Skip to main content

Advertisement

Log in

Lipoprotein lipase deficiency in chronic kidney disease is accompanied by down-regulation of endothelial GPIHBP1 expression

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Chronic renal failure (CRF) is associated with hypertriglyceridemia and impaired clearance of very low density lipoprotein (VLDL) and chylomicrons which are largely due to lipoprotein lipase (LPL) deficiency/dysfunction. After its release from myocytes and adipocytes, LPL binds to the endothelium in the adjacent capillaries where it catalyzes hydrolysis of triglycerides in VLDL and chylomicrons. The novel endothelium-derived molecule, glycosylphosphatidylinositol-anchored binding protein 1 (GPIHBP1), plays a critical role in LPL metabolism and function by anchoring LPL to the endothelium and binding chylomicrons. GPIHBP1-deficient mice and humans exhibit severe hypertriglyceridemia and diminished heparin-releasable LPL, pointing to the critical role of GPIHBP1 in regulation of LPL activity. Given its central role in regulation of LPL activity and triglyceride metabolism, we explored the effect of chronic kidney disease (CKD) on GPIHBP1 expression.

Methods

Expression of GPIHBP1 and LPL were determined by reverse transcriptase-polymerase chain reaction, Western blot and immunohistochemical analyses in the adipose tissue, skeletal muscle and myocardium of rats 12 weeks after 5/6 nephrectomy (CRF) or sham-operation (control).

Results

Compared to the controls, the CRF group exhibited severe hypertriglyceridemia, significant reduction of the skeletal muscle, myocardium and adipose tissue LPL mRNA and protein abundance. This was accompanied by parallel reductions of GPIHBP1 mRNA abundance and immunostaining in the tested tissues.

Conclusions

LPL deficiency in CKD is associated with and compounded by GPIHBP1 deficiency. Together these abnormalities contribute to impaired clearance of triglyceride-rich lipoproteins, diminished availability of lipid fuel for energy storage in adipocytes and energy production in myocytes and consequent hypertriglyceridemia, cachexia, muscle weakness and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vaziri ND, Norris K. Lipid disorders and their relevance to outcomes in chronic kidney disease. Blood Purif. 2011;31(1–3):189–96.

    Article  PubMed  CAS  Google Scholar 

  2. Vaziri ND. Dyslipidemia of chronic renal failure: the nature, mechanisms and potential consequences. Am J Physiol Renal Physiol. 2006;290:262–72.

    Article  Google Scholar 

  3. Attman PO, Samuelsson O, Alaupovic P. Lipoprotein metabolism and renal failure. Am J Kidney Dis. 1993;21:573–92.

    PubMed  CAS  Google Scholar 

  4. Vaziri ND. Causes of dysregulation of lipid metabolism in chronic renal failure. Semin Dial. 2009;22(6):644–51.

    Article  PubMed  Google Scholar 

  5. Vaziri ND, Navab M, Fogelman AM. HDL metabolism and activity in chronic kidney disease. Nat Rev Nephrol. 2010;6(5):287–96.

    Article  PubMed  CAS  Google Scholar 

  6. Shoji T, Nishizawa Y, Nishitani H, Yamakawa M, Morii H. Impaired metabolism of high density lipoprotein in uremic patients. Kidney Int. 1992;41:1653–61.

    Article  PubMed  CAS  Google Scholar 

  7. Catrran DC, Fenton SS, Wilson DR, Steiner G. Defective triglyceride removal in lipemia associated with peritoneal dialysis and haemodialysis. Ann Intern Med. 1976;85:29–33.

    Google Scholar 

  8. Horkko S, Huttunen K, Korhonen T, Kesaniemi YA. Decreased clearance of low-density lipoprotein in patients with chronic renal failure. Kidney Int. 1994;45:561–70.

    Article  PubMed  CAS  Google Scholar 

  9. Weintraub M, Burstein A, Rassin T, Liron M, Ringel Y, Cabili S, Blum M, Peer G, Laina A. Severe defect in clearing postprandial chylomicron remnants in dialysis patients. Kidney Int. 1992;42:1247–52.

    Article  PubMed  CAS  Google Scholar 

  10. Klin M, Smogorzewski M, Ni Z, Zhang G, Massry SG. Abnormalities in hepatic lipase in chronic renal failure: role of excess parathyroid hormone. J Clin Invest. 1996;97:2167–73.

    Article  PubMed  CAS  Google Scholar 

  11. Vaziri ND, Liang K. Down regulation of VLDL receptor expression in chronic experimental renal failure. Kidney Int. 1997;51:913–9.

    Article  PubMed  CAS  Google Scholar 

  12. Kim C, Vaziri ND. Downregulation of hepatic LDL receptor-related protein (LRP) in chronic renal failure. Kidney Int. 2005;67:1028–32.

    Article  PubMed  CAS  Google Scholar 

  13. Akmal M, Kasim SE, Soliman AR, Massry SG. Excess parathyroid hormone adversely affects lipid metabolism in chronic renal failure. Kidney Int. 1990;37:854–8.

    Article  PubMed  CAS  Google Scholar 

  14. Vaziri ND, Liang K. Down-regulation of tissue lipoprotein lipase expression in experimental chronic renal failure. Kidney Int. 1996;50:1928–35.

    Article  PubMed  CAS  Google Scholar 

  15. Vaziri ND, Wang XQ, Liang K. Secondary hyperparathyroidism downregulates lipoprotein lipase expression in chronic renal failure. Am J Physiol (Renal Physiol). 1997;273(42):F925–30.

    CAS  Google Scholar 

  16. Sendak RA, Bensadoun A. Identification of a heparin-binding domain in the distal carboxyl-terminal region of lipoprotein lipase by site-directed mutagenesis. J Lipid Res. 1998;39:1310–5.

    PubMed  CAS  Google Scholar 

  17. Chan MK, Persaud J, Varghese Z, Moorhead JF. Pathogenic role of post-heparin lipases in lipid abnormalities in hemodialysis patients. Kidney Int. 1984;25:812–8.

    Article  PubMed  CAS  Google Scholar 

  18. Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res. 1996;37:693–707.

    PubMed  CAS  Google Scholar 

  19. Parthasarathy N, Goldberg IJ, Sivaram P, Mulloy B, Flory DM, Wagner WD. Oligosaccharide sequences of endothelial cell surface heparan sulfate proteoglycan with affinity for lipoprotein lipase. J Biol Chem. 1994;269:22391–6.

    PubMed  CAS  Google Scholar 

  20. Young SB, Davies SJ, Fong LG, Gin P, Weinstein MM, Bensadoun A, Beigneux AP. GPIHBP1—an endothelial cell molecule required for the lipolytic processing of chylomicrons. Curr Opin Lipidol. 2007;18:389–96.

    Article  PubMed  CAS  Google Scholar 

  21. Beigneux AP, Davies B, Gin P, Weinstein MM, Farber E, Qiao X, Peale P, Bunting S, Walzem RL, Wong JS, et al. Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab. 2007;5:279–91.

    Article  PubMed  CAS  Google Scholar 

  22. Beigneux AP, Davies BS, Bensadoun A, Fong LG, Young SG. GPIHBP1, a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins. J Lipid Res. 2009;50 Suppl:S57–62.

    PubMed  Google Scholar 

  23. Véniant MM, Beigneux AP, Bensadoun A, Fong LG, Young SG. Lipoprotein size and susceptibility to atherosclerosis—insights from genetically modified mouse models. Curr Drug Targets. 2008;9:174–89.

    Article  PubMed  Google Scholar 

  24. Kim HJ, Moradi H, Yuan J, Norris K, Vaziri ND. Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am J Physiol Renal Physiol. 2009;296(6):F1297–306.

    Article  PubMed  CAS  Google Scholar 

  25. Kim HJ, Vaziri ND, Norris K, An WS, Quiroz Y, Rodriguez-Iturbe B. High-calorie diet with moderate protein restriction prevents cachexia and ameliorates oxidative stress, inflammation and proteinuria in experimental chronic kidney disease. Clin Exp Nephrol. 2010;14(6):536–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was in part funded by the NIH Accelerating Excellence in Translational Science (AXIS) grant 5U54 RR026138-02 (10-11-KN-G0811C00-UCI).

Conflict of interest

The authors have no conflict of interest to declare and warrant that the results presented in this paper have not been published previously in whole or part, except in abstract format.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosratola D. Vaziri.

About this article

Cite this article

Vaziri, N.D., Yuan, J., Ni, Z. et al. Lipoprotein lipase deficiency in chronic kidney disease is accompanied by down-regulation of endothelial GPIHBP1 expression. Clin Exp Nephrol 16, 238–243 (2012). https://doi.org/10.1007/s10157-011-0549-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-011-0549-3

Keywords

Navigation