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Abstract
Statistical modelling of a spatial point pattern often begins by testing the hypoth-
esis of spatial randomness. Classical tests are based on quadrat counts and distance-
based methods. Alternatively, we propose a new statistical test of spatial random-
ness based on the fractal dimension, calculated through the box-counting method 
providing an inferential perspective contrary to the more often descriptive use of 
this method. We also develop a graphical test based on the log–log plot to calculate 
the box-counting dimension. We evaluate the performance of our methodology by 
conducting a simulation study and analysing a COVID-19 dataset. The results rein-
force the good performance of the method that arises as an alternative to the more 
classical distances-based strategies.

Keywords  Box-counting dimension · Complete spatial randomness Fractal 
dimension · Poisson distribution · Spatial point patterns

1  Introduction

Spatial statistics is the branch of statistics that deals with the modelling of reali-
sations of spatially indexed stochastic processes (Schabenberger and Gotway, 
2017). This field covers three acknowledged areas: geostatistics, areal data, and 
spatial point patterns (Cressie, 1991). The last one concerns the analysis of the 
spatial distribution of locations of events such as earthquakes, landslides or forest 
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fires (Baddeley et  al., 2013). Other examples are patterns of towns in a region, 
trees in a forest or galaxies in space (Ripley, 1977). In all these cases, the rela-
tive position of points is compared with clustered, random, or regular generating 
processes (Bivand et al., 2013). For a theoretical review on spatial point patterns, 
the reader is referred to Daley and Vere-Jones (2008), Diggle (2013), Illian et al. 
(2008), and Møller and Waagepetersen (2004). A more practical overview can be 
found in Baddeley et al. (2015) and Gaetan and Guyon (2010). The implementa-
tion of methods and models to analyse point patterns with R software R Core 
Team (2020) is described in Baddeley et al. (2015), Bivand et al. (2013) and Plant 
(2012). The theory of spatial point patterns is an active research field with chal-
lenging theoretical problems and applications in a broad range of sciences such 
as agriculture, astronomy, biology, climatology, ecology, epidemiology, geology, 
among many others (Baddeley et al., 2006).

Complete spatial randomness (CSR) describes a point process whereby point 
events occur within a given study area in a completely random fashion. It is synony-
mous with a homogeneous spatial Poisson process. Usually, the first step in analys-
ing a spatial point pattern is to test for CSR. If the hypothesis is not rejected, one can 
assume that the given point pattern is random, and we refer to it as a homogeneous 
Poisson point pattern (Illian et  al., 2008). Generally, for this purpose, some tests 
based on quadrat counts and distances between locations of events are used (Baner-
jee et al., 2015).

There are indeed several distance-based functions that are often used in test-
ing for CSR (Diggle, 2013). As widely used tools, we have the distribution of dis-
tances from an event to its nearest neighbour (function G), the distribution of dis-
tances from an arbitrary point of the plane to its nearest neighbour (F), the function 
J (calculated in terms of F and G), and the number of events encountered up to a 
given distance of any particular event (Ripley’s K function) (Baddeley et al., 2013). 
However, these functions are only known under a few theoretical models and are 
mathematically unknown for many other types of spatial dependence. As functions 
that depend on distances, we have to choose a particular metric. The usual one is 
the Euclidean distance, but these functions have to be adapted when this distance 
is not realistic. These ones are highly time-consuming when the number of points 
increases. With the current technologies, we have point patterns with thousands 
of events, and it is often the case that we cannot calculate the K-function, say. All 
these sorts of drawbacks motivate our proposal for testing the hypothesis of CSR. 
Specifically, we propose a new alternative computationally efficient for testing this 
hypothesis of CSR, which is based on calculating the fractal dimension (Wiegand 
and Moloney, 2013) utilizing the box-counting method (Foroutan-pour et al., 1999). 
Several authors have used box-counting and the spectrum of generalised dimensions 
to analyse point patterns (see for example Salvadori et al. 1997; Tuia and Kanevski 
2008, and Vega et al. 2015). However, all these contributions use this tool from a 
descriptive point of view. One intuitive advantage of the methodology considered 
here is that the statistic defined can summarise the information of the spatial point 
pattern in only one value. Also, since it does not depend on distances, it is not neces-
sary to consider the edge effect. This makes computation more straightforward and 
much faster than the classical tests.
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The notion of a fractal dimension was introduced by Mandelbrot (1967) who 
used it as an indicator of surface roughness. A shape with a higher fractal dimen-
sion is rougher than one with a lower dimension. Many methods exist for estimating 
the fractal dimension. Box-counting, R/S analysis and the variation method can be 
used for this purpose (Breslin and Belward, 1999). Fractal dimension and its estima-
tion using the box-counting method have been used in different fields of statistics. 
We can find contributions, among other statistical contexts, in time series analysis 
(Kopytov et  al., 2016), clustering analysis (Bones et  al., 2016), principal compo-
nents analysis (Mo and Huang, 2010) and geostatistics (Vidal et al., 2010). As men-
tioned before, we show how these concepts can be used in point pattern analysis 
from an inferential perspective. We then develop our test based on the box-counting 
dimension of a spatial point pattern. We also propose a graphical test in the line of 
the classical graphical tests based on G, F or K functions. We evaluate the perfor-
mance of our methodology by conducting a simulation study through three known 
spatial structures that can be generated using the library spatstat (Baddeley et  al., 
2015) in R (R Core Team, 2020). In all cases, the results are consistent with those 
found by using the functions G, F and Ripley’s K (Diggle, 2003).

The paper is organised as follows. Section 2 introduces the box-counting meth-
odology. Section 3 presents the proposed test, an illustration through simulated and 
real data, and a power study. Section  4 describes a graphical approach to test for 
CSR (also based on the box-counting dimension). Section5 shows an application of 
the method to a real data set of COVID-19 cases in Cali, Colombia. The article ends 
with a brief discussion and suggestions for further research.

2 � Box‑counting estimation of the fractal dimension for spatial point 
patterns under CSR

The hypothesis of CSR for a spatial point pattern asserts that the number of events 
in any region follows a Poisson distribution with a given mean count per uniform 
subdivision. The events of a pattern are independently and uniformly distributed 
over space. In other words, the events are equally likely to occur anywhere and do 
not interact with each other. Here, we use uniform in the sense of following a uni-
form probability distribution across the study region, not in the sense of “evenly” 
dispersed across the study region. There are no interactions amongst the events, as 
the intensity of events does not vary over the plane. Thus, the independence assump-
tion would be violated if the existence of one event either encouraged or inhibited 
the occurrence of other events in the neighbourhood. In this sense, CSR acts as a 
benchmark hypothesis to distinguish between randomness and clustering or regular-
ity due to some form of interaction.

A fractal is a non-regular geometric shape with the same degree of non-regularity 
at all scales. It can be treated as a self-similar structure in the sense that even an 
indefinitely small part of a shape is geometrically similar to the whole (Debnath, 
2006). The fractal dimension is a ratio providing a statistical index of complexity 
comparing how the details in a pattern change with the scale at which they are meas-
ured (Falconer, 2004). The dimension of self-similar fractals is given by
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where M is the number of self-similar pieces, and � is a scale factor, such that 
M�Ds = 1 . In Eq. (1) log corresponds to the logarithm to the base 10. We use this 
same notation throughout the paper to be consistent with the related published liter-
ature. The use of Ds in Eq. (1) is quite limited in practice. An alternative is using the 
box-counting method (Liebovitch and Toth, 1989). Suppose the object of interest is 
covered with a number Γ(�) of non-overlapping squares with sides of length � . The 
box-counting estimation of the fractal dimension (hereinafter box-counting dimen-
sion) is given by (Addison, 1997)

In practice, D in (2) is calculated as the slope of a linear regression between 
log(Γ(�)) and log

(
1

�

)
 . Given a number of �i values ( i = 1, 2, 3,… ), D is defined by 

means of the linear model (see Addison (1997)).

2.1 � Expected value of D under CSR

We now show how the box-counting dimension given in (3) can be adapted to 
the context of spatial point patterns and can be used to test the hypothesis of 
CSR. Under CSR, we have that the number of events in a square A, with area |A| 
and sides of length k (without loss of generality, we can take k = 1 ), is Poisson 
distributed with mean �|A| , where � is the constant intensity of the point process; 
that is, the probability function of the number of events in A is

From (4), we have

Assume the original square A is divided into �i non-overlapping squares 
Aj, j = 1,… , �i with sides of length �i =

1

i
, i = 1, 2, 3, ... (see Fig. 1).

Then, denoting �i = i2 , we have

(1)Ds =
log(M)

log
(

1

�

) ,

(2)D = lim
�→ 0

log(Γ(�))

log
(
1

�

) .

(3)log(Γ(�i)) = Dlog

(
1

�i

)
.

(4)P(N(A) = x) =
exp−�|A|(�|A|)x

x!
, x = 0, 1, 2,… .

P(N(A) > 0) = (1 − P(N(A) = 0)) = 1 −
exp−𝜆|A|(𝜆|A|)0

0!
= 1 − exp−𝜆|A|.
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Under the CSR condition, �(N(A)) = �|A| = � , the mean of a homogeneous Poisson 
process. From Eq. (5)

and consequently

Define the random variable Γ(�i), i = 1, 2,… , as the number of squares of 
side �i containing at least one event, that is, Γ(�i) corresponds to the number of 
squares required to cover the point pattern (see Figs. 1 and 2). This variable can 
be defined as

The expected value of Γ(�i) in (6) is

Note that in order to define �(D) in (3), it is requiered to find �(log(Γ(�i))) . Using the 
first-order Taylor expansion of log 

(
Γ(�i)

)
 around �(Γ(�i)) , we have

Taking expectation in (3) and using (7), we have under CSR

(5)|A| = �i|Aj| = �i�
2
i
= 1.

� =
�

|A|
=

�

�i�
2
i

= �,

P(N(Aj) > 0) = 1 − exp−𝜆|Aj| = 1 − exp−𝜇𝛿
2
i .

(6)Γ(𝛿i) =

𝛽i∑

j=1

Zj, with Zj =

{
1 if N(Aj) > 0

0 other case
.

�
(
Γ(𝛿i)

)
=

𝛽i∑

j=1

�(Zj) = 𝛽i�(Zj) =
1

𝛿2
i

P(N(Aj) > 0) =
1

𝛿2
i

[
1 − exp−𝜇𝛿

2
i

]
.

(7)�
(
log

(
Γ(�i)

))
≈ log(�

[
Γ(�i)

]
) = log

(
1

�2
i

[
1 − exp−��

2
i

])
.

Fig. 1   The square A with sides 
of length 1 is divided into �3 = 9 
non-overlapping squares Aj with 
sides of length �3 =

1

3
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When � → ∞ in (8), we have

(8)

�
(
log

(
Γ(�i)

))
= �(D)log

(
1

�i

)

log

(
1

�2
i

[
1 − exp−��

2
i

])
= �(D)log

(
1

�i

)
.

log

(
1

𝛿2
i

)
= �(D)log

(
1

𝛿i

)

�(D) = 2, 𝛿i < 1.

(a) (b)

(c) (d)

Fig. 2   Graphical representation of �i , Γ(�i) , and �i = i2 (for i = 1,… , 4)
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In general, if A (Fig.  1) is a square with side length k ≠ 1 , assuming again that 
�|A| = � , we then have

Using again the first-order Taylor expansion of log 
(
Γ(�i)

)
 around �(Γ(�i)) , we have

Then, under CSR, the expected value of the fractal dimension for a square of side k 
calculated with the box-counting method is defined by the linear model

Note that �|A| = � in (10) is usually unknown. Based on just one realisation of a 
homogeneous Poisson process, we can then estimate � by n (the number of points of 
the observed point pattern) to estimate �(D) . Taking lim�→∞ in (10) we obtain

2.2 � log–log relationship

The functional relationship between �(log(Γ(�i))) and log
(

1

�i

)
 defined in Eq. (10) 

allows to characterise the behaviour of �(D) . �(log(Γ(�i)) depends on k (the side 
length of the original square) and on �(N(A)) = � (the expected number of events of 
the spatial point pattern in A). Given � , the shape of the curves does not change 
(Fig. 3). Note that the greater the value of k, the more the curve is shifted to the left. 
Likewise, given a fixed k, the effect of � is reflected on the maximum of 
�(log(Γ(�i))) . The greater � , the greater the value at which �(log(Γ(�i))) becomes 
constant (Fig. 4).

The minimum number of boxes required to cover the point pattern is obtained 
when i = 1 (initial square). In this case log

(
1

�1

)
= log

(
1

k

)
 . The ordinate for this 

𝛿i =
k

i
, 𝛽i =

(
k

𝛿i

)2

= i2, 𝜆 =
𝜇

k2
,

P(N(Aj) > 0) = 1 − exp−𝜆|Aj| = 1 − exp
−𝜇𝛿2

i

k2 ,

�
(
Γ(𝛿i)

)
=

(
k

𝛿i

)2

P(N(Ai) > 0) =

(
k

𝛿i

)2[
1 − exp

−𝜇𝛿2
i

k2

]
.

(9)�
(
log

(
Γ(�i)

))
≈ log

(
�(Γ(�i)

)
= log

((
k

�i

)2[
1 − exp

−��2
i

k2

])
.

(10)

�
(
log

(
Γ(�i)

))
= �(D)log

(
1

�i

)

log

((
k

�i

)2[
1 − exp

−��2
i

k2

])
= �(D)log

(
1

�i

)
.

(11)�(D) ≈

log
(

k

�i

)2

log
(

1

�i

) .
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value is �(log(Γ(�i))) = log(1 − exp−�) . On the other hand, the maximum number 
of partitions (corresponding to the minimum size of � ) is found when the expected 
number of events in Aj is �|Aj| = 1 . Under this scenario, we have

Fig. 3   Relation between �(log(Γ(�
i
))) and log 

(
1

�
i

)
 , i = 1, 2, 3,… , 100 , when the initial square has sides 

of length k (0.01, 0.1, 1, 10, 100) and the expected number of events is �|A| = � = 100 . Black points at 
each curve correspond to coordinates 

(
log

(
1

k

)
, log(1 − exp−�)

)
 and 

(
1

2
log(�) − log(k), log(�) − 0.199

)
 , 

respectively (see text for explanations on these values). The slopes of the dashed lines define �(D1) (see 
Eq. 15). At each case �(D1) = 1.80 . Black lines (slope 2) correspond to �(D1) = 2 (limit when � → ∞)

Fig. 4   Relation between �(log(Γ(�
i
))) and 

(
1

�
i

)
 , i = 1, 2, 3,… , 100 , according to the expected number of 

points of the pattern ( � ), when initial square has sides of length k = 1 . Black points at each curve corre-
sponds to coordinates 

(
log

(
1

k

)
, log(1 − exp−�)

)
 and 

(
1

2
log(�) − log(k), log(�) − 0.199

)
 , respectively 

(see text for explanations on these values). The slopes of the dashed lines define �(D1) (see Eq.  15). 
These are, respectively, 1.60 ( � = 10 ), 1.80 ( � = 100 ), 1.87 ( � = 1000 ) and 1.90 ( � = 10000 ). In gen-
eral when � → ∞ , �(D1) → 2 (black line)
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Replacing (12) into (10) with �|Aj| =
��2

i

k2
= 1 , we obtain

The log–log plots (Figs.  3 and 4) show a multifractal behaviour, i.e. the 
dependence between �

(
log

(
Γ(�i)

))
 and log

(
1

�i

)
 is non-linear. The box-counting 

dimension D in (3) is usually calculated with the portion of the data that allows to 
fit a linear model (see, for example, Kenkel, 2013; Mou and Wang, 2014; Vega 
et  al., 2015, and Jaquette and Schweinhart, 2013). This option might not be 
appropriate to discriminate between the different types of spatial point patterns. 
In this context, it is important to take into account the minimum and maximum 
values of the log–log curves. Thus, here, we propose to characterise the relation-
ship between �

(
log

(
Γ(�i)

))
 and log

(
1

�i

)
 in Eq. (10) with the slope of the straight 

line defined by the points 
[
min

(
log

(
1

�i

))
, min

(
�
(
log

(
Γ(�i)

)))]
 and [

max
(
log

(
1

�i

))
, max

(
�
(
log

(
Γ(�i)

)))]
 (see black points in Figs. 3 and 4), that is, 

the slope calculated with the coordinates

We denote this slope as �(D1) instead of �(D) to emphasise that we do not employ 
the traditional linear fitting used in box-counting estimation. Under CSR, we have

(12)

��Aj� =
��2

i

k2
= 1

�i =
k

√
�

log

�
1

�i

�
= log

�√
�

k

�

=
1

2
log(�) − log(k).

(13)

�
(
log

(
Γ(�i)

))
= 2log

(
k

�i

)
+ log

(
1 − exp−1

)

= 2log(k) + 2log

(
1

�i

)
− 0.199

= 2log(k) + 2
(
1

2
log(�) − log(k)

)
− 0.199

= log(�) − 0.199.

(14)

(x1, y1) =

(
log

(
1

�1

)
, log

((
k

�1

)2[
1 − exp

−��2
i

k2

]))
=

(
log

(
1

k

)
, log(1 − exp−�)

)
, and

(x2, y2) =
(
1

2
log(�) − log(k), log(�) − 0.199

)
.
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From Eq. (15), lim�→∞ �(D1) = 2 (see Fig. 4).

3 � CSR testing using the statistic �̂(D
1
)

In practice with real data, � in Eq. (15) is unknown. In this case in order to test for 
CSR, we can take 𝜇̂ = n with n the number of points of the observed pattern, namely 
we assume that N(A) ∼ Poisson(�|A| = n) . In this scenario, the expected value of D1 
under CSR is defined as

and its estimation is given by

where x1 , x̂2 , and ŷ1 are defined similarly as in (16), and ̂̂y2 is calculated from the 
scatter plot between log

(
Γ(�i)

)
 and log

(
1

�i

)
 . Specifically, ̂̂y2 is the ordinate corre-

sponding to the abscissa 
(

1

2
log(n) − log(k)

)
 , with k the side length of the square. In 

practice, some mathematical interpolation procedure (linear, polynomial, etc) can be 
required to calculate ̂̂y2 . By way of illustration, we show the results found with a 
simulation from N(A) ∼ Poisson(� = �|A| = 100) , |A| = 1 . Figure 5 shows the spa-
tial distribution of n=114 simulated events in the unit square, the number of events 
per cell for each one of the three partitions 

((
1

�i

)
, i = 5, 10, and 15

)
 , and the value 

of Γ(�i) at each case.
We observe that the smaller the size of the partition, the greater the number of 

boxes without events (the number of boxes with zeros). Calculating log
(

1

�i

)
 and 

log
(
Γ(�i)

)
 for i = 1,… , 20 , we obtain the log–log scatter plot (white circles) shown 

in Fig.  6. Its behaviour, as expected, is similar to the theoretical log–log curve (
log

(
1

�i

)
versus �(log(Γ(�i)))

)
 under CSR (red line). The black points in this plot 

are the coordinates used to calculate the expected box-counting dimension �̂(D1) 
under the null hypothesis (Eq. 16). In this case �̂(D1) = 1.806 . The intersection of 
the blue lines corresponds to the coordinate ( ̂x2, ̂̂y2 ) ( ̂̂y2 is found by linear 

(15)

�(D1) =
y2 − y1

x2 − x1
=

(log(�) − 0.199) − (log(1 − exp−�))
(

1

2
log(�) − log(k)

)
−

(
log

(
1

k

))

= 2
(log(�) − 0.199) − (log(1 − exp−�))

log(�)
.

(16)

�̂(D1) =
ŷ2 − ŷ1

x̂2 − x1
=

(log(n) − 0.199) − (log(1 − exp−n))
(

1

2
log(n) − log(k)

)
−

(
log

(
1

k

))

= 2
(log(n) − 0.199) − (log(1 − exp−n))

log(n)
.

(17)̂̂
�(D1) =

̂̂y2 − ŷ1

x̂2 − x1
,
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interpolation between the two nearest values), which is replaced in Eq. (17) to find 
the estimated box-counting dimension ( ̂̂�(D1) = 1.784 ). Generating m simulations 
from N(A) ∼ Poisson(n = �|A| = 114) and repeating the procedure above described, 
we can find m estimations under the null hypothesis of CSR. A value of ̂̂�(D1) at the 
extreme of the tail of the null distribution would indicate that the spatial randomness 
hypothesis should be rejected. Analogously, defining B = (�̂(D1) −

̂̂
�(D1)) we reject 

the randomness hypothesis if this value is at the extreme of the tail of the corre-
sponding null distribution. Using B may be preferable because in all cases (regard-
less of the type of pattern considered), the zero will be the reference value of the 

Fig. 5   Simulation size n = 114 of a spatial point pattern with N(A) ∼ Poisson(� = �|A| = 100) in 
a square of side k = 1 (top left). The numbers at each panel indicate how many events are falling into 
each box. Γ(�

i
) corresponds to the number of boxes with one or more events for 

(
1∕�

i
= 5

)
 (top right), (

1∕�
i
= 10

)
 (bottom left), and 

(
1∕�

i
= 15

)
 (bottom right), respectively
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centre of the distribution (see Fig. 7). This is illustrated in Sect. 3.1 with a simula-
tion study. The procedure to test for CSR based on �̂(D1) , 

̂̂
�(D1) , and B above 

described is summarised in Algorithm 1, where in addition to presenting in a sche-
matic way, the steps required to perform the spatial randomness test using the box-
counting method, it is shown how to estimate the corresponding p value. 

Fig. 6   Scatter plot (white circles) obtained from the pairs 
(
log

(
1

�
i

)
, log(Γ(�

i
)

)
 , i = 1,… , 20 , calculated 

with a simulation size n = 114 from N(A) ∼ Poisson(� = �|A| = 100) . The red line is the theoretical 
log–log curve 

(
log

(
1

�
i

)
versus �(log(Γ(�

i
)))

)
 under CSR (assuming N(A) ∼ Poisson(n = �|A| = 114) ). 

Black circles are the coordinates used to calculate the box-counting dimension ( ̂�(D1) ) under the null 
hypothesis (Eq. (16)). The intersection of the blue lines corresponds to the coordinate ( ̂x2, ̂̂y2 ) used to 
obtain the estimated box-counting dimension ( ̂̂�(D1))(Eq. (17)). ̂̂y2 is calculated by linear interpolation of 
the two nearest points 

(
log

(
1

�10

)
, log

(
Γ(�10)

))
 and 

(
log

(
1

�11

)
, log

(
Γ(�11)

))
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3.1 � An illustration of the test

As an initial review of the goodness of fit of the test proposed in Sect. 3, we present 
the results of a Monte Carlo simulation study to describe the test behaviour under 
the three types of points structures generally considered in point pattern analysis. 

Fig. 7   Simulated point patterns under spatial randomness (top left), clustering (centre left) and point pat-
tern cells (bottom left). The number of events is n = 42 in all cases. On the right, we show the null distri-
butions of the statistic B generated by Monte Carlo simulation (histogram density estimation (grey) and 
kernel density estimation (red)). Dashed black lines correspond to the quantiles B �

2

 and B1−
�

2

 ( � = 5% ) of 
the B values simulated. The dashed blue line corresponds to the B calculated with the point pattern given 
on the left panel
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Based on simulations from Poisson homogeneous and Matérn cluster point patterns 
and a real dataset (point pattern cells), we display the performance of the statistic B, 
and implicitly of the statistic ̂̂�(D1) , under randomness, clustering, and inhibition.

We show in Fig. 7 realisations of three spatial point patterns with different under-
lying structures: a spatial point pattern size n=42 simulated from a homogeneous 
Poisson model N(A) ∼ Poisson(� = �|A| = 42)(top left), a cluster point pattern of 
n = 42 events (centre left) generated from a Matérn cluster process with parameters 
� = 5, r = 0.2, � = 8 , and a regular point pattern (bottom left), which corresponds 
to the database cells widely known and used as example in many works on point 
patterns (Ripley, 1977, 1981; Diggle, 1983). Note that in the case of the Matérn 
process, we use � instead of � to avoid confusion with the notation in Eq. (16). The 
intensity of the Matérn cluster process is �� (Waagepetersen,  2007), and the level 
of aggregation is determined by parameter r. Fixed � and � , the aggregation level 
increases when r decreases (Fig. 8).

We particularly looked for simulations of size 42 to generate the point patterns 
under randomness and clustering (top left and centre left of Fig. 7) so that the results 
were more easily comparable with those of the cells pattern (which has 42 events). 
The distributions of the statistic B on the right of Fig. 7 were generated assuming a 
fixed n, although the results do not change significantly if an unconditional simula-
tion is considered. The functions rpoispp and rMatClust of the spatstat 
library (Baddeley et  al., 2015) of R (R Core Team, 2020) were used to simulate 
the random and clustered patterns. The point pattern cells are also available in 

Fig. 8   Simulations of Matérn cluster point patterns with parameters ( �, r, � ). The mean at each case is 
�� . The number of events simulated according to the r value are: 182 (r=0.1), 111 (r=0.2), 65 (r=0.4), 
77 (r=0.6), 73 (r=0.8), and 79 (r=1.0)
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spatstat. We apply the methodology presented in Sect. 3 to test the hypothesis 
of CSR with each one of these datasets. Employing the n values in Table 1 and Eqs. 
(16) and (17), we calculate for each one of the patterns in Fig. 7, �̂(D1) , 

̂̂
�(D1) , and 

B (Table 1).
A quick inspection of the results in Table 1 reveals that the value of ̂̂�(D1) found 

with the point pattern simulated under CSR (top left of Fig. 7) is very close to the 
expected value of �̂(D1) under complete spatial randomness, while in the other two 
cases, ̂̂�(D1) is relatively far from this value of reference (below when the pattern 
is cluster and above if it is inhibitory). The same information is taken considering 
the B statistic. (In this case, the reference is zero.) The value of B under the Poisson 
process is close to zero, while the B values of the Matérn cluster and cells patterns 
are far from zero (above when the pattern is cluster and below if it is inhibitory). 
The distribution of the statistic B under the null hypothesis was estimated generating 
500 simulations from N(A) ∼Poisson(�|A| = 42 ) (see the histograms in right panel 
of Fig. 7), that is, for j = 1… , 500 , we obtained ̂̂�(D1)j and Bj = (�̂(D1)j −

̂̂
�(D1)j) . 

A kernel density estimation (Sheater, 2004) of the B distribution is also obtained at 
each case (red curves in right panel of Fig. 7). We use a Gaussian kernel, and the 
bandwidth is defined using the Silverman’s rule (Sheater, 2004). Note in Fig. 7 that 
we obtain three different distributions of B under randomness. Only one of these 
distributions could have been used. However, to present the results in more detail, 
we include three sets of independent simulations. Using the Bj, j = 1… , 100 , and 
the function quantile of the library stats of R (R Core Team, 2020), the per-
centiles B0.025 and B0.975 of the B distribution (black dashed lines in Fig.  7) were 
calculated. The null hypothesis of CSR is rejected at each case if the B values are 
lower or greater than the estimated percentiles B0.025 and B0.975 , respectively. The 
kernel density estimates (histograms and red curves) in Fig. 7 suggest that the distri-
butions of B under CSR are symmetric around zero. A large value of B (in the upper 
tail of the distribution of B) will indicate that the pattern under study is clustered. 
On the contrary, a very low value of B (lower tail of the distribution of B) will give 
evidence that the process of interest follows an inhibition model.

Two aspects are noted from Table 1 and Fig. 7. On the one hand, the B value 
calculated with the point pattern simulated under randomness ( −0.007) (dashed 
blue line in the top right panel of Fig. 7) is around the centre of the null distribu-
tion, i.e. as expected, the test indicates that there is not evidence to reject the null 
hypothesis of CSR. On the other hand, for the Matérn cluster point pattern (centre 

Table 1   Expected number of events ( � ), number of events recorded (n), expected box-counting dimen-
sion conditional to n ( ̂�(D1) ), and estimates ( ̂̂�(D1) and B) for each one of the three types of point pat-
terns considered 

B0.025 and B0.975 are the quantiles B �

2

 and B1−
�

2

 of B distribution ( � = 5%)

Point Pattern � n �̂(D1)
̂̂
�(D1)

B B0.025 B0.0975

Poisson homogeneous 42 42 1.754 1.762 −0.007 −0.056 0.070
Matérn Cluster 40 42 1.754 1.556 0.198 −0.074 0.093
Cells 42 1.754 1.897 −0.132 −0.065 0.067
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left) and cells (bottom left), the values of the statistic B (Table (1)) are on the tails 
of the corresponding distributions under randomness (on the right in the case of 
the Matérn cluster process and the opposite for the inhibition pattern (Fig.  7)), 
that is, these indicate that the hypothesis of randomness should be rejected. In 
summary, the plots on the right panel of Fig. 7 show that the test proposed (based 
on B or ̂̂�(D1) ) in all the three cases came to the correct decision. If the hypoth-
esis of spatial randomness is rejected, it indicates whether the pattern is cluster 
or inhibitory. From Table 1, it is important to note that conditional on n there is a 
value of reference ( ̂�(D1) ) for the randomness hypothesis. The simulation-based 
distributions allow to establish whether the estimate ̂̂�(D1) is significantly differ-
ent from this value. The value of B allows measuring the strength of inhibition or 
clustering. The smaller or larger (further from zero) B is, the greater the degree 
of inhibition or clustering, respectively, of the point pattern under consideration.

3.2 � Power of the test
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We generate realisations of a Matérn cluster process with parameters ( �, r, � ) 
(Waagepetersen, 2007). The method used generates a uniform Poisson point pro-
cess of “parent” points with intensity � . Then, each parent point is replaced by 
a random cluster of “offspring” points, the number of points per cluster being 
Poisson distributed, and their positions being placed and uniformly inside a disc 
of radius scale (r) centred on the parent point  (Waagepetersen, 2007). We use 
the function rMatClust of the library spatstat (Baddeley et  al., 2015) to 
generate the simulations. For six selected values of r (0.1, 0.2, 0.4, 0.6, 0.8, and 
1.0), one resulting simulated process is shown in Fig. 8. From these plots, it gets 
clear that the smaller r, the greater the aggregation, and therefore more evidence 
to reject the hypothesis of spatial randomness. On the contrary, if r increases the 
configuration of points look more similar to a realisation of a random process 
under CSR. With this result in mind, in order to estimate the rejection probability 
of the test under different levels of spatial aggregation, we decided to propose a 
simulation study considering a more extensive set of values of r between 0.1 and 
1 (0.1, 0.15, 0.20, ..., 0.90, 0.95, 1). Point patterns with a high level of aggrega-
tion are initially generated (using small r values), and then, (increasing r), we 
simulate others with point configurations similar to those obtained under spatial 
randomness. The procedure used is analogous to that described in Algorithm 1. 
Specifically, for each r value, the rejection probability of the CSR hypothesis is 
estimated using the iterative procedure given in Algorithm 2. The rejection prob-
abilities for each r are shown in Table 2. According to the values from this table, 
it is clear that there is an inverse relationship between r (column 1) and the prob-
ability of rejecting the null hypothesis (column 13). The lower the r value, the 
greater P(Reject H0) , i.e. the more evident the spatial aggregation, the greater the 
rejection probability of the complete spatial randomness hypothesis. On the con-
trary, when the value of r tends to one, the corresponding rejection probabilities 
of the randomness hypothesis tend to zero. We include in Table  2 the first 10 
values of B (of the total of 500) with the corresponding associated empirical p 
values. It is clear from these values that there is (in general) a transition in the 
B values. When r is small (r = 0.1, 0.15, 0.20), the values of B tend to be rela-
tively large, and therefore, the simulation-based p values are close to zero, while 
when r is large (r = 0.9, 0.95, 1.00) the opposite occurs, the values of B tend to 
be relatively small (close to zero or even negative), and consequently, the cor-
responding empirical p values are greater than � . The table results suggest that 
the proposed test is unbiased, i.e. the power of the test increases when the level of 
spatial aggregation increases.  

4 � CSR testing using the log–log plot

In the analysis of spatial point patterns, the test for CSR is often based on graphi-
cal methods. Generally, the distribution functions of the event–event distance 
(function G (Clark and Evans, 1954)), point–event distance (function F (Bartlett, 
1964)), and the number of events encountered up to a given distance of any particu-
lar event (function Ripley’s K Ripley (1977)) are employed for this purpose. These 
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functions are typically inspected by plotting the empirical function calculated from 
the data, together with the theoretical function of the homogeneous Poisson pro-
cess with the same average intensity Baddeley et al. (2015). To assess the statisti-
cal significance of deviations between the observed and theoretical functions, it is 
required to know the expected variability when the pattern is completely random. 
To this purpose, simulated realisations under CSR are generated, and pointwise 
envelopes based on the minimum and maximum are calculated. In this Section, we 
show how the log–log plot defined in Sect. 2.2 can be used as an alternative to the 
functions G, F, and K to test graphically for CSR. The steps to define the graphical 
test based on the log–log plot are the following. Initially, calculate the log–log plot 
defined in Sect.  2.2 with the observed dataset. Then simulate m realisations from 
N(A) ∼ Poisson(�|A| = n) , and for each simulated point pattern obtain the log–log 
plot. From the generated m curves, define pointwise envelopes as in the case of the 
G, F, and K functions mentioned above. We illustrate the use of the log–log func-
tion based on the same point patterns considered in Sect. 3.1 (Fig. 7). The results 
obtained are compared with those found with the G, F, and K functions. We use 
the library spatstat (Baddeley et  al., 2015) to generate the envelopes. Specifi-
cally, the functions Gest, Fest, Kest and envelope of the same library were 
used for carrying out the graphical tests. In all cases, the simulations to obtain the 
envelopes were conditioned to have the same number of events as the original point 
pattern ( n = 121 (random), n = 42 (regular), and n = 156 (clustered)). Figures 9, 10 
and 11 show the corresponding envelopes (grey shading) for the G (top left), F (top 
right), K (bottom left) and log–log functions (bottom right) generated from the point 
patterns in Fig. 7. The obtained results with the log–log function in all cases are in 
accordance with those given by the functions G, F, and K (Figs. 9, 10 and 11), that 
is, the estimated log–log function is inside the envelopes in the case of the Poisson 
pattern (Fig. 9) and outside of envelopes in the case clustering and inhibition (cells) 
(Figs. 10 and 11, respectively). From an empirical point of view, we can note that 
the log–log plot has the same performance as the traditional G, F, and K functions. 
The log–log function has an analogous interpretation to the F function. There is 
clustering when the estimated function is below the envelopes and inhibition when 
it is above (Figs.  10 and 11). The results based on the log–log plot are also con-
sistent with those described in Sect. 3.1. Recall that under inhibition, the estimated 
box-counting dimension ( ̂̂�(D1) ) is greater than expected under randomness ( ̂�(D1) ), 
or the opposite if the process is clustered ( ̂̂�(D1) < �̂(D1) ). A similar result can be 
identified from Figs. 10 and 11. The log–log plot for the pattern cells (Fig. 11) is 
above the envelopes, that is, it is greater than the expected log–log curve under CSR. 
Likewise, we can see in Fig. 10 (Matérn cluster process) that the estimated log–log 
function (black line) is below the envelopes, that is, the log–log plot for a clustered 
point pattern is lower than the expected under CSR. These results suggest a direct 
relationship between these two approaches.
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5 � Spatial randomness test of COVID‑19 cases in Cali, Colombia

Spatial statistics has emerged as a helpful tool in epidemiology to describe the spa-
tial and spatio-temporal spread and incidence of different pathogens. This area of 
statistics is commonly used today in the study of the COVID-19 spread (a disease 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Chhi-
kara et al. (2020)). Spatial statistics allows an understanding of how the COVID-19 
outbreak is spatially distributed (Ramírez-Aldana et al., 2020). Studying the spatial 
behaviour (at the local and regional level) of the spread by COVID-19 is essential 
for the formulation of control and mitigation measures by government and health 
authorities. For this reason, there has been a growing number of academic and sci-
entific works related to the spatial modelling of its spread patterns (Kang et al. 2020; 

Fig. 9   Envelopes of G (top left), F (top right), K (bottom left), and log–log (bottom right) functions cal-
culated with a Poisson process

Fig. 10   Envelopes of G (top left), F (top right), K (bottom left), and log–log (bottom right) functions cal-
culated with a Matérn cluster process
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Miller et al. 2020). In this section, we show how the methodology given in Sect. 3 
can be used for this purpose. 

In particular, we apply the test proposed to a dataset corresponding to COVID-19 
cases recorded in March 2020 in the metropolitan area of Cali city, located in the 
southwest region of Colombia (Fig. 12). The virus was confirmed to have reached 
Colombia in March 2020. Between March 2 and 31, 2020, there were 443 reports 
of COVID-19 infections in Cali. As input for our analysis, we take 405 spatial coor-
dinates corresponding to the spatial residence locations of the infected people in 
this municipality. We exclude the duplicate coordinates. (The infections of several 
people in the same place are considered a single event.) In Fig. 13, it is shown the 
spatial distribution of the events in this month. The southernmost part of the city is 
rural and unpopulated, so we carry out the analysis by delimiting the perimeter to 
the inhabited area.

Observing both the right panel in Fig.  12 and the point pattern in Fig.  13, we 
identify zones with high cases burden. The most significant aggregation of cases 
is given in the city’s south. However, other minor hot spots are placed to the west, 
the east, and the north. A detailed description of this respect is given in Cuartas 
(2020). Based on the coordinates of the spatial point pattern in Fig. 13, we estimated 
the functions G , F, and K (Fig.  14). The three plots are concordant and confirm 
the above; they allow us to conclude that the specific pattern of COVID-19 cases 
in Cali city during the first month of the pandemic was clustered. We also found 
the distribution (under CSR) of the statistics B defined in Sect. 3 (the top left panel 
of Fig.  14) and its calculated value B = (�̂(D1) −

̂̂
�(D1)) = 0.1549 (dashed blue 

line in Fig. 14) with the point pattern in Fig. 13. The B value is on the right tail of 
the distribution. Consequently, it indicates that the null hypothesis of CSR must be 
rejected, (The same conclusion given by the classic graphical tests.)

We have analysed just one dataset of COVID-19 cases. The four strategies allow 
us to reach the same conclusion. However, there are implicitly advantages in using 
the method based on the box-counting estimation. On the one hand, we have a p 

Fig. 11   Envelopes of G (top left), F (top right), K (bottom left), and log–log (bottom right) functions cal-
culated with the point pattern cells 
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value (see Algorithm 2 for its estimation), which allows being conclusive. (Some-
times the graphical tests are not.) On the other hand, using B (equivalently in ̂̂�(D1) ) 
the point pattern under study is characterised with just one value. This opens the 
doors to the application of many traditional techniques (regression, ANOVA, lon-
gitudinal data analysis, time series, etc.) in those situations in which there is a col-
lection of point patterns to be analysed simultaneously (obtained, for example, in 
different periods or under various experimental conditions).

(a) (b) (c)

Fig. 12   Geographical location of the study area. Cali is the capital of the Department of Valle del Cauca

Fig. 13   COVID 19 infection 
sites (March 2020) in the urban 
area of Cali, Colombia. The 
sites that are outside the perim-
eter of the urban area (symbol 
+) are not considered in the 
analysis
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6 � Conclusions and further research

We have proposed a test to evaluate the hypothesis of complete spatial randomness 
based on the fractal dimension and its estimation by the box-counting methodol-
ogy. Also, a graphical test is derived. Using simulated point patterns under random-
ness, inhibition and clustering, we found that the two approaches have a good per-
formance. The results are concordant and coherent with those obtained employing 

Fig. 14   Tests based on the expected value of the box-counting dimension (top left) and the functions G 
(top right), F (bottom left), and K (bottom right)
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classical graphical tests (G, F, and K functions). The graphical interpretation of the 
proposed test is similar to that obtained with the F function. The tests are not based 
on distances, and therefore, it is not necessary to consider the edge effect. A simula-
tion study was carried out to show the behaviour of the test proposed under the null 
hypothesis (randomness) and the classical alternatives (inhibition and clustering). 
The simulation results were satisfactory. A detailed study about the power of the test 
was also conducted. This allows us to conclude that the test has a good performance 
under different levels of clustering. An advantage of the methodology considered 
is that a statistic is calculated ( ̂̂�(D1) or equivalently B), which allows summarising 
the information of the point pattern in just one value. This can be useful from many 
inferential perspectives. For example, for modelling spatio-temporal point patterns 
or comparing groups of point patterns through ANOVA.
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