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The T-lymphocyte (T-cell) reaction is triggered by the 
recognition of an antigen on the major histocompatibility 
complex (MHC) by a T-cell antigen receptor (TCR). In the 
steady state, all the nucleated cells express self-antigens 
on MHC and can potentially activate self-reactive T cells. 
Most self-reactive T cells are eliminated in the thymus 
through a mechanism called “negative selection”; how-
ever, many of them escape selection and are present in the 
periphery. Thus, there must be systems that prevent activa-
tion of autoreactive T cells in the periphery.

It is well characterized that the first signal, provided 
through the TCR during recognition, does not alone 
cause activation of the T cells. Full T-cell activation 
requires a second set of signals, called “costimulation,” 
which is mainly provided by activated antigen-presenting 
cells (APCs) (Fig. 1). The best characterized costimula-
tory system is the CD28 receptor on T cells, triggered by 
its ligands, CD80 and CD86 (old names: B7-1 and B7-2, 
respectively) on activated professional APCs (reviewed by 
Lenschow et al. [1]). CD80 and CD86 are upregulated on 
activated APCs by microbial “danger signals” so that the 
APCs presenting microbial antigens can efficiently stimu-
late T cells for activation (Fig. 1b). However, resting APCs 
do not express CD80 and CD86. T cells that are stimulated 
in the absence of the CD28 signal shift to an unresponsive 
state called “clonal anergy” and become refractory to fur-
ther stimulation by the same antigen (Fig. 1a). CTLA-4, 
another receptor structurally similar to CD28, is induced on 
activated T cells and binds to CD80 and CD86 with greater 
avidity than does CD28 (Fig. 1c) (reviewed by Bour-Jor-
dan et al. [2]). When CTLA-4 was discovered, its function 
gained much attention because it could have been either a 
positive or negative feedback regulator for T-cell activa-
tion. Monoclonal antibodies (mAbs) that block binding 
of CTLA-4 to CD80/CD86 are shown to augment T-cell 
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activation when added into the coculture of T cells, APCs, 
and antigen in a soluble form [3, 4]. From this experiment, 
CTLA-4 was suggested to be a negative regulator for T-cell 
activation. The CTLA-4 knockout (KO) mice generated 
separately by three groups supported this notion [5–7]. 
All the germline CTLA-4 KO mice showed massive lym-
phocyte proliferation in the lymph nodes and spleen, fol-
lowed by autoimmune attack against virtually all tissues by 
lymphocytes, and premature death [5, 6]. The phenotype 
clearly suggested CTLA-4 provides negative feedback on 
T-cell activation. Thus, T-cell activation against self is fun-
damentally regulated by two “checkpoints.” (1) T cells in 
the absence of CD28 signal (in the absence of CD80 and 
CD86 on APCs) become unresponsive (Fig. 1a). (2) Upon 
activation, CTLA-4 is induced, ligated by CD80/CD86, and 
prevents further activation of self-reactive T cells (Fig. 1c). 
After this discovery, several pairs of ligands and receptors 
were reported and were shown to have unique functions in 
the immune system (Fig. 2) [8]. PD-1 belongs to the CD28 
family and provides such an “immune checkpoint” at the 
priming and effector phases of immunity.

Cloning and characterization of PD‑1 and PD‑1 ligands

PD-1 (CD279) was originally reported by Ishida et al. 
[9] as a molecule induced on cells undergoing apoptosis 
and hence named “Programmed cell-death 1.” Structur-
ally, PD-1 possesses an immunoglobulin V-like domain 
on its ectodomain and a short cytoplasmic tail. The struc-
ture resembles CD28 and other molecules in the same 
family (Fig. 2). In contrast to CD28 or CTLA-4, PD-1 
lacks a motif for homodimerization and is expressed as a 
monomeric form on the plasma membrane. Additionally, 
PD-1 possesses a unique immunoreceptor-tyrosine based 

inhibitory motif (ITIM), which was later identified as an 
essential motif for the function of PD-1. PD-1 expression is 
found mostly on leukocytes and is induced upon their acti-
vation [10]. PD-1 is absent or very low on naïve T cells and 
is induced upon TCR stimulation. In vivo, a cognate pep-
tide antigen for T cells induces PD-1 in a very short time 
(~6 h) after challenge [11]. Physiological PD-1 expression 
is developmentally regulated [12]. Immature thymocytes, 
gamma-delta (γδ) T cells, natural killer T cells, and innate 
lymphoid cells constitutively and strongly express PD-1. 
B cells also express PD-1, and there are some reports sup-
porting a cell-intrinsic role of PD-1 in regulation of B cells 
[13].

Two ligands for PD-1 were identified based on homol-
ogy search or cDNA subtraction [14–17]. The molecules 
named PD-L1 (alternative name; B7-H1, CD274) and 
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PD-L2 (B7-DC, CD273) are both type 1 transmembrane 
proteins and possess two Ig-like domains, structurally simi-
lar to CD80, CD86, ICOS ligand, and so on (Fig. 2) [8], and 
selectively bind to PD-1. In vitro studies demonstrated that 
engagement of PD-1 by both PD-L1 and PD-L2 inhibited 
T-cell proliferation and secretion of cytokines [interleukin 
(IL)-2, IL-4, interferon (IFN)-γ, and IL-10), suggesting 
these receptors similarly transmit inhibitory signals through 
PD-1 [14, 16]. However, the two ligands differ in their 
expression and in vivo function. PD-L1 is expressed on var-
ious organs, such as lung, heart, thymus, spleen, kidney, and 
liver [14, 15]. At the cellular level, many epithelial cells and 
leukocytes express PD-L1, which is further augmented by 
IFN-γ signaling [18]. The upregulation of PD-L1 by IFN-γ 
seems to be mediated by transcriptional factor STAT1 [19, 
20], which possibly explains the high expression of PD-L1 
in inflamed tissues and cancer. On the other hand, PD-L2 
expression is largely restricted on APCs such as dendritic 
cells and macrophages [18] and is triggered by the NF-κb 
signal [21]. PD-L1 knockout (KO) mice phenocopy PD-1 
KO in terms of enhanced lymphocyte reaction and suscep-
tibility to autoimmune diseases [22, 23], but PD-L2 knock-
out mice do not [24]. The phenotypic difference is probably 
the result of PD-L1 expression on the MHC class I+ target 
tissue, whereas PD-L2 can work only at the time of T-cell 
priming by professional APCs [24].

Immune checkpoint inhibition by PD‑1: a 
self‑tolerance point of view

PD‑1 in self‑tolerance

In 1998, a mouse carrying a germline null mutation of 
PD-1 was generated and was reported to develop a late-
onset lupus-like autoimmune syndrome [25]. Differing in 
initial C57BL/6 background, PD-1 KO in BALB/c back-
ground were shown to develop lethal dilated cardiomyo-
pathy [26], which was caused by autoantibody against 
troponin I, a myocardium-specific regulator of the actin-
myosin system [27]. The data suggested that PD-1 regu-
lates self-tolerance against many organs, depending on the 
genetic background of individuals (i.e., MHC haplotype). 
The phenotype of PD-1 KO mice is more obvious in mice 
carrying autoimmune susceptibility. In the NOD mice that 
develop spontaneous type I diabetes, null mutation of PD-1 
[28] or ligands [24] accelerated the activation of islet-
reactive T cells and resulted in much higher penetrance, 
earlier onset, and more severe diabetes progression than 
the PD-1-sufficient counterpart. The Murphy Roths Large 
(MRL/MpJ) mice are known to be prone to autoimmunity. 
MRL mice lacking either PD-1 [29] or PD-L1 [22] develop 
severe myocarditis and pneumonia, and more than 70 % of 

the mice die within the first 10 weeks of age. Interestingly, 
PD-1-sufficient MRL mice do not show myocarditis, sug-
gesting the PD-1 null genotype provokes unrecognized host 
autoimmune predisposition.

The molecular basis of PD‑1‑mediated T‑cell inhibition

How does PD-1 regulate T cells at the molecular level? To 
respond to numerous antigens, T cells and B cells carry 
antigen receptors with broad specificity. The intracellu-
lar region of the receptor complex converts the antigenic 
recognition into a digital signal (Fig. 3). In the case of T 
cells, the signal is initiated by the phosphorylation of CD3 
molecules within the antigen–receptor complex by LCK, 
a tyrosine kinase associated with the coreceptors CD4 
or CD8 (Fig. 3a). The phosphorylated tyrosine recruits 
nonreceptor tyrosine kinase zeta-associated protein 70 
(ZAP70). Then, ZAP70 phosphorylates downstream 
adapter molecules, which transmit biochemical signals to 
the nucleus.

It is generally accepted that ITIM motif recruits several 
nonreceptor-type tyrosine phosphatases. PD-1 was found 
to recruit SH2-containing protein tyrosine phosphatase-2 
(SHP-2) upon ligation by PD-1 ligands [16, 30–32]. The 
recruited phosphatase in turn dephosphorylates the cyto-
plasmic tail of CD3 molecules (Fig. 3b). Thus, PD-1 exerts 
its inhibitory effect by mediating the opposing reaction to 

Fig. 3  A molecular model for Programmed Death (PD)-1-mediated 
inhibition of T cells. a Recognition of MHC–antigen complex by 
T-cell receptor (TCR) and CD4 leads to LCK kinase-mediated phos-
phorylation of the CD3-TCRζ complex, initiating downstream sig-
nals. b PD-1 ligation by PD-1 ligands brings PD-1 to the proximity 
of TCR, and the associated SHP-2 phosphatase dephosphorylates the 
CD3-TCRζ complex, leading to the attenuation of signal. The inhibi-
tion occurs within a 3D structure created between TCR and APC
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the activation signal. The inhibition of TCR by PD-1 was 
demonstrated to occur within the T-cell–APC contact site 
termed the immunological synapse. Yokosuka et al., by 
using a high-resolution microscope, demonstrated that 
PD-1 enters into a “microcluster” that is formed within the 
immunological synapse [32]. The TCR and MHC peptide 
bear relatively small ectodomains; hence, they create a 
short intermembrane distance (~14 nm) at the time of anti-
gen-induced synapse formation (Fig. 3). The small ectodo-
main of PD-1 and its ligands “fit” this distance and help 
them to enter the proximity of the TCR–peptide MHC com-
plex, allowing efficient inhibition of the TCR signal during 
antigen recognition. At the transcriptional level, PD-1 liga-
tion simply inhibited many genes that are triggered by TCR 
stimulation, rather than stimulating the de novo production 
of inhibitory molecules [31]. In short, PD-1 attenuates the 
TCR signal by antagonizing the biochemical reaction at the 
time of antigen recognition.

PD‑1 as “immune‑checkpoint” molecule

T-cell responses include initial activation of naïve antigen-
specific T cells, clonal expansion, differentiation, and the 
effector phase. PD-1-mediated attenuation of TCR signal-
ing seems to act as a “checkpoint” in these processes.

It was believed that a TCR signal without CD28-medi-
ated costimulation caused incomplete T-cell activation, 
resulting in passive clonal anergy. However, this model 
was revised after several groups demonstrated that active 
inhibition by the PD-1–PD-L1 pathway contributes to this 
process (Fig. 4a). Upon antigen encounter without overt 
inflammation, naïve T cells rapidly express PD-1 and lapse 
into an unresponsive state. Naïve CD8+ T cells with known 
specificity, when stimulated in vivo by cognate antigens, 
cannot respond when restimulated in vitro with the same 
antigen, which is a typical anergy [11, 33]. Such T cells, in 
the absence of PD-1 signal in vivo, did not fall into anergy 

and normally responded to the in vitro recall stimulation, 
which was demonstrated to be mediated by limitation of 
IL-2 expression by PD-1-mediated T-cell inhibition [11]. 
Next, PD-1 regulates autoimmune attack of effector T cells 
directly at the target site (Fig. 4b). As already mentioned, 
PD-1 is involved in attenuation of spontaneous autoim-
mune diabetes in NOD mice. Keir et al. [24] demonstrated 
that PD-L1, but not PD-L2, expressed on pancreatic beta 
cells was enough to delay the massive progression of insu-
litis in NOD mice. Fife et al. [34] showed CD4+ T cells 
specific for pancreatic β-cell antigens could be experimen-
tally tolerized in vivo by pretreating them with artificial 
APCs expressing the cognate antigen. Anti-PD-1 or anti-
PD-L1, but not anti-PD-L2, reversed this tolerance weeks 
after the tolerogenic treatment, and the mice immediately 
developed massive pancreatitis, resulting in diabetes [34]. 
Using two-photon microscopy, which allows in vivo imag-
ing of autoreactive T cells, it was demonstrated that after 
PD-1 blockade, T cells are rapidly stabilized onto APCs, 
providing tight communication with APCs [35]. These data 
suggested PD-1 prevented autoimmunity by setting at least 
two checkpoints, namely, at the induction and maintenance 
phases of the anergic state (Fig. 4a, b). In addition, PD-1 
may modulate autoimmunity by inhibiting innate immune 
response (Fig. 4c). For autoimmune attack, T cells dif-
ferentiate into effector cells, such as helper or killer cells. 
Inflammatory cytokines from innate immune cells (mac-
rophages and dendritic cells) aid T-cell differentiation. Rui 
et al. [36] demonstrated that macrophages from PD-1 KO 
mice produced robust IL-6 upon recognition of heat-killed 
mycobacterial adjuvant, which augmented development 
of IL-17-producing helper T cells in the experimental 
autoimmune encephalitis model. Although the mecha-
nism for negative regulation of the myeloid cells is cur-
rently unknown, the data suggested PD-1 involvement in 
the regulation of both T cells and the innate immune cells 
(Fig. 4c).
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PD‑1, T‑cell exhaustion, and its role in infectious 
diseases

PD-1 is also important in the immune reaction during 
infection. As an early example, Iwai et al. [37] showed 
that experimental adenovirus, which causes acute infection 
in murine liver, was more rapidly eliminated in PD-1 KO 
mice than PD-1-sufficient mice (Fig. 5). Later, it was dem-
onstrated that T cells show strong PD-1 expression during 
lymphocytic choriomeningitis virus (LCMV) [38], malaria 
[39], etc., pathogens that cause chronic infection. On the 
other hand, strong PD-L1 expression was observed in the 
parenchymal cells of the infected tissues. In this situation, 
the interaction between PD-1 on T cells and the ligand on 
infected cells was associated with the strongly anergic phe-
notype of T cells, called “exhaustion.” The exhausted T 
cells show strong expression of inhibitory receptors (PD-1, 
TIM3, LAG3, etc.) and poor effector functions. The T-cell 
response in both acute and chronic infection is augmented 
via administration of blocking antibodies for PD-1–PD-L1 
interaction, suggesting PD-1–PD-1 ligand interaction gen-
erally attenuates T-cell-mediated immune attack against 
pathogens.

One obvious question is why are PD-1 and the PD–
ligand strongly induced and prevent beneficial virus clear-
ance for the host? In the adenovirus model, despite the 
quick clearance of virus, the liver of PD-1 KO mice his-
tologically showed severe degeneration (Fig. 5). It seems 
as though PD-1 protects the host by preventing a strong 
T-cell attack against infected liver cells. This idea was sup-
ported by an animal model of chronic infection. LCMV 

clone 13, in contrast to its parent strain, is known to cause 
persistent infection in mice. When PD-L1 knockout mice 
were infected by this virus, all the mice died of severe 
immune inflammation associated with T cells [38]. The 
same LCMV caused delayed clearance in the wild-type 
mice, which lasted until the eventual establishment of anti-
viral humoral immunity. Thus, PD-1 slows the course of 
immune response during infection, rather than choosing 
rapid tissue destruction (Fig. 6). PD-1 might have contrib-
uted to the establishment of the mutual existence of host 
and pathogens.

In this sense, it was interesting that several groups inde-
pendently reported that PD-1 KO mice were very suscep-
tible to mycobacteria, a persistent intracellular pathogen 

Fig. 5  PD-1 in virus infec-
tion. Livers of PD-1 KO mice 
7 days after adeno-LacZ virus 
(adopted from Iwai et al. J Exp 
Med 2003 [37]). Compared 
to wild-type mice, PD-1 KO 
shows better clearance of virus 
(see right panels). Instead, PD-1 
KO shows necrotic (lower left 
panel, arrows) and degenerated 
hepatocytes (lower right panel). 
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[40–42]. Upon infection by mycobacteria, PD-1 KO mice 
developed a systemic cytokine storm and died. It should 
be pointed out that PD-1 KO mice could not control the 
mycobacterial burden at all. Recently, Odorizzi et al. [43] 
showed that T cells in PD-1 KO mice, at the site of infec-
tion, produced terminally differentiated effector T cells 
rapidly and lapsed into the exhausted phenotype (Fig. 6). 
These results challenge the idea that T cells become 
exhausted in a PD-1-dependent manner and suggest PD-1 
is important for efficient control of infection. It is known 
that strong immune reaction causes production of termi-
nally differentiated T cells that produce more cytokines but 
become functionally exhausted. PD-1 expression is induced 
at the site of T-cell recognition of the antigen, and flexibly 
attenuates the response [35, 44]. Thus, PD-1 is physiologi-
cally important for fine tuning the lymphocyte reaction to 
produce a beneficial pathogen clearance. Therefore, a tem-
poral blockade (but not complete absence) of PD-1 during 
immune response may boost the ongoing immune response 
(Fig. 6 dotted arrow).

PD‑1 blockade in cancer treatment

The basic concept

Tumor cells arise from normal tissue as a consequence of 
transformation. It is known that genomic mutation in the can-
cer creates mutated proteins that are presented on the MHC 
and are recognized by T cells as “neo-antigens.” Therefore, 
theoretically the immune system can view transformed cells 
as “non-self.” In spite of the immune surveillance, clinically 
apparent cancer develops, indicating evasion of immune 
attack. In mice, tumors developed in immunocompetent 
mice are more resistant to immune attack when transplanted 
to other mice than those developed in immunodeficient mice. 
This phenomenon, called “cancer immune editing,” occurs 
as an eventual establishment of tolerance during the course 
of anti-cancer immune response in the body.

The idea of the immune checkpoint blockade in cancer 
was elegantly proposed by Jim Allison’s group in 1996 
[45], which demonstrated the systemic administration 
of mice with anti-CTLA-4 boosted anti-tumor response, 
resulting in the rejection of tumor. The research provided 
the first evidence that the blockade of the binding of the 
negative costimulatory molecule to its physiological ligand 
promotes tumor immunity, and thus established the concept 
of the immune checkpoint blockade in cancer treatment.

PD‑1 blockade therapy for cancer treatment

Early studies showed that PD-L1 is frequently expressed 
on human cancer cells. Many groups separately reported 

that the level of PD-L1 expression significantly correlated 
with the poor prognosis of patients with various kinds of 
tumor (e.g., renal [46], gastric [47], urothelial [48], ovarian 
[49], and melanoma [50]). In mice, ectopic expression of 
PD-L1 on a tumor cell line inhibited the cytotoxic activity 
of killer T cells through PD-1 ligation [51]. These observa-
tions led to the idea that PD-L1 on the cancer cells trig-
gers PD-1 on the attacking T cells, prevents their activation, 
and contributes to the induction of cancer immune toler-
ance. Researchers successfully confirmed this hypothesis 
by therapeutic administration of mice bearing tumor cell 
lines with anti-PD-1 and/or anti-PD-L1 antibodies [51, 52]. 
The first phase I clinical trial for a fully humanized mAb 
to PD-1 was reported in 2010 [53]. In 2012, data from a 
large-scale clinical study (~300 patients) were reported, 
demonstrating that monotherapy by either anti-PD-L1 [54] 
or PD-1 [55] resulted in up to 25 % overall response rate 
(ORR) in the initial clinical studies. The detailed clinical 
research of anti-PD-1 is reviewed by Dr. Hamanishi later in 
this issue.

Conclusion and perspectives

The therapeutic potential of anti-PD-1 therapy is unlimited 
at this point. Combinational therapies of anti-PD-1 and 
currently available cancer treatments offer new hope for 
many patients with various kinds of cancer. These therapies 
include chemotherapy, cancer vaccination, in vitro expan-
sion of tumor-specific T-cell clones, irradiation, cytokine 
therapy, and combination with other immunotherapies. 
We recently showed that IFN-α triggers unnecessary PD-1 
expression, which reduced the anti-tumor activity of IFN-α 
in a mouse study [56]. Compensating this “downside” of 
IFN-α by a combinational PD-1 blockade overcame this 
defect and resulted in rejection of tumors in most mice 
treated with IFN-α. In clinics, a combinational therapy of 
anti-CTLA-4 and PD-1 resulted in more than 60 % ORR in 
patients with melanoma, compared to the efficacy (~30 %) 
shown by therapy alone [57]. It is now being accepted 
that PD-1 and CTLA-4 may “check” different parts of 
the immune checkpoints; namely, CTLA-4 fundamentally 
regulates initial T-cell activation, whereas PD-1 mainly 
regulates the immune attack at the site of immune effec-
tor response [58]. Anti-PD-1, together with the blockade 
of other immune inhibitory pathways, causes a powerful 
boost for the immune reaction against a tumor. On the other 
hand, the immediate need is to avoid unnecessary immune 
response in the patients. Currently, the known adverse 
effects of anti-PD-1 include type I diabetes [59, 60], skin 
rash [55], myasthenia gravis [61], intestinal inflamma-
tion [55], and interstitial pneumonitis [55], some of which 
resulted in death for only a small number of patients but 
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too many to be ignored. Genetic background and immune 
status are the most likely candidates to determine the 
immunological outcome for a treatment. In this sense, it is 
interesting to observe that PD-1 knockout mice respond to 
some microbial factors very sensitively, sometimes result-
ing in enhancement of autoimmunity [36]. Consideration of 
the immunological backgrounds of patients (i.e., infection, 
allergy) should be beneficial to avoid side effects.

As already discussed, PD-1 might have evolved to opti-
mize immune response to inhibit tissue damage during 
infection; however, it also causes unwanted immune inhi-
bition in tumors. Vaccine development has defeated many 
lethal infectious diseases, bringing longevity, but longev-
ity in turn gives rise to many cancers during the lifespan. 
Manipulation of the immune system by inhibiting the nat-
urally developed inhibitory pathways, such as PD-1 and 
CTLA-4, will result in a good therapy for the enhancement 
of anti-cancer immunity.
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