in each iteration. As can be seen, the

first iteration does not involve semantics at all—it is white.

Each subsequent iteration is tagged with a deeper shade of

orange, representing a gradual enrichment of the initial

iteration with semantics. Please note that following each

iteration the implementation is runnable and therefore

testable, which allows for the verification of additional

semantic elements added in each iteration.

Iteration A, as mentioned, does not include any

semantics. It comprises of five steps, A1–A5, which mostly

focus on the business logic. (A1) The service interface is

defined in terms of syntactic elements such as input and

output parameters. (A2) The business logic of the Service

on the provider’s side is implemented in accordance with

the interface defined in the previous step. (A3) The logic of

Consumer handling the Service invocation is implemented.

The implementation uses the dependency injection feature

(F1) [24] to avoid binding to the provider’s code— only the

interface from A1 is used. (A4) For testing purposes, the

service instance is injected into the consumer code. It is

possible thanks to the dependency injection feature. (A5)

The implementation of business logic is launched and tes-

ted. In case of errors, the logic is fixed and tests are repe-

ated. Successful tests mean that the iteration may conclude,

guaranteeing the correctness of business logic (Status A).

Iteration B adds minimal semantic support to the result

of Iteration A in order to enable checking whether the

Semantic Framework is used in the appropriate way. This

iteration assumes that the Framework provides two fea-

tures: F2 and F3 which are essential for the presented

Methodology. Feature (F2)—Ontology Placeholder Anno-

tations provides some means for annotating the interface

defined in step A1. A set of possible annotations is defined

to express semantic meta-data. Attaching a given annota-

tion to some syntactic element simply gives it a certain

semantic meaning. This approach is very straightforward

and retains clear separation between business logic and

representations of both Semantic Expectation and Semantic

Description. Annotations are not coupled with any partic-

ular ontology. They simply represent the semantic

expression of the given Framework. However, since a

semantic directive often needs to relate to some ontological

Concept (e.g., to represent its meaning), it is assumed that

Concepts can be referenced by adding arguments to

Annotations. The Ontology Placeholders could be per-

ceived as an ontology skeleton. They define places in

which ontology Concepts will be inserted in subsequent

iterations. The assumption is that the Placeholders should

allow for executing a simplified Match-making algorithm.

If the Description and Expectation refer to the same

Placeholder which is not yet filled by the ontology, the

algorithm should assume that they match. Feature (F3)

ensures that the Semantic Framework is able to automati-

cally generate the Service Description and Expectation

from the annotated interface. It is expected that these two

elements are generated at run-time and therefore do not

have to be handled at all by the developer.

Fig. 2 Iterative development methodology of service semantics in the context of features expected from the semantic framework provided by an

AAL Platform

Univ Access Inf Soc (2016) 15:85–99 89

123

There are four steps covered by Iteration B: B1–B4.

(B1) The developer defines Ontology Placeholders with the

use of feature F2. (B2) The developer annotates the inter-

face defined in step A1 and inserts Placeholders as anno-

tation arguments. (B3) Service exposition, on the

provider’s end and service invocation on the consumer’s

end is adapted to the API of the Semantic Framework.

This, of course, implies removing direct injection of the

Service instance from the consumer code (added in step

A4). (B4) Both implementations (provider’s and con-

sumer’s) are deployed in the platform and the service

invocation is tested. If Match-making and the entire invo-

cation cycle succeed, then Iteration B is complete, ensuring

the validity of adapting business logic to the Semantic

Framework API (Status B).

Iteration C focuses on modeling ontology for the pur-

pose of enabling the full potential of semantics. Here, it is

expected that the Semantic Framework will provide

Annotations which allow for referring to a complete

ontology model (F4) and that the Framework will be able

to generate semantic-rich Description and Expectation out

of these Annotations (F5). The iteration includes only three

steps: C1–C3. (C1) The developer (which may be either the

provider or the consumer) defines the ontology, including

all of its Semantic Concepts. (C2) The provider improves

the Annotations created in step B2 by extending the

Placeholders from step B1 and referring to the Concepts

from the ontology. (C3) The following elements are

deployed to the platform: the provider’s code, the con-

sumer’s code and the ontology. This enables service

invocation to be tested. If the invocation works, the

semantically complete Match-making process is deemed

successful, which also means that the ontology and the

semantic Annotations of the interface are valid (Status C).

Iteration D focuses on more advanced Match-making

which is not restricted to a single Expectation and a single

Description. Thus far, both the Expectation and Descrip-

tion have been generated from the same development

artifact—the interface, initially annotated with Placehold-

ers and later on with ontology Concepts. In such circum-

stances, it is relatively easy to ensure that the generated

elements are matched by the Match-making algorithm.

However, in real-life scenarios, the Description and

Expectation may be created independently. Therefore,

Iteration D expects that the Framework can handle such

independence at the development time (F6). The iteration

includes the following steps (named D1–D3). (D1) The

developer at consumer side starts with a clean syntactic

interface from step A1 and annotates it with either ontology

Concepts or Placeholders to formulate an independent

Service Expectation. (D2) The developer creates or (if

possible) uses existing service implementations that have

different Semantic Descriptions. (D3) The consumer code

(including the independent Expectation), all service

implementations and the ontology itself are deployed to the

platform. The Service is then invoked under various cir-

cumstances involving both the consumer and the provider.

Each invocation is followed by a check whether the Match-

making algorithm has selected the most appropriate service

instance. If not, the Service Expectation is reworked and

the test is repeated until a positive result is achieved. This

concludes Iteration D (Status D).

In the presented description of Methodology, the con-

sumer and provider code was developed from the begin-

ning in a synchronized manner. As mentioned in Iteration

D, this is not always the case. The Methodology takes this

into account and allows iterations to be performed inde-

pendently. For example, the provider may have developed

the service until Iteration C before the consumer starts

work on the client. Even in such cases the completion of

each iteration status looks the same. In Iteration A, the

service implementation is injected and only the business

logic is tested. In Iteration B, only Placeholders are used

for generating the Expectation. Finally, Iteration C pro-

vides full ontology support for the consumer’s code. As

presented in this short example, the potential of the

Methodology is preserved even if the consumer and pro-

vider perform their work independently.

4 Annotation-based semantic enrichment

In Sect. 2, a review of existing AAL platforms was pre-

sented. Each platform has its own advantages as well as

drawbacks; however, one solution stands out from the rest.

The universAAL platform is the result of consolidation of a

number of other projects (among others SOPRANO,

OASIS, and PERSONA). In the scope of the universAAL

project, a specification of the AAL Reference Architecture

is provided, along with a fully functional distributed plat-

form enabling seamless interoperability. Taking this into

consideration, universAAL has been selected as a basis for

implementation of a Semantic Framework extension that

supports the Methodology proposed in Sect. 3.2. This

section describes the relationship between universAAL

components and abstract semantic aspects presented in

Sect. 3.1, and introduces the universAAL platform exten-

sion named Annotation-based Semantic Enrichment

(AAPI).

4.1 UniversAAL semantic framework

Figure 3 presents the mapping of universAAL components

to the Semantic concepts defined in Fig. 1. Resources

represent the Semantic Concepts used by Providers and

Consumers. The Semantic Description is represented by a

90 Univ Access Inf Soc (2016) 15:85–99

123

collection of Service Profiles and their parameters. The

Service Callee represents the Provider Implementation and

exposes its capabilities in the form of Service Profiles. The

Semantic Expectation is represented by a ServiceRequest

and its parameters. The Service Caller is acting as a

Consumer Implementation and uses the Service Requests to

invoke services.

From the service provider’s perspective, the process of

providing an implementation compliant with the concepts

introduced in Fig. 1 involves preparing a Semantic

Description of a service and its Provider Implementation

which maps to ServiceProfiles and the Service Callee.

Listing 1 presents a sample ontological Resource named

LightSource which represents a source of light. In uni-

versAAL, each Resource has its own specific properties

and unique URIs, which distinguish it from other Resour-

ces. In this particular case, two properties (color and

brightness) are provided and can be managed by some

other entities.

The Service Profile describes the functional capabilities

of a particular service (e.g., turning on the lights, closing

the doors etc.) and its relation to specific ontological

resources. Listing 2 presents a block of code that creates a

profile for turning off the light sources. Line 1 introduces a

class which is also described by Semantic concepts and

represents the Lighting resource (an ontological service

which handles light sources). Line 2 defines the URI which

will be used to obtain the resource passed as input. In line

4, an object representation of our profile is created. Line 5

says that this service operation accepts an input parameter

of type LightSource, with multiplicity equal to 1, and is

accessible under a specified URI. Line 6 adds the

description of the effect which will take place following the

invocation of this operation. It says that the brightness of

the light source will be changed to 0 which means that it

will be turned off.

In the universAAL platform, all communication

between service providers and consumers depends on the

buses. The so-called buses are message-based components

that enable message exchange as well as exposure of ser-

vices to consumers. Exposing a service requires registering

Service Callee on the bus along with previously created

Service Profiles. This operation assures that the imple-

mented business logic will be invoked when consumer

requests match the registered Service Profiles.

At this point, the analysis of implementation is com-

pleted, being the provider’s responsibility (cf. Fig. 1). The

following steps are in the responsibility of the service

consumer.

The process of enabling service semantics from the

consumer’s perspective is similar to the provider’s task.

The consumer uses the previously designed semantic

concepts to perform two actions: express the Semantic

Expectation of the required services and develop the

Consumer Implementation which directly performs service

invocations.

As mentioned before, in the universAAL platform, the

Semantic Expectation is represented by a Service Request.

Listing 3 presents a block of code used for this purpose. In

line 3, an initial ServiceRequest is created specifying that it

will involve services capable of controlling light sources

(cf. line 1 of Listing 2). Lines 4–5 say that this request

should be handled only by services that have control over

the lamp at the given URI and provide the ability to change

its brightness property to 0.

Having defined the Semantic Expectations of the con-

sumer, it is possible to create the Consumer Implementa-

tion. The Service Caller component publishes the Service

Request to the bus where Match-making occurs. In this

process, the semantic information of requests is matched

Fig. 3 Mapping of universAAL platform components to abstract

semantic aspects of services

Listing 1 Java representation

of LightSource ontological

resource

Univ Access Inf Soc (2016) 15:85–99 91

123

with Service Profiles of registered services. If any Service

Profile matches the Service Request, then this request is

propagated to the Service Callee which registered the

profile. If there is more than one match, then all matched

callees receive the request. Having processed the request,

the Service Callee constructs a response (Service

Response) containing the invocation execution status and

any additional data, in accordance with the implemented

business logic. Each of these responses traverses through

the bus back to the consumer.

Both the consumer and provider actions according to

Fig. 1 have been presented in the context of the univers-

AAL platform. The described process involves only the

semantic description of a single operation, yet it still

remains complicated and error-prone. The following sec-

tion describes an approach that produces the same results

though in a much simpler way, exploiting the Methodology

presented in Sect. 3.

4.2 Realization of AAPI

This section presents the contribution of the paper in the

area of extending the universAAL Semantic Framework

which resulted in a tool called Annotation-based Semantic

Enrichment (AAPI).

As presented in Sect. 3, the Iterative Development

Methodology of Service Semantics defines four iterations.

Iteration A does not include any semantics therefore will

not be discussed further. In Iteration B, it is assumed that

AAPI provides features of the Ontology Placeholder

Annotations (F2) and Automatic generation of semantic

description and expectation (F3). Because the universAAL

platform is written completely in Java, the proposed con-

tribution takes into account only this programming lan-

guage. Therefore, enrichment of services with semantic

meta-data is realized with the use of Java annotations.

As can be seen in Listing 4, two annotations are directly

related to specifying service metadata. The @Univers-

AALService annotation is used as a placeholder for service-

specific properties such as its namespace and name.

Depending on the usage context (provider or consumer) of

the service interface, these are used either for registration

or lookup actions in the bus. It is also assumed that this

annotation serves as an indicator for AAPI to begin the

process of semantic enrichment for a particular service. If it

is not present, the service will not be enriched with

semantics. The @OntologyClasses annotation is used to

define domain ontology resources which will be used by

the service business logic and therefore need to be

dynamically registered by AAPI.

Listing 5 presents the annotations which can be used for

each method of the business interface. Similiarly to the

@UniversAALService, the @ServiceOperation indicates

that this method should be enriched with semantics. The

only parameter of this annotation is the value which

specifies a unique name of the operations exposed by the

service. There are three more annotations which are used in

the process of semantic enrichment: @Input, @Output, and

@ChangeEffect. The @Input annotation specifies that a

particular parameter has semantic meaning and is acces-

sible under inputParameterName. The@Output annotation

has a similar meaning but in the context of invocation

results. In the presented example, some results of method

invocation are accessible under the name specified by

outputParameterName. The final annotation, @ChangeEf-

fect, is used to define the semantic effect of the execution

of a given method. In the present case, it states that exe-

cution changes the value of some resource (specified by the

propertyPaths value) to 0.

Once the process of annotating the service interface and

adapting its business logic to semantic interfaces

Listing 2 Code which performs

service profile creation

Listing 3 Code creating the

service request

92 Univ Access Inf Soc (2016) 15:85–99

123

concludes, Iteration B is nearly finished. Information pro-

vided by annotations is used by the AAPI in the process of

generating semantic descriptions and expectations (F3).

During the process of registering a Provider Implementa-

tion which implements the specified business interface, the

following actions occur:

• AAPI checks whether the registered service imple-

ments an interface which contains @UniversAALSer-

vice. If so, then:

• for each interface method annotated with @Ser-

viceOperation, a dedicated Service Profile is

generated;

• each Service Profile is automatically enriched with

information on the basis of @Input, @Output, and

@ChangeEffect annotations resulting in functional-

ity presented in Listing 2.

• AAPI generates a Service Callee, enriches it with

service-specific properties from @UniversAALService

and OntologyClasses and registers it on the bus with

previously created Service Profiles.

The provided business interface can also be used in the

process of developing a Consumer Implementation. It can

be passed to the AAPI lookup process which returns a

proxy implementing the specified interface. When the

consumer invokes a method of such a proxy, AAPI gen-

erates a proper Service Request using the information

provided in interface annotations, and passes it to the bus.

The resulting code corresponds to Listing 3.

The described process completes Iteration B. If no errors

are identified at this stage, Iteration C may commence.

Listing 6 presents a sample block of code of the

LightingService interface with full semantic information.

For the purpose of this example, it was necessary to modify

several annotations:

• @OntologyClasses were provided with names of

ontology resources used by the service;

• @Input, @Output, and @ChangeEffect annotations

were enriched with propertyPaths parameters;

• interface method arguments and return values now refer

to specific ontological resources.

Such annotated interface can be used to test semantic

validity and verify that the application works as expected.

During the final iteration (Iteration D), it might turn out

that some of the ontology resources or business methods

are not needed on the consumer side. In such a case, the

business interface provided on the consumer side should be

abridged, i.e., the list of resources specified in the @On-

tologyClasses annotation might be trimmed or particular

methods deleted. This approach simplifies the Consumer

Implementation; however, it does not alter the functional

aspects of the consumed service. Furthermore, with the use

of AAPI for semantic enrichment, one can easily change

the Provider Implementation of the business logic while no

changes have to be introduced in other parts of code (on

either the consumer’s or provider’s side).

5 Evaluation

This section presents a specific case implementing the

proposed solution. The use case focuses on providing uni-

versal access to elderly or otherwise impaired persons. The

application of the methodology presented in Sect. 3 is

thoroughly described. Each of the iterations is analyzed in

detail, highlighting the contribution of the paper. The final

part of this section contains a discussion of achieved results.

5.1 Case study

The presented case study involves an airport support sys-

tem for elderly and impaired travelers. The example

focuses on communication between services deployed in

the airport wireless network and mobile devices carried by

travelers. The service is called AirportLocalizer and helps

people reach their intended destinations.

The methods of the service are shown in Listing 7. The

assisted person can ask for precise directions that he/she

has to take in order to get to his/her flight, depending on the

Listing 4 Service properties

and ontology resource

annotations

Listing 5 Service method

annotations

Univ Access Inf Soc (2016) 15:85–99 93

123

current location and type of impairment (getDirec-

tions() method). Different implementations of the ser-

vice could be installed in the airport’s infrastructure, each

covering a different type of disability. For example, a blind

person can obtain directions in the form of instructions read

aloud by the mobile device; a person with visual impair-

ment will be directed along routes equipped with Braille

inscriptions and tactile pavings; a wheelchair-bound trav-

eler will be directed to elevators rather than staircases, etc.

Apart from obtaining directions, the service client may also

request the system to call a nearby elevator (methods

getElevatorNearby() and callElevator())—

in this way, people with serious handicaps do not need to

push a call button (which might be invisible or unreachable

for them).

5.2 Iterative development methodology execution

The service is implemented in accordance with the Iterative

Development Methodology, using the universAAL frame-

work extended with AAPI. The following section explains

what tasks are undertaken during each iteration. Both

providers and consumers differ with respect to the types of

targeted handicaps (e.g., directions read by a text-to-speech

module or a map displayed on the device screen; avoiding

stairs etc.) As a proof of concept, one specific implemen-

tation is assumed in iterations A–C (its specific type is

irrelevant for evaluation purposes).

Iteration A focuses on creating proper business logic.

First, an interface of the service is developed in line with

the expected business process. In this case, the interface

from Listing 7 is used and two implementations created.

On the provider’s side the implementation includes the

following:

• algorithms to determine the best route, starting from the

caller’s current location, to the given destination,

depending on the caller’s impairment (get-Direc-

tions() method);

• choosing the next elevator along the current route

(getElevatorNearby()); and

• controlling the state of the elevator upon client request

(callElevator()).

Listing 6 Lighting interface

containing full semantical

information

94 Univ Access Inf Soc (2016) 15:85–99

123

On the consumer’s side, the following implementations

have to be provided:

• presenting directions which suit the user’s impairment

type (getDirections());

• retrieving information describing the target location

(not related to this service);

• discovering the nearest elevator (getElevator-

Nearby());

• when approaching the elevator, sending a call request

(callElevator()).

Finally, by using the framework’s dependency injection

mechanisms, the service instance can be injected into

consumer code. This allows the business logic to be exe-

cuted and thus properly tested. At this point, it is assumed

that the business logic has been approved.

Iteration B adds a minimal amount of semantics into

the created interface. First, Ontology Concept Placeholders

have to be identified and annotated. The following ele-

ments have to be defined (by adding annotations provided

with the framework to certain elements of the service

interface):

• name and namespace (@UniversAALService

annotation);

• ontology class names (@OntologyClasses)—for

now these classes are merely mockups of the actual

ontology that will be created in the next iteration;

• service methods (@ServiceOperation);

• input and output parameters, together with their names

(@Input and @Output).

Once this step is complete, Service Description and Service

Expectation are automatically generated by the framework.

During this process, the service is automatically configured

to be exposed in the AAL platform. The system also gen-

erates a consumer’s invocation, capable of finding the

service, wrapping the call into a request, sending it over the

platform and unwrapping the received response. Finally,

the generated implementations are deployed in the platform

and tested again. The Match-making process can now be

invoked for the first time.

Iteration C covers the ontology development and plugs

it into the service. All Semantic Concepts of the Airport-

Ontology are created at this point (this includes all the

routes that passengers can take to their flights, information

on which routes can be taken by travelers depending on

their impairments, elevators and their possible states,

location in the airport area) As this paper does not cover

ontology definition, the process will not be discussed in

detail. Having created the ontology, the placeholders in the

interface can be linked to the relevant Concepts (the

@ChangeEffect annotation, propertyPaths and

filteringClass parameters are added to the interface).

The final form of the annotated interface is presented in

Listing 8. Lastly, the ontology, along with the provider’s

and the consumer’s generated code, is deployed in the

platform. The semantically complete Match-making pro-

cess can now be executed and tested.

Iteration D deals with creating different Service

Expectations and Descriptions. One additional implemen-

tation of the provider and consumer code, targeting a dif-

ferent type of disability, is created. Iterations A–C are

repeated using a different business logic and a single dif-

fering annotation.1

The development phase of the AirportLocalizer service

concludes with the end of Iteration D.

5.3 Discussion

Having the service development process completed, a

summary and evaluation of the contribution and compari-

son with status quo solutions can be performed. The input

of the development process included:

• a specific use case involving a service which can be

deployed at an airport to support the elderly and

impaired people;

• the universAAL framework designed to provide an

efficient platform for designing, developing and

deploying ready-to-use services within an existing

infrastructure.

As the paper’s contribution, the presented environment was

enriched to add value to the development process in order

to facilitate universal access provisioning. This enrichment

covers the following elements:

Listing 7 Bare service

interface

1 The propertyPaths parameter has Airport.MOVE-
MENT_IMPAIRMENT instead of Airport.BLIND_IMPAIRMENT
in @Output annotation of the getDirections() method

because the semantics of that method change according to the

impairment type.

Univ Access Inf Soc (2016) 15:85–99 95

123

• the Iterative Development Methodology presented in

Sect. 3;

• AAPI presented in Sect. 4.

Based on the enriched environment, a service supporting

universal access was created. Two differing implementa-

tions were provided, targeting different types of disability.

Both the provider’s and the consumer’s side were linked

with a common ontology and synchronized with each

other, ensuring seamless communication.

The most important advantage of the proposed solution

is the division of work into four distinct iterations, making

it easier for the developer to handle this otherwise complex

and error-prone task. Such incremental development also

enables progressive validation of results. Simple mistakes

can be easily diagnosed and their causes eliminated.

Moreover, the proposed methodology introduces clear

separation of concerns. Tasks concerning business logic,

ontology modeling and development work on the pro-

vider’s and the consumer’s side remain separate.

Another advantage is the fact that during the develop-

ment process, the provider’s and the consumer’s code

remain fully synchronized. Implementation of the ontology

is easily shared and simultaneously distributed to both

sides. This ensures code compatibility and mitigates per-

nicious programming errors. AAPI delivers these advan-

tages in a fully automatic way, enabling the developer to

focus on creating error-free code.

The final advantage worth mentioning is that the burden

of creating many boilerplate code segments is lifted from

the developer. AAPI takes care of automatic code gener-

ation, guaranteeing its syntactical and semantical correct-

ness. The amount of code created by the developer using

the proposed solution was compared to a scenario without

AAPI. The results are shown in Table 1.

Listing 8 Fully annotated

service interface

96 Univ Access Inf Soc (2016) 15:85–99

123

Regardless of the benefits mentioned above, one draw-

back of the proposed approach must be acknowledged.

Iteration D involves steps similar to iterations A–C,

focusing on a different implementation. A mechanism

which would synchronize this process and handle large

numbers of parallel implementations of the same service

would be a significant improvement.

In addition to the discussion presented in this paper, a

real-life evaluation of the proposed approach was under-

taken. AAPI was contributed directly to the universAAL

project and met with very positive reception from the

developers’ community.2 Unfortunately, this is not evi-

denced by any citeable scientific document.

Taking the above into consideration, AAPI is a highly

promising solution. The approach represented by the AAL

environment have thus far lacked appropriate tooling sup-

port. The system presented in this paper remedies this

situation.

6 Conclusions and future work

Several conclusions can be drawn on the basis of the pre-

sented study. The proposed Iterative Development Meth-

odology of Service Semantics tackles the inherent

complexity of the development process. Each development

task, such as implementation of business logic or ontology

modeling, is enclosed in a separate iteration. Results of

each iteration are directly deployable and testable, which

reduces the risk of errors. The features identified by the

Methodology could be perceived as a recipe for a simple

and user-friendly Semantic Framework. They free the

developer from having to manually develop and maintain

Service Descriptions and Service Expectations. They also

automate extensive parts of consumer’s and provider’s

implementations.

In order to assess the novelty of the presented work, the

AAL platforms presented in Sect. 2 were analyzed in the

context of the features expected by the proposed Iterative

Development Methodology. Table 2 contains the summary

of the support for these features provided by the reviewed

platforms. The feature fulfillment is marked with (1)

‘‘þ’’—when a feature is fully supported; (2) ‘‘�’’—when a

feature is not supported; or (3) ‘‘þ=�’’—when a feature is

supported partially. The cases of full and partial feature

support are now elaborated.

The SOPRANO platform provides its middleware

components exposed via well defined APIs, though does

not let developers describe services semantically in a

declarative manner, e.g., with annotations (F4). The

Composer component of the SOPRANO platform performs

match-making between service instance and abstract

semantic description. Thanks to that, feature F6 is fully

supported. The OASIS project provides the mechanisms

for tagging the business services with semantic informa-

tion. The mechanism involves mapping specific web-ser-

vices operations to the ontologies stored in repositories.3

Such approach allows for achieving complete support for

feature F2. The need for the development of an additional

layer in the form of web-services which are well isolated

from specific business logic but contain semantic infor-

mation enables full support for F6.

Regarding the MonAMI approach, F2 is partially sup-

ported by introducing a two-level mapping: services to

functions and functions to devices (sensors/actuators) [12].

Having this, the independence between Service Expecta-

tion and the Description at the development time (F6)

could also be achieved. In the PERSONA and universAAL

projects, the F4 and F6 features are partially supported

(both projects present the same fulfillment of the features

because PERSONA was the input project on which uni-

versAAL was heavily based)—the functionalities are

implemented though are not usable in a straightforward

manner. Developers are unable to specify the semantics

declaratively and a significant amount of boiler-plate code

still needs to be written manually, which can lead to hard to

diagnose run-time errors.

The feature of Dependency Injection is fully supported

in almost all analyzed projects. All projects, beside OASIS,

are based on the OSGi technology which provides a

capability of Declarative Services and, starting from ver-

sion 4.2 of OSGi specification [28], the Blueprint Con-

tainer. Both capabilities allow for the realization of the

Dependency Injection pattern. In the case of the OASIS

project, there are mechanisms that partially support the

feature of Dependency Injection. It is realized not by

means of injecting dependencies in the business logic, but

injecting the services necessary for given application on the

basis of ontological description. The whole process is

Table 1 Comparison of the amount of code created by the developer

using different approaches

Standard

approach

Proposed

approach

Lines of code *380 *150

Number of classes containing

semantic information

3 1

2 Documentation of AAPI is provided on the following site http://

forge.universaal.org/wiki/support:RD_Core_AAPI In order to access

it a registration of a free account is needed.

3 The mapping is performed with the use of Content Anchoring and

Alignment Tool.

Univ Access Inf Soc (2016) 15:85–99 97

123

http://forge.universaal.org/wiki/support:RD_Core_AAPI
http://forge.universaal.org/wiki/support:RD_Core_AAPI

realized in an automated way by an internal component

called AMI Framework.

The analysis of the reviewed AAL platforms in the

context of features expected by Iterative Development

Methodology shows that the support for these features was

not extensively provided. Therefore, none of the platforms

allows for direct realization of the proposed Methodology.

In particular, features related to automatic enrichment (F5)

and code generation (F3) specific for the given Semantic

Descriptions and Expectations (which significantly simpli-

fies the development process of services semantics) are not

supported by the current AAL platforms. Moreover, it is

apparent that the separation between semantics and the

business logic (F2, F4) is not handled properly in most of

the projects where those two elements are tightly coupled

with each other. The conclusions resulting from the AAL

platforms analysis ensure that the proposed approach for

seamless semantic service enrichment is a novel concept.

The proposed Methodology aids the development of service

semantics to the extent which was not achievable before.

The applicability of the proposed Methodology has been

verified using a fully featured implementation—the

Annotation-based Semantic Enrichment (AAPI)—an

extension of the universAAL platform Semantic Frame-

work. Evaluation performed using a sample scenario rela-

ted to accessibility support shows that the development of

semantics becomes simpler and less error-prone compared

to existing tools. Additional good feedback from the uni-

versAAL community strengthens these evaluation results.

Taking all of the above into consideration, it can be said

that the proposed Methodology and AAPI directly enhance

the potential of the universAAL platform and increase its

chances for gaining broad acceptance on the AAL market.

Although the presented Methodology was implemented

for universAAL, this is just one of its possible realizations.

The Methodology is founded on abstract semantic aspects,

common to many different AAL platforms. Thus, it can

conceivably be reimplemented for other AAL platforms.

Current work on the Methodology and AAPI focuses on

service interactions. In the context of future work, the

authors would like to extend proposed solutions with

asynchronous event-oriented interactions and with inter-

actions focusing strictly on the user interface layer. Espe-

cially the latter improvement would allow for addressing

recent challenges of universal access [20] and therefore

increasing the extent to which the solutions proposed

support the developer in the implementation and mainte-

nance of truly accessible applications.

Acknowledgments The research presented in this paper was par-

tially supported by the Polish Ministry of Science and Higher Edu-

cation grants no. 15.11.120.264, 15.11.120.268 and also by the

European Community’s Seventh Framework Programme (FP7/2007-

2013) under grant agreement no. 247950.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

1. Ambient Assisted Living Strategic Research Agenda (2010).

http://www.aaliance.eu/

2. Emiliani, P.L., Stephanidis, C.: Universal access to ambient

intelligence environments: opportunities and challenges for peo-

ple with disabilities. IBM Syst. J. 44(3), 605–619 (2005). doi:10.

1147/sj.443.0605

3. Fagerberg, G., Kung, A., Wichert, R., Tazari, M.R., Jean-Bart, B.,

Bauer, G., Zimmermann, G., Furfari, F., Potortı̀, F., Chessa, S.,

Hellenschmidt, M., Gorman, J., Alexandersson, J., Bund, J.,

Carrasco, E., Epelde, G., Klima, M., Urdaneta, E., Vanderheiden,

G., Zinnikus, I.: Platforms for AAL applications. Proceedings of

the 5th European conference on Smart sensing and context. Eu-

roSSC’10, pp. 177–201. Springer, Berlin (2010)

4. Fides-Valero, A., Freddi, M., Furfari, F., Tazari, M.R.: The per-

sona framework for supporting context-awareness in open dis-

tributed systems. Proceedings of the European Conference on

ambient intelligence. Am I ’08, pp. 91–108. Springer, Berlin,

(2008)

5. Hanke, S., Mayer, C., Hoeftberger, O., Boos, H., Wichert, R.,

Tazari, M.R., Wolf, P., Furfari, F.: Universaal an open and

consolidated aal platform. In: Wichert, R., Eberhardt, B. (eds.)

Ambient Assisted Living, pp. 127–140. Springer, Berlin (2011)

6. I2Home IST project. http://www.i2home.org

7. ICT & Aging—European study on users, markets and technolo-

gies. Tech. Rep., empirica and WRC on behalf of the European

Commission, Directorate General for Information Society and

Media (2010). http://www.ict-ageing.eu/

8. Karim, S., Latif, K., Tjoa, A.M.: Providing universal accessibility

using connecting ontologies: a holistic approach. In: Proceedings

of the 4th international conference on Universal access in

human–computer interaction: applications and services (2007)

9. Karim, S., Tjoa, A.M.: Towards the use of ontologies for

improving user interaction for people with special needs. In:

ICCHP, Lecture notes in computer science. Springer (2006)

Table 2 Summary of the support for the features of iterative devel-

opment methodology provided by different AAL platforms

F1 F2 F3 F4 F5 F6

SOPRANO [11, 33] ? - - ± - ?

OASIS [10] ± ? - - - ?

MonAMI [13, 15] ? ± - - - ±

PERSONA [4, 27] ? - - ± - ±

universAAL [5] ? - - ± - ±

F1—Dependency injection

F2— Ontology placeholder annotation

F3—Automatic generation of service description and expectation

F4— Complete ontology annotations

F5—Automatic enriching description, expectation with semantics

F6 —Independence between declarative service expectation and the

description at the development time

98 Univ Access Inf Soc (2016) 15:85–99

123

http://www.aaliance.eu/
http://dx.doi.org/10.1147/sj.443.0605
http://dx.doi.org/10.1147/sj.443.0605
http://www.i2home.org
http://www.ict-ageing.eu/

10. Kehagias, D.D., Tzovaras, D., Mavridou, E., Kalogirou, K.,

Becker, M.: Implementing an open reference architecture based

on web service mining for the integration of distributed appli-

cations and multi-agent systems. In: Proceedings of the 6th

international conference on agents and data mining interaction,

ADMI’10, pp. 162–177. Springer, Berlin (2010). http://dl.acm.

org/citation.cfm?id=1880493.1880511

11. Klein, M., Schmidt, A., Lauer, R.: Ontology-centred design of an

ambient middleware for assisted living: the case of SOPRANO.

In: Kirste, T., Knig-Ries, B., Salomon, R. (eds.) Towards ambient

intelligence: methods for cooperating ensembles in ubiquitous

environments (AIM-CU), 30th Annual German Conference on

artificial intelligence (KI 2007), Osnabrck, (2007)

12. Kung, A., Fagerberg, G.: Alliance for an AAL open service

platform. In: AALIANCE conference—Malaga, Spain (2010)

13. Kung, A., Jean-Bart, B.: Making aal platforms a reality. Pro-

ceedings of the first international joint conference on ambient

intelligence. Am I’10, pp. 187–196. Springer, Berlin (2010)

14. Leitner, M., Subasi, O., Höller, N., Geven, A., Tscheligi, M.:

User requirement analysis for a railway ticketing portal with

emphasis on semantic accessibility for older users. In: Proceed-

ings of the 2009 international cross-disciplinary conference on

web accessibililty (W4A), W4A ’09, pp. 114–122. ACM, New

York (2009). doi:10.1145/1535654.1535683

15. Marco, l., Casas, R., Bauer, G., Marn, R.B., Asensio, N., Jean-

Bart, B., Ibane, M.: Common OSGi interface for ambient assisted

living scenarios. In: Gottfried, B., Aghajan, H.K. (eds.) BMI

Book, Ambient Intelligence and Smart Environments, vol. 3,

pp. 336–357. IOS Press (2009)

16. Marinc, A., Stockloew, C., Tazari, M.R.: 3d interaction in aal

environments based on ontologies. In: Ambient Assisted Living,

pp. 289–302. SpringerLink (2012)

17. Minon, R., Aizpurua, A., Cearreta, I., Garay, N., Abascal, J.:

Ontology-driven adaptive accessible interfaces in the inredis

project. In: Int. Workshop on Architectures and Building Blocks

of Web-Based User-Adaptive Systems (2010)

18. MonAMI IST project. http://www.monami.info

19. MPower IST project. http://www.sintef.no/Projectweb/MPOWER

20. Newell, A.F., Gregor, P.: User sensitive inclusive design in

search of a new paradigm. Proceedings on the 2000 conference

on Universal Usability. CUU ’00, pp. 39–44. ACM, New York,

NY, USA (2000)

21. Oasis IST project. http://www.oasis-project.eu

22. Persona, IST project. http://www.aal-persona.org

23. Pöttner, W.B., Wolf, L.: Ieee 802.15.4 packet analysis with

wireshark and off-the-shelf hardware. In: Proceedings of the

Seventh International Conference on Networked Sensing Systems

(INSS2010). Kassel, Germany (2010)

24. Prasanna, D.R.: Dependency Injection, 1st edn. Manning Publi-

cations Co., Greenwich, CT, USA (2009)

25. Signore, D.O.: Ontology driven access to museum information

(2005)

26. Soprano, IST project. http://www.soprano-ip.org

27. Tazari, M.R.: Using queries for semantic-based service utiliza-

tion. In: Proceedings of CEUR Workshop (2009)

28. The OSGi Alliance: OSGi Service Platform Compendium Spec-

ification —Release 4, Version 4.2 (2009)

29. The OSGi Alliance: OSGi Service Platform Core Specification—

Release 4, Version 4.2 (2009)

30. UniversAAL IST project. http://www.universaal.org/

31. Van Den Broek, G., Cavallo, F., Wehrmann, C.: AALIANCE

Ambient Assisted Living Roadmap. IOS Press, Amsterdam (2010)

32. Wichert, R.: Configuration and Dynamic Adaptation of AAL

Environments to Personal Requirements and Medical Conditions.

Proceedings of the 5th international on conference universal

access in human–computer interaction. Part II: Intelligent and

ubiquitous interaction environments, UAHCI ’09, pp. 267–276.

Springer, Berlin (2009)

33. Wolf, P., Schmidt, A., Klein, M.: SOPRANO—An extensible,

open AAL platform for elderly people based on semantical

contracts. In: 3rd Workshop on Artificial Intelligence Techniques

for Ambient Intelligence (AITAm I08), Patras, Greece (2008)

34. Wolf, P., Schmidt, A., Otte, J.P., Klein, M., Rollwage, S., Knig-

Ries, B., Dettborn, T., Gabdulkhakova, A.: Openaal—the open

source middleware for ambient-assisted living (aal). In: AA-

LIANCE conference, Malaga, Spain, March 11–12, (2010)

Univ Access Inf Soc (2016) 15:85–99 99

123

http://dl.acm.org/citation.cfm?id=1880493.1880511
http://dl.acm.org/citation.cfm?id=1880493.1880511
http://dx.doi.org/10.1145/1535654.1535683
http://www.monami.info
http://www.sintef.no/Projectweb/MPOWER
http://www.oasis-project.eu
http://www.aal-persona.org
http://www.soprano-ip.org
http://www.universaal.org/

	Seamless semantic enrichment of services in assistive environments
	Abstract
	Introduction
	Related work
	Iterative development methodology of service semantics
	Motivation
	Methodology

	Annotation-based semantic enrichment
	UniversAAL semantic framework
	Realization of AAPI

	Evaluation
	Case study
	Iterative development methodology execution
	Discussion

	Conclusions and future work
	Acknowledgments
	References

