Skip to main content

Advertisement

Log in

Pathogenesis of syringomyelia associated with Chiari type 1 malformation: review of evidences and proposal of a new hypothesis

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

The exact pathogenesis of syringomyelia associated with Chiari type 1 malformation is unknown, although a number of authors have reported their theories of syrinx formation. The purpose of this review is to understand evidences based on the known theories and to create a new hypothesis of the pathogenesis. We critically review the literatures on clinicopathological, radiological, and clinical features of this disorder. The previously proposed theories mainly focused on the driven mechanisms of the cerebrospinal fluid (CSF) into the spinal cord. They did not fully explain radiological features or effects of surgical treatment such as shunting procedures. Common findings of the syrinx in clinicopathological studies were the communication with the central canal and extracanalicular extension to the posterior gray matter. Most of the magnetic resonance imaging studies demonstrated blockade and alternated CSF dynamics at the foramen magnum, but failed to show direct communication of the syrinx with the CSF spaces. Pressure studies revealed almost identical intrasyrinx pressure to the subarachnoid space and decreased compliance of the spinal CSF space. Recent imaging studies suggest that the extracellular fluid accumulation may play an important role. The review of evidences promotes a new hypothesis of syrinx formation. Decreased absorption mechanisms of the extracellular fluid may underlie the pathogenesis of syringomyelia. Reduced compliance of the posterior spinal veins associated with the decreased compliance of the spinal subarachnoid space will result in disturbed absorption of the extracellular fluid through the intramedullary venous channels and formation of syringomyelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aboulezz AO, Sartor K, Geyer CA, Gado MH (1985) Position of cerebellar tonsils in the normal population and in patients with Chiari malformation: a quantitative approach with MR imaging. J Comput Assist Tomogr 9:1033–1036

    PubMed  Google Scholar 

  2. Akiyama Y, Koyanagi I, Yoshifuji K, Murakami T, Baba T, Minamida Y, Nonaka T, Houkin K (2008) Interstitial spinal-cord oedema in syringomyelia associated with Chiari type 1 malformations. J Neurol Neurosurg Psychiatry 79:1153–1158

    PubMed  Google Scholar 

  3. Alperin N, Sivaramakrishnan A, Lichtor T (2005) Magnetic resonance imaging-based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation. J Neurosurg 103:46–52

    PubMed  Google Scholar 

  4. Alzate JC, Kothbauer KF, Jallo GI, Epstein FJ (2001) Treatment of Chiari I malformation in patients with and without syringomyelia: a consecutive series of 66 cases. Neurosurg Focus 11:E3

    PubMed  Google Scholar 

  5. Anderson RC, Dowling KC, Feldstein NA, Emerson RG (2003) Chiari I malformation: potential role for intraoperative electrophysiologic monitoring. J Clin Neurophysiol 20:65–72

    PubMed  Google Scholar 

  6. Armonda RA, Citrin CM, Foley KT, Ellenbogen RG (1994) Quantitative cine-mode magnetic resonance imaging of Chiari I malformations: an analysis of cerebrospinal fluid dynamics. Neurosurgery 35:214–223

    PubMed  Google Scholar 

  7. Arora P, Behari S, Banerji D, Chhabra DK, Jain VK (2004) Factors influencing the outcome in symptomatic Chiari I malformation. Neurol India 52:470–474

    PubMed  Google Scholar 

  8. Arruda JA, Costa CM, Tella OI Jr (2004) Results of the treatment of syringomyelia associated with Chiari malformation: analysis of 60 cases. Arq Neuropsiquiatr 62:237–244

    PubMed  Google Scholar 

  9. Asgari S, Engelhorn T, Bschor M, Sandalcioglu IE, Stolke D (2003) Surgical prognosis in hindbrain related syringomyelia. Acta Neurol Scand 107:12–21

    PubMed  Google Scholar 

  10. Attal N, Parker F, Tadi_ M, Aghakani N, Bouhassira D (2004) Effects of surgery on the sensory deficits of syringomyelia and predictors of outcome: a long term prospective study. J Neurol Neurosurg Psychiatry 75:1025–1030

    PubMed  Google Scholar 

  11. Attenello FJ, McGirt MJ, Gathinji M, Datoo G, Atiba A, Weingart J, Carson B, Jallo GI (2008) Outcome of Chiari-associated syringomyelia after hindbrain decompression in children: analysis of 49 consecutive cases. Neurosurgery 62:1307–1313

    PubMed  Google Scholar 

  12. Attenello FJ, McGirt MJ, Garcés-Ambrossi GL, Chaichana KL, Carson B, Jallo GI (2009) Suboccipital decompression for Chiari I malformation: outcome comparison of duraplasty with expanded polytetrafluoroethylene dural substitute versus pericranial autograft. Childs Nerv Syst 25:183–190

    PubMed  Google Scholar 

  13. Aubin ML, Vignaud J, Jardin C, Bar D (1981) Computed tomography in 75 clinical cases of syringomyelia. AJNR 2:199–204

    PubMed  Google Scholar 

  14. Aydin S, Hanimoglu H, Tanriverdi T, Yentur E, Kaynar MY (2005) Chiari type I malformations in adults: a morphometric analysis of the posterior cranial fossa. Surg Neurol 64:237–241

    PubMed  Google Scholar 

  15. Badie B, Mendoza D, Batzdorf U (1995) Posterior fossa volume and response to suboccipital decompression in patients with Chiari I malformation. Neurosurgery 37:214–218

    PubMed  Google Scholar 

  16. Ball MJ, Dayan AD (1972) Pathogenesis of syringomyelia. Lancet 2:799–801

    PubMed  Google Scholar 

  17. Barbaro NM, Wilson CB, Gutin PH, Edwards MS (1984) Surgical treatment of syringomyelia. Favorable results with syringoperitoneal shunting. J Neurosurg 61:531–538

    PubMed  Google Scholar 

  18. Barkovich AJ, Wippold FJ, Sherman JL, Citrin CM (1986) Significance of cerebellar tonsillar position on MR. AJNR 7:795–799

    PubMed  Google Scholar 

  19. Batzdorf U, Klekamp J, Johnson JP (1998) A critical appraisal of syrinx cavity shunting procedures. J Neurosurg 89:382–388

    PubMed  Google Scholar 

  20. Beuls EA, Vandersteen MA, Vanormelingen LM, Adriaensens PJ, Freling G, Herpers MJ, Gelan JM (1996) Deformation of the cervicomedullary junction and spinal cord in a surgically treated adult Chiari I hindbrain hernia associated with syringomyelia: a magnetic resonance microscopic and neuropathological study. Case report. J Neurosurg 85:701–708

    PubMed  Google Scholar 

  21. Bhadelia RA, Bogdan AR, Wolpert SM, Lev S, Appignani BA, Heilman CB (1995) Cerebrospinal fluid flow waveforms: analysis in patients with Chiari I malformation by means of gated phase-contrast MR imaging velocity measurements. Radiology 196:195–202

    PubMed  Google Scholar 

  22. Bhangoo R, Sgouros S (2006) Scoliosis in children with Chiari I-related syringomyelia. Childs Nerv Syst 22:1154–1157

    PubMed  Google Scholar 

  23. Bidziński J (1988) Pathological findings in suboccipital decompression in 63 patients with syringomyelia. Acta Neurochir Suppl (Wien) 43:26–28

    Google Scholar 

  24. Blagodatsky MD, Larionov SN, Manohin PA, Shanturov VA, Gladyshev YuV (1993) Surgical treatment of “hindbrain related” syringomyelia: new data for pathogenesis. Acta Neurochir (Wien) 124:82–85

    Google Scholar 

  25. Blagodatsky MD, Larionov SN, Alexandrov YA, Velm AI (1999) Surgical treatment of Chiari I malformation with or without syringomyelia. Acta Neurochir (Wien) 141:963–968

    Google Scholar 

  26. Bonafé A, Manelfe C, Espagno J, Guiraud B, Rascol A (1980) Evaluation of syringomyelia with metrizamide computed tomographic myelography. J Comput Assist Tomogr 4:797–802

    PubMed  Google Scholar 

  27. Bosley TM, Cohen DA, Schatz NJ, Zimmerman RA, Bilaniuk LT, Savino PJ, Sergott RS (1985) Comparison of metrizamide computed tomography and magnetic resonance imaging in the evaluation of lesions at the cervicomedullary junction. Neurology 35:485–492

    PubMed  Google Scholar 

  28. Brugieres P, Idy-Peretti I, Iffenecker C, Parker F, Jolivet O, Hurth M, Gaston A, Bittoun J (2000) CSF flow measurement in syringomyelia. AJNR 21:1785–1792

    PubMed  Google Scholar 

  29. Cahan LD, Bentson JR (1982) Considerations in the diagnosis and treatment of syringomyelia and the Chiari malformation. J Neurosurg 57:24–31

    PubMed  Google Scholar 

  30. Caldarelli M, Novegno F, Vassimi L, Romani R, Tamburrini G, Di Rocco C (2007) The role of limited posterior fossa craniectomy in the surgical treatment of Chiari malformation Type I: experience with a pediatric series. J Neurosurg 106(3 Suppl):187–195

    PubMed  Google Scholar 

  31. Calliauw L, Dehaene I (1977) The surgical risk in the treatment of Arnold Chiari malformations. Acta Neurochir (Wien) 39:173–179

    Google Scholar 

  32. Danish SF, Samdani A, Hanna A, Storm P, Sutton L (2006) Experience with acellular human dura and bovine collagen matrix for duraplasty after posterior fossa decompression for Chiari malformations. J Neurosurg 104(1 Suppl):16–20

    PubMed  Google Scholar 

  33. da Silva JA, Holanda MM (2003) Basilar impression, Chiari malformation and syringomyelia: a retrospective study of 53 surgically treated patients. Arq Neuropsiquiatr 61:368–375

    PubMed  Google Scholar 

  34. Davis CH, Symon L (1989) Mechanisms and treatment in post-traumatic syringomyelia. Br J Neurosurg 3:669–674

    PubMed  Google Scholar 

  35. DeLaPaz RL, Brady TJ, Buonanno FS, New PF, Kistler JP, McGinnis BD, Pykett IL, Taveras JM (1983) Nuclear magnetic resonance (NMR) imaging of Arnold-Chiari type I malformation with hydromyelia. J Comput Assist Tomogr 7:126–129

    PubMed  Google Scholar 

  36. Depreitere B, Van Calenbergh F, van Loon J, Goffin J, Plets C (2000) Posterior fossa decompression in syringomyelia associated with a Chiari malformation: a retrospective analysis of 22 patients. Clin Neurol Neurosurg 102:91–96

    PubMed  Google Scholar 

  37. Di Lorenzo N, Palma L, Palatinsky E, Fortuna A (1995) “Conservative” cranio-cervical decompression in the treatment of syringomyelia-Chiari I complex. A prospective study of 20 adult cases. Spine 20:2479–2483

    PubMed  Google Scholar 

  38. Dolar MT, Haughton VM, Iskandar BJ, Quigley M (2004) Effect of craniocervical decompression on peak CSF velocities in symptomatic patients with Chiari I malformation. AJNR 25:142–145

    PubMed  Google Scholar 

  39. Dones J, De Jesus O, Colen CB, Toledo MM, Delgado M (2003) Clinical outcomes in patients with Chiari I malformation: a review of 27 cases. Surg Neurol 60:142–148

    PubMed  Google Scholar 

  40. Dubois PJ, Drayer BP, Sage M, Osborne D, Heinz ER (1981) Intramedullary penetrance of metrizamide in the dog spinal cord. AJNR 2:313–317

    PubMed  Google Scholar 

  41. Duddy MJ, Williams B (1991) Hindbrain migration after decompression for hindbrain hernia: a quantitative assessment using MRI. Br J Neurosurg 5:141–152

    PubMed  Google Scholar 

  42. Durham SR, Fjeld-Olenec K (2008) Comparison of posterior fossa decompression with and without duraplasty for the surgical treatment of Chiari malformation Type I in pediatric patients: a meta-analysis. J Neurosurg Pediatr 2:42–49

    PubMed  Google Scholar 

  43. Dyste GN, Menezes AH, VanGilder JC (1989) Symptomatic Chiari malformations. An analysis of presentation, management, and long-term outcome. J Neurosurg 71:159–168

    PubMed  Google Scholar 

  44. Ekholm SE, Foley M, Kido DK, Morris TW (1984) Lumbar myelography with metrizamide in rabbits. An investigation of contrast media penetration and resorption. Acta Radiol Diagn (Stockh) 25:517–522

    Google Scholar 

  45. Eldevik OP (1983) Elimination of metrizamide from the spinal subarachnoid space: a study of patients with abolished intracranial circulation. AJNR 4:585–587

    PubMed  Google Scholar 

  46. Ellertsson AB, Greitz T (1970) The distending force in the production of communicating syringomyelia. Lancet 1(7658):1234

    PubMed  Google Scholar 

  47. Elster AD, Chen MY (1992) Chiari I malformations: clinical and radiologic reappraisal. Radiology 183:347–353

    PubMed  Google Scholar 

  48. Ergün R, Akdemir G, Gezici AR, Tezel K, Beskonakli E, Erg_ng_r F, Taskin Y (2000) Surgical management of syringomyelia-Chiari complex. Eur Spine J 9:553–557

    PubMed  Google Scholar 

  49. Falcone S, Quencer RM, Green BA, Patchen SJ, Post MJ (1994) Progressive posttraumatic myelomalacic myelopathy: imaging and clinical features. AJNR Am J Neuroradiol 15:747–754

    PubMed  Google Scholar 

  50. Fischbein NJ, Dillon WP, Cobbs C, Weinstein PR (1999) The “presyrinx” state: a reversible myelopathic condition that may precede syringomyelia. AJNR Am J Neuroradiol 20:7–20

    PubMed  Google Scholar 

  51. Forbes WS, Isherwood I (1978) Computed tomography in syringomyelia and the associated Arnold-Chiari type I malformation. Neuroradiology 27:73–78

    Google Scholar 

  52. Fujii K, Natori Y, Nakagaki H, Fukui M (1991) Management of syringomyelia associated with Chiari malformation: comparative study of syrinx size and symptoms by magnetic resonance imaging. Surg Neurol 36:281–285

    PubMed  Google Scholar 

  53. Furuya K, Sano K, Segawa H, Ide K, Yoneyama H (1998) Symptomatic tonsillar ectopia. J Neurol Neurosurg Psychiatry 64:221–226

    PubMed  Google Scholar 

  54. Galarza M, Sood S, Ham S (2007) Relevance of surgical strategies for the management of pediatric Chiari type I malformation. Childs Nerv Syst 23:691–696

    PubMed  Google Scholar 

  55. Gambardella G, Caruso G, Caffo M, Germanò A, La Rosa G, Tomasello F (1998) Transverse microincisions of the outer layer of the dura mater combined with foramen magnum decompression as treatment for syringomyelia with Chiari I malformation. Acta Neurochir (Wien) 140:134–139

    Google Scholar 

  56. Garcìa-Uria J, Leunda G, Carrillo R, Bravo G (1981) Syringomyelia: long-term results after posterior fossa decompression. J Neurosurg 54:380–383

    PubMed  Google Scholar 

  57. Gardner WJ, Goodall RJ (1950) The surgical treatment of Arnold-Chiari malformation in adults. An explanation of its mechanism and importance of encephalography in diagnosis. J Neurosurg 7:199–206

    PubMed  Google Scholar 

  58. Gardner WJ, Ange J (1958) The mechanism of syringomyelia and its surgical correction. Clin Neurosurg 6:131–140

    PubMed  Google Scholar 

  59. Gardner WJ (1965) Hydrodynamic mechanism of syringomyelia: its relationship to myelocele. J Neurol Neurosurg Psychiatry 28:247–259

    PubMed  Google Scholar 

  60. Ganong WF (1985) Dynamics of blood flow and lymph flow. In: Review of Medical Physiology, 12th edn. Lange Medical Publications, Maruzen Co, Tokyo, pp 470–484

    Google Scholar 

  61. Genitori L, Peretta P, Nurisso C, Macinante L, Mussa F (2000) Chiari type I anomalies in children and adolescents: minimally invasive management in a series of 53 cases. Childs Nerv Syst 16:707–718

    PubMed  Google Scholar 

  62. Gillilan LA (1970) Veins of the spinal cord. Anatomic details; suggested clinical applications. Neurology 20:860–868

    PubMed  Google Scholar 

  63. Goel A, Bhatjiwale M, Desai K (1998) Basilar invagination: a study based on 190 surgically treated patients. J Neurosurg 88:962–968

    PubMed  Google Scholar 

  64. Goel A, Desai K (2000) Surgery for syringomyelia: an analysis based on 163 surgical cases. Acta Neurochir (Wien) 142:293–302

    Google Scholar 

  65. Goh S, Bottrell CL, Aiken AH, Dillon WP, Wu YW (2008) Presyrinx in children with Chiari malformations. Neurology 71:351–356

    PubMed  Google Scholar 

  66. Golman K, Wiik I, Salvesen S (1979) Absorption of a non-ionic contrast agent from cerebrospinal fluid to blood. Neuroradiology 18:227–233

    PubMed  Google Scholar 

  67. Grabb PA, Mapstone TB, Oakes WJ (1999) Ventral brain stem compression in pediatric and young adult patients with Chiari I malformations. Neurosurgery 44:520–528

    PubMed  Google Scholar 

  68. Greenlee JD, Donovan KA, Hasan DM, Menezes AH (2002) Chiari I malformation in the very young child: the spectrum of presentations and experience in 31 children under age 6 years. Pediatrics 110:1212–1219

    PubMed  Google Scholar 

  69. Greitz D, Ericson K, Flodmark O (1999) Pathogenesis and mechanics of spinal cysts. A new hypothesis based on magnetic resonance stdies of cerebrospinal fluid dynamics. Int J Neuroradiol 5:61–78

    Google Scholar 

  70. Greitz D (2006) Unraveling the riddle of syringomyelia. Neurosurg Rev 29:251–264

    PubMed  Google Scholar 

  71. Guo F, Wang M, Long J, Wang H, Sun H, Yang B, Song L (2007) Surgical management of Chiari malformation: analysis of 128 cases. Pediatr Neurosurg 43:375–381

    PubMed  Google Scholar 

  72. Guyotat J, Bret P, Jouanneau E, Ricci AC, Lapras C (1998) Syringomyelia associated with type I Chiari malformation. A 21-year retrospective study on 75 cases treated by foramen magnum decompression with a special emphasis on the value of tonsils resection. Acta Neurochir (Wien) 140:745–754

    Google Scholar 

  73. Häckel M, Benes V, Mohapl M (2001) Simultaneous cerebral and spinal fluid pressure recordings in surgical indications of the Chiari malformation without myelodysplasia. Acta Neurochir (Wien) 143:909–918

    Google Scholar 

  74. Haughton VM, Korosec FR, Medow JE, Dolar MT, Iskandar BJ (2003) Peak systolic and diastolic CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in normal control participants. AJNR 24:169–176

    PubMed  Google Scholar 

  75. Hayhurst C, Richards O, Zaki H, Findlay G, Pigott TJ (2008) Hindbrain decompression for Chiari-syringomyelia complex: an outcome analysis comparing surgical techniques. Br J Neurosurg 22:86–91

    PubMed  Google Scholar 

  76. Heiss JD, Patronas N, DeVroom HL, Shawker T, Ennis R, Kammerer W, Eidsath A, Talbot T, Morris J, Eskioglu E, Oldfield EH (1999) Elucidating the pathophysiology of syringomyelia. J Neurosurg 91:553–562

    PubMed  Google Scholar 

  77. Hida K, Iwasaki Y, Koyanagi I, Sawamura Y, Abe H (1995) Surgical indication and results of foramen magnum decompression versus syringosubarachnoid shunting for syringomyelia associated with Chiari I malformation. Neurosurgery 37:673–679

    PubMed  Google Scholar 

  78. Hida K, Iwasaki Y, Koyanagi I, Abe H (1999) Pediatric syringomyelia with chiari malformation: its clinical characteristics and surgical outcomes. Surg Neurol 51:383–391

    PubMed  Google Scholar 

  79. Hida K, Iwasaki Y (2001) Syringosubarachnoid shunt for syringomyelia associated with Chiari I malformation. Neurosurg Focus 11:E7

    PubMed  Google Scholar 

  80. Hinokuma K, Ohama E, Oyanagi K, Kakita A, Kawai K, Ikuta F (1992) Syringomyelia. A neuropathological study of 18 autopsy cases. Acta Pathol Jpn 42:25–34

    PubMed  Google Scholar 

  81. Hoffman CE, Souweidane MM (2008) Cerebrospinal fluid-related complications with autologous duraplasty and arachnoid sparing in type I Chiari malformation. Neurosurgery 62(3 Suppl 1):156–161

    PubMed  Google Scholar 

  82. Hoffman HJ, Neill J, Crone KR, Hendrick EB, Humphreys RP (1987) Hydrosyringomyelia and its management in childhood. Neurosurgery 21:347–351

    PubMed  Google Scholar 

  83. Hofmann E, Warmuth-Metz M, Bendszus M, Solymosi L (2000) Phase-contrast MR imaging of the cervical CSF and spinal cord: volumetric motion analysis in patients with Chiari I malformation. AJNR 21:151–158

    PubMed  Google Scholar 

  84. Holly LT, Batzdorf U (2001) Management of cerebellar ptosis following craniovertebral decompression for Chiari I malformation. J Neurosurg 94:21–26

    PubMed  Google Scholar 

  85. Holtas S, Morris TW, Ekholm SE, Isaac L, Fonte D (1986) Penetration of subarachnoid contrast medium into rabbit spinal cord. Comparison between metrizamide and iohexol. Invest Radiol 21:151–155

    PubMed  Google Scholar 

  86. Ikata T, Masaki K, Kashiwaguchi S (1988) Clinical and experimental studies on permeability of tracers in normal spinal cord and syringomyelia. Spine 13:737–741

    PubMed  Google Scholar 

  87. Ikushima I, Korogi Y, Hirai T, Yamashita Y (2007) High-resolution constructive interference in a steady state imaging of cervicothoracic adhesive arachnoiditis. J Comput Assist Tomogr 31:143–147

    PubMed  Google Scholar 

  88. Isherwood I, Fawcitt RA, St Clair Forbes W, Nettle JR, Pullan BR (1977) Computer tomography of the spinal canal using metrizamide. Acta Radiol Suppl 355:299–305

    PubMed  Google Scholar 

  89. Iskandar BJ, Hedlund GL, Grabb PA, Oakes WJ (1998) The resolution of syringohydromyelia without hindbrain herniation after posterior fossa decompression. J Neurosurg 89:212–216

    PubMed  Google Scholar 

  90. Iskandar BJ, Quigley M, Haughton VM (2004) Foramen magnum cerebrospinal fluid flow characteristics in children with Chiari I malformation before and after craniocervical decompression. J Neurosurg 101(2 Suppl):169–178

    PubMed  Google Scholar 

  91. Isu T, Iwasaki Y, Sasaki H, Abe H, Tashiro K, Nakamura N (1987) An autopsy case of syringomyelia associated with Chiari malformation and basilar impression [in Japanese]. No Shinkei Geka 15:671–675

    PubMed  Google Scholar 

  92. Isu T, Iwasaki Y, Akino M, Abe H (1990) Syringo-subarachnoid shunt for syringomyelia associated with Chiari malformation (type 1). Acta Neurochir (Wien) 107:152–160

    Google Scholar 

  93. Isu T, Iwasaki Y, Akino M, Abe H (1990) Hydrosyringomyelia associated with a Chiari I malformation in children and adolescents. Neurosurgery 26:591–597

    PubMed  Google Scholar 

  94. Isu T, Sasaki H, Takamura H, Kobayashi N (1993) Foramen magnum decompression with removal of the outer layer of the dura as treatment for syringomyelia occurring with Chiari I malformation. Neurosurgery 33:844–850

    PubMed  Google Scholar 

  95. Iwasaki Y, Abe H, Isu T, Miyasaka K (1985) CT myelography with intramedullary enhancement in cervical spondylosis. J Neurosurg 63:363–366

    PubMed  Google Scholar 

  96. Iwasaki Y, Koyanagi I, Hida K, Abe H (1999) Syringo-subarachnoid shunt for syringomyelia using partial hemilaminectomy. Br J Neurosurg 13:41–45

    PubMed  Google Scholar 

  97. Iwasaki Y, Hida K, Koyanagi I, Abe H (2000) Reevaluation of syringosubarachnoid shunt for syringomyelia with Chiari malformation. Neurosurgery 46:407–413

    PubMed  Google Scholar 

  98. James HE, Brant A (2002) Treatment of the Chiari malformation with bone decompression without durotomy in children and young adults. Childs Nerv Syst 18:202–206

    PubMed  Google Scholar 

  99. Jinkins JR, Bashir R, Al-Mefty O, Al-Kawi MZ, Fox JL (1986) Cystic necrosis of the spinal cord in compressive cervical myelopathy: demonstration by iopamidol CT-myelography. AJR 147:767–775

    PubMed  Google Scholar 

  100. Kan S, Fox AJ, Vinuela F, Debrun G (1983) Spinal cord size in syringomyelia: change with position on metrizamide myelography. Radiology 146:409–414

    PubMed  Google Scholar 

  101. Kan S, Fox AJ, Vinuela F (1985) Delayed metrizamide CT enhancement of syringomyelia: postoperative observations. AJNR 6:613–616

    PubMed  Google Scholar 

  102. Karagoz F, Izgi N, Kapijcijoglu Sencer S (2002) Morphometric measurements of the cranium in patients with Chiari type I malformation and comparison with the normal population. Acta Neurochir (Wien) 144:165–171

    Google Scholar 

  103. Klekamp J, Batzdorf U, Samii M, Bothe HW (1996) The surgical treatment of Chiari I malformation. Acta Neurochir (Wien) 138:788–801

    Google Scholar 

  104. Klekamp J (2002) The pathophysiology of syringomyelia—historical overview and current concept. Acta Neurochir (Wien) 144:649–664

    Google Scholar 

  105. Koc K, Anik Y, Anik I, Cabuk B, Ceylan S (2007) Chiari 1 malformation with syringomyelia: correlation of phase-contrast cine MR imaging and outcome. Turk Neurosurg 17:183–192

    PubMed  Google Scholar 

  106. Koyanagi I, Iwasaki Y, Hida K, Houkin K (2005) Clinical features and pathomechanisms of syringomyelia associated with spinal arachnoiditis. Surg Neurol 63:350–355

    PubMed  Google Scholar 

  107. Krieger MD, McComb JG, Levy ML (1999) Toward a simpler surgical management of Chiari I malformation in a pediatric population. Pediatr Neurosurg 30:113–121

    PubMed  Google Scholar 

  108. Kumar R, Kalra SK, Vaid VK, Mahapatra AK (2008) Chiari I malformation: surgical experience over a decade of management. Br J Neurosurg 22:409–414

    PubMed  Google Scholar 

  109. Kyoshima K, Kuroyanagi T, Oya F, Kamijo Y, El-Noamany H, Kobayashi S (2002) Syringomyelia without hindbrain herniation: tight cisterna magna. Report of four cases and a review of the literature. J Neurosurg 96(2 Suppl):239–249

    PubMed  Google Scholar 

  110. Kyoshima K, Kuroyanagi T, Toriyama T, Takizawa T, Hirooka Y, Miyama H, Tanabe A, Oikawa S (2004) Surgical experience of syringomyelia with reference to the findings of magnetic resonance imaging. J Clin Neurosci 11:273–279

    PubMed  Google Scholar 

  111. LaMasters DL, Watanabe TJ, Chambers EF, Norman D, Newton TH (1982) Multiplanar metrizamide-enhanced CT imaging of the foramen magnum. AJNR 3:485–494

    PubMed  Google Scholar 

  112. Lazareff JA, Galarza M, Gravori T, Spinks TJ (2002) Tonsillectomy without craniectomy for the management of infantile Chiari I malformation. J Neurosurg 97:1018–1022

    PubMed  Google Scholar 

  113. Lee TT, Arias JM, Andrus HL, Quencer RM, Falcone SF, Green BA (1997) Progressive posttraumatic myelomalacic myelopathy: treatment with untethering and expansive duraplasty. J Neurosurg 86:624–628

    PubMed  Google Scholar 

  114. Lesoin F, Petit H, Thomas CE 3rd, Viaud C, Baleriaux D, Jomin M (1986) Use of the syringoperitoneal shunt in the treatment of syringomyelia. Surg Neurol 25:131–136

    PubMed  Google Scholar 

  115. Levine DN (2004) The pathogenesis of syringomyelia associated with lesions at the foramen magnum: a critical review of existing theories and proposal of a new hypothesis. J Neurol Sci 220:3–21

    PubMed  Google Scholar 

  116. Levy WJ, Mason L, Hahn JF (1983) Chiari malformation presenting in adults: a surgical experience in 127 cases. Neurosurgery 12:377–390

    PubMed  Google Scholar 

  117. Li KC, Chui MC (1987) Conventional and CT metrizamide myelography in Arnold-Chiari I malformation and syringomyelia. AJNR 8:11–17

    PubMed  Google Scholar 

  118. Limonadi FM, Selden NR (2004) Dura-splitting decompression of the craniocervical junction: reduced operative time, hospital stay, and cost with equivalent early outcome. J Neurosurg 101(2 Suppl):184–188

    PubMed  Google Scholar 

  119. Lipson AC, Ellenbogen RG, Avellino AM (2008) Radiographic formation and progression of cervical syringomyelia in a child with untreated Chiari I malformation. Pediatr Neurosurg 44:221–223

    PubMed  Google Scholar 

  120. Liu B, Wang ZY, Xie JC, Han HB, Pei XL (2007) Cerebrospinal fluid dynamics in Chiari malformation associated with syringomyelia. Chin Med J (Engl) 120:219–223

    Google Scholar 

  121. Logue V, Edwards MR (1981) Syringomyelia and its surgical treatment—an analysis of 75 patients. J Neurol Neurosurg Psychiatry 44:273–284

    PubMed  Google Scholar 

  122. Lund-Johansen M, Wester K (1997) Syringomyelia treated with a nonvalved syringoperitoneal shunt: a follow-up study. Neurosurgery 41:858–865

    PubMed  Google Scholar 

  123. MacDonald RL, Findlay JM, Tator CH (1988) Microcystic spinal cord degeneration causing posttraumatic myelopathy. Report of two cases. J Neurosurg 68:466–471

    PubMed  Google Scholar 

  124. Mariani C, Cislaghi MG, Barbieri S, Filizzolo F, Di Palma F, Farina E, D'Aliberti G, Scarlato G (1991) The natural history and results of surgery in 50 cases of syringomyelia. J Neurol 238:433–438

    PubMed  Google Scholar 

  125. Masur H, Oberwittler C, Reuther G, Heyen P (1995) Cerebellar herniation in syringomyelia: relation between tonsillar herniation and the dimensions of the syrinx and the remaining spinal cord. A quantitative MRI study. Eur Neurol 35:162–167

    PubMed  Google Scholar 

  126. McGirt MJ, Nimjee SM, Floyd J, Bulsara KR, George TM (2005) Correlation of cerebrospinal fluid flow dynamics and headache in Chiari I malformation. Neurosurgery 56:716–721

    PubMed  Google Scholar 

  127. McGirt MJ, Nimjee SM, Fuchs HE, George TM (2006) Relationship of cine phase-contrast magnetic resonance imaging with outcome after decompression for Chiari I malformations. Neurosurgery 59:140–146

    PubMed  Google Scholar 

  128. McGirt MJ, Atiba A, Attenello FJ, Wasserman BA, Datoo G, Gathinji M, Carson B, Weingart JD, Jallo GI (2008) Correlation of hindbrain CSF flow and outcome after surgical decompression for Chiari I malformation. Childs Nerv Syst 24:833–840

    PubMed  Google Scholar 

  129. Milhorat TH, Hammock MK, Fenstermacher JD, Rall DP, Levin VA (1971) Cerebrospinal fluid production by the choroids plexus and brain. Science 173:330–332

    PubMed  Google Scholar 

  130. Milhorat TH, Johnson WD, Miller JI, Bergland RM, Hollenberg-Sher J (1992) Surgical treatment of syringomyelia based on magnetic resonance imaging criteria. Neurosurgery 31:231–245

    PubMed  Google Scholar 

  131. Milhorat TH, Miller JI, Johnson WD, Adler DE, Heger IM (1993) Anatomical basis of syringomyelia occurring with hindbrain lesions. Neurosurgery 32:748–754

    PubMed  Google Scholar 

  132. Milhorat TH, Capocelli AL Jr, Anzil AP, Kotzen RM, Milhorat RH (1995) Pathological basis of spinal cord cavitation in syringomyelia: analysis of 105 autopsy cases. J Neurosurg 82:802–812

    PubMed  Google Scholar 

  133. Milhorat TH, Capocelli AL Jr, Kotzen RM, Bolognese P, Heger IM, Cottrell JE (1997) Intramedullary pressure in syringomyelia: clinical and pathophysiological correlates of syrinx distension. Neurosurgery 41:1102–1110

    PubMed  Google Scholar 

  134. Milhorat TH, Chou MW, Trinidad EM, Kula RW, Mandell M, Wolpert C, Speer MC (1999) Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery 44:1005–1017

    PubMed  Google Scholar 

  135. Miyasaka K, Asano T, Ushikoshi S, Hida K, Koyanagi I (2000) Vascular anatomy of the spinal cord and classification of spinal arteriovenous malformations. Interv Neuroradiol 6(Suppl 1):195–198

    Google Scholar 

  136. Munshi I, Frim D, Stine-Reyes R, Weir BK, Hekmatpanah J, Brown F (2000) Effects of posterior fossa decompression with and without duraplasty on Chiari malformation-associated hydromyelia. Neurosurgery 46:1384–1390

    PubMed  Google Scholar 

  137. Muthukumar N, Venkatesh G, Thiruppathy S (2005) Arrested hydrocephalus and the presyrinx state. Case report. J Neurosurg 103(5 Suppl):466–470

    PubMed  Google Scholar 

  138. Nagib MG (1994) An approach to symptomatic children (ages 4–14 years) with Chiari type I malformation. Pediatr Neurosurg 21:31–35

    PubMed  Google Scholar 

  139. Nauta HJ, Dolan E, Yasargil MG (1983) Microsurgical anatomy of spinal subarachnoid space. Surg Neurol 19:431–437

    PubMed  Google Scholar 

  140. Navarro R, Olavarria G, Seshadri R, Gonzales-Portillo G, McLone DG, Tomita T (2004) Surgical results of posterior fossa decompression for patients with Chiari I malformation. Childs Nerv Syst 20:349–356

    PubMed  Google Scholar 

  141. Netsky MG (1953) Syringomyelia; a clinicopathologic study. AMA Arch Neurol Psychiatry 70:741–777

    PubMed  Google Scholar 

  142. Nishikawa M, Sakamoto H, Hakuba A, Nakanishi N, Inoue Y (1997) Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg 86:40–47

    PubMed  Google Scholar 

  143. Nomura S, Akimura T, Imoto H, Nishizaki T, Suzuki M (2002) Endoscopic fenestration of posterior fossa arachnoid cyst for the treatment of presyrinx myelopathy–case report. Neurol Med Chir (Tokyo) 42:452–454

    Google Scholar 

  144. Nyland H, Krogness KG (1978) Size of posterior fossa in Chiari type 1 malformation in adults. Acta Neurochir (Wien) 40:233–242

    Google Scholar 

  145. Oldfield EH, Muraszko K, Shawker TH, Patronas NJ (1994) Pathophysiology of syringomyelia associated with Chiari I malformation of the cerebellar tonsils. Implications for diagnosis and treatment. J Neurosurg 80:3–15

    PubMed  Google Scholar 

  146. Olsson B, Eldevik OP, Gronnerod TA (1985) Absorption of iohexol from cerebrospinal fluid to blood: pharmacokinetics in humans. Neuroradiology 27:172–175

    PubMed  Google Scholar 

  147. Ono A, Suetsuna F, Ueyama K, Yokoyama T, Aburakawa S, Numasawa T, Wada K, Toh S (2007) Surgical outcomes in adult patients with syringomyelia associated with Chiari malformation type I: the relationship between scoliosis and neurological findings. J Neurosurg Spine 6:216–221

    PubMed  Google Scholar 

  148. Ono A, Suetsuna F, Ueyama K, Yokoyama T, Aburakawa S, Takeuchi K, Numasawa T, Wada K, Toh S (2007) Cervical spinal motion before and after surgery in patients with Chiari malformation type I associated with syringomyelia. J Neurosurg Spine 7:473–477

    PubMed  Google Scholar 

  149. Padovani R, Cavallo M, Gaist G (1989) Surgical treatment of syringomyelia: favorable results with syringosubarachnoid shunting. Surg Neurol 32:173–180

    PubMed  Google Scholar 

  150. Panigrahi M, Reddy BP, Reddy AK, Reddy JJ (2004) CSF flow study in Chiari I malformation. Childs Nerv Syst 20:336–340

    PubMed  Google Scholar 

  151. Perrini P, Benedetto N, Tenenbaum R, Di Lorenzo N (2007) Extra-arachnoidal cranio-cervical decompression for syringomyelia associated with Chiari I malformation in adults: technique assessment. Acta Neurochir (Wien) 149:1015–1023

    Google Scholar 

  152. Phillips TW, Kindt GW (1981) Syringoperitoneal shunt for syringomyelia: a preliminary report. Surg Neurol 16:462–466

    PubMed  Google Scholar 

  153. Pillay PK, Awad IA, Little JR, Hahn JF (1991) Symptomatic Chiari malformation in adults: a new classification based on magnetic resonance imaging with clinical and prognostic significance. Neurosurgery 28:639–645

    PubMed  Google Scholar 

  154. Pinna G, Alessandrini F, Alfieri A, Rossi M, Bricolo A (2000) Cerebrospinal fluid flow dynamics study in Chiari I malformation: implications for syrinx formation. Neurosurg Focus 8:E3

    PubMed  Google Scholar 

  155. Pujol J, Roig C, Capdevila A, Pou A, Marti-Vilalta JL, Kulisevsky J, Escartin A, Zannoli G (1995) Motion of the cerebellar tonsils in Chiari type I malformation studied by cine phase-contrast MRI. Neurology 45:1746–1753

    PubMed  Google Scholar 

  156. Quigley MF, Iskandar B, Quigley ME, Nicosia M, Haughton V (2004) Cerebrospinal fluid flow in foramen magnum: temporal and spatial patterns at MR imaging in volunteers and in patients with Chiari I malformation. Radiology 232:229–236

    PubMed  Google Scholar 

  157. Reed CM, Campbell SE, Beall DP, Bui JS, Stefko RM (2005) Atlanto-occipital dislocation with traumatic pseudomeningocele formation and post-traumatic syringomyelia. Spine 30:E128–E133

    PubMed  Google Scholar 

  158. Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a 'paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326:47–63

    PubMed  Google Scholar 

  159. Resjö IM, Harwood-Nash DC, Fitz CR, Chuang S (1979) Computed tomographic metrizamide myelography in syringohydromyelia. Radiology 131:405–407

    PubMed  Google Scholar 

  160. Rhoton AL Jr (1976) Microsurgery of Arnold-Chiari malformation in adults with and without hydromyelia. J Neurosurg 45:473–483

    PubMed  Google Scholar 

  161. Sage MR, Wilcox J, Evill CA, Benness GT (1982) Brain parenchyma penetration by intrathecal ionic and nonionic contrast media. AJNR 3:481–483

    PubMed  Google Scholar 

  162. Sahuquillo J, Rubio E, Poca MA, Rovira A, Rodriguez-Baeza A, Cervera C (1994) Posterior fossa reconstruction: a surgical technique for the treatment of Chiari I malformation and Chiari I/syringomyelia complex—preliminary results and magnetic resonance imaging quantitative assessment of hindbrain migration. Neurosurgery 35:874–885

    PubMed  Google Scholar 

  163. Sakamoto H, Nishikawa M, Hakuba A, Yasui T, Kitano S, Nakanishi N, Inoue Y (1999) Expansive suboccipital cranioplasty for the treatment of syringomyelia associated with Chiari malformation. Acta Neurochir (Wien) 141:949–961

    Google Scholar 

  164. Sakas DE, Korfias SI, Wayte SC, Beale DJ, Papapetrou KP, Stranjalis GS, Whittaker KW, Whitwell HL (2005) Chiari malformation: CSF flow dynamics in the craniocervical junction and syrinx. Acta Neurochir (Wien) 147:1223–1233

    Google Scholar 

  165. Sansur CA, Heiss JD, DeVroom HL, Eskioglu E, Ennis R, Oldfield EH (2003) Pathophysiology of headache associated with cough in patients with Chiari I malformation. J Neurosurg 98:453–458

    PubMed  Google Scholar 

  166. Sato O, Asai T, Amano Y, Hara M, Tsugane R, Yagi M (1971) Formation of cerebrospinal fluid in spinal subarachnoid space. Nature 233:129–130

    PubMed  Google Scholar 

  167. Schady W, Metcalfe RA, Butler P (1987) The incidence of craniocervical bony anomalies in the adult Chiari malformation. J Neurol Sci 82:193–203

    PubMed  Google Scholar 

  168. Schlesinger EB, Antunes JL, Michelsen WJ, Louis KM (1981) Hydromyelia: clinical presentation and comparison of modalities of treatment. Neurosurgery 9:356–365

    PubMed  Google Scholar 

  169. Scholsem M, Scholtes F, Belachew S, Martin D (2008) Acquired tonsillar herniation and syringomyelia after pleural effusion aspiration: case report. Neurosurgery 62:E1172–E1173

    PubMed  Google Scholar 

  170. Sekula RF Jr, Jannetta PJ, Casey KF, Marchan EM, Sekula LK, McCrady CS (2005) Dimensions of the posterior fossa in patients symptomatic for Chiari I malformation but without cerebellar tonsillar descent. Cerebrospinal Fluid Res 2:11

    PubMed  Google Scholar 

  171. Sgouros S, Williams B (1995) A critical appraisal of drainage in syringomyelia. J Neurosurg 82:1–10

    PubMed  Google Scholar 

  172. Sgouros S, Kountouri M, Natarajan K (2007) Skull base growth in children with Chiari malformation Type I. J Neurosurg 107(3 Suppl):188–192

    PubMed  Google Scholar 

  173. Sindou M, Chavez-Machuca J, Hashish H (2002) Cranio-cervical decompression for Chiari type I-malformation, adding extreme lateral foramen magnum opening and expansile duroplasty with arachnoid preservation. Technique and long-term functional results in 44 consecutive adult cases—comparison with literature dat. Acta Neurochir (Wien) 144:1005–1019

    Google Scholar 

  174. Sivaramakrishnan A, Alperin N, Surapaneni S, Lichtor T (2004) Evaluating the effect of decompression surgery on cerebrospinal fluid flow and intracranial compliance in patients with chiari malformation with magnetic resonance imaging flow studies. Neurosurgery 55:1344–1351

    PubMed  Google Scholar 

  175. Stevens JM, Serva WA, Kendall BE, Valentine AR, Ponsford JR (1993) Chiari malformation in adults: relation of morphological aspects to clinical features and operative outcome. J Neurol Neurosurg Psychiatry 56:1072–1077

    PubMed  Google Scholar 

  176. Stoodley MA, Jones NR, Brown CJ (1996) Evidence for rapid fluid flow from the subarachnoid space into the spinal cord central canal in the rat. Brain Res 707:155–164

    PubMed  Google Scholar 

  177. Stoodley MA, Brown SA, Brown CJ, Jones NR (1997) Arterial pulsation-dependent perivascular cerebrospinal fluid flow into the central canal in the sheep spinal cord. J Neurosurg 86:686–693

    PubMed  Google Scholar 

  178. Stovner LJ, Rinck P (1992) Syringomyelia in Chiari malformation: relation to extent of cerebellar tissue herniation. Neurosurgery 31:913–917

    PubMed  Google Scholar 

  179. Stovner LJ, Bergan U, Nilsen G, Sjaastad O (1993) Posterior cranial fossa dimensions in the Chiari I malformation: relation to pathogenesis and clinical presentation. Neuroradiology 35:113–118

    PubMed  Google Scholar 

  180. Tachibana S, Iida H, Yada K (1992) Significance of positive Queckenstedt test in patients with syringomyelia associated with Arnold-Chiari malformations. J Neurosurg 76:67–71

    PubMed  Google Scholar 

  181. Takayasu M, Takagi T, Hara M, Anzai M (2004) A simple technique for expansive suboccipital cranioplasty following foramen magnum decompression for the treatment of syringomyelia associated with Chiari I malformation. Neurosurg Rev 27:173–177

    PubMed  Google Scholar 

  182. Tator CH, Meguro K, Rowed DW (1982) Favorable results with syringosubarachnoid shunts for treatment of syringomyelia. J Neurosurg 56:517–523

    PubMed  Google Scholar 

  183. Tator CH, Briceno C (1988) Treatment of syringomyelia with a syringosubarachnoid shunt. Can J Neurol Sci 15:48–57

    PubMed  Google Scholar 

  184. Tator CH, Koyanagi I (1997) Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 86:483–492

    PubMed  Google Scholar 

  185. Terae S, Miyasaka K, Abe S, Abe H, Tashiro K (1994) Increased pulsatile movement of the hindbrain in syringomyelia associated with the Chiari malformation: cine-MRI with presaturation bolus tracking. Neuroradiology 36:125–129

    PubMed  Google Scholar 

  186. Tokuno H, Hakuba A, Suzuki T, Nishimura S (1988) Operative treatment of Chiari malformation with syringomyelia. Acta Neurochir Suppl (Wien) 43:22–25

    Google Scholar 

  187. Trigylidas T, Baronia B, Vassilyadi M, Ventureyra EC (2008) Posterior fossa dimension and volume estimates in pediatri.c patients with Chiari I malformations. Childs Nerv Syst 24:329–336

    PubMed  Google Scholar 

  188. Tubbs RS, Elton S, Grabb P, Dockery SE, Bartolucci AA, Oakes WJ (2001) Analysis of the posterior fossa in children with the Chiari 0 malformation. Neurosurgery 48:1050–1055

    PubMed  Google Scholar 

  189. Tubbs RS, McGirt MJ, Oakes WJ (2003) Surgical experience in 130 pediatric patients with Chiari I malformations. J Neurosurg 99:291–296

    PubMed  Google Scholar 

  190. Tubbs RS, Webb DB, Oakes WJ (2004) Persistent syringomyelia following pediatric Chiari I decompression: radiological and surgical findings. J Neurosurg 100(5 Suppl Pediatrics):460–464

    PubMed  Google Scholar 

  191. Tubbs RS, Iskandar BJ, Bartolucci AA, Oakes WJ (2004) A critical analysis of the Chiari 1.5 malformation. J Neurosurg 101(2 Suppl):179–183

    PubMed  Google Scholar 

  192. Ur-Rahman N, Jamjoom ZA (1991) Surgical management of Chiari malformation and syringomyelia: experience in 14 cases. Ann Saudi Med 11:402–410

    PubMed  Google Scholar 

  193. Vanaclocha V, Saiz-Sapena N, Garcia-Casasola MC (1997) Surgical technique for cranio-cervical decompression in syringomyelia associated with Chiari type I malformation. Acta Neurochir (Wien) 139:529–540

    Google Scholar 

  194. Vaquero J, Mart_nez R, Salazar J, Santos H (1987) Syringosubarachnoid shunt for treatment of syringomyelia. Acta Neurochir (Wien) 84:105–109

    Google Scholar 

  195. Vega A, Quintana F, Berciano J (1990) Basichondrocranium anomalies in adult Chiari type I malformation: a morphometric study. J Neurol Sci 99:137–145

    PubMed  Google Scholar 

  196. Ventureyra EC, Aziz HA, Vassilyadi M (2003) The role of cine flow MRI in children with Chiari I malformation. Childs Nerv Syst 19:109–113

    PubMed  Google Scholar 

  197. Vernet O, Farmer JP, Montes JL (1996) Comparison of syringopleural and syringosubarachnoid shunting in the treatment of syringomyelia in children. J Neurosurg 84:624–628

    PubMed  Google Scholar 

  198. Wang AM, Jolesz F, Rumbaugh CL, Zamani A (1983) CT assessment of thoracic extension and of concomitant lesions in syringohydromyelia. J Comput Assist Tomogr 7:18–24

    PubMed  Google Scholar 

  199. Wetjen NM, Heiss JD, Oldfield EH (2008) Time course of syringomyelia resolution following decompression of Chiari malformation Type I. J Neurosurg Pediatr 1:118–123

    PubMed  Google Scholar 

  200. Williams B (1969) The distending force in the producing of “communicating syringomyelia”. Lancet 26:189–193

    Google Scholar 

  201. Williams B (1980) On the pathogenesis of syringomyelia: a review. J R Soc Med 73:798–806

    PubMed  Google Scholar 

  202. Williams B, Sgouros S, Nenji E (1995) Cerebrospinal fluid drainage for syringomyelia. Eur J Pediatr Surg 5(Suppl 1):27–30

    PubMed  Google Scholar 

  203. Winkler SS, Sackett JF (1980) Explanation of metrizamide brain penetration: a review. J Comput Assist Tomogr 4:191–193

    PubMed  Google Scholar 

  204. Wolpert SM, Bhadelia RA, Bogdan AR, Cohen AR (1994) Chiari I malformations: assessment with phase-contrast velocity MR. AJNR 15:1299–1308

    PubMed  Google Scholar 

  205. Won DJ, Nambiar U, Muszynski CA, Epstein FJ (1997) Coagulation of herniated cerebellar tonsils for cerebrospinal fluid pathway restoration. Pediatr Neurosurg 27:272–275

    PubMed  Google Scholar 

  206. Woosley RE, Whaley RA (1982) Use of metrizamide in computerized tomography to diagnose the Chiari I malformation. J Neurosurg 56:373–376

    PubMed  Google Scholar 

  207. Wu YW, Chin CT, Chan KM, Barkovich AJ, Ferriero DM (1999) Pediatric Chiari I malformations: do clinical and radiologic features correlate? Neurology 53:1271–1276

    PubMed  Google Scholar 

  208. Yamazaki Y, Tachibana S, Takano M, Fujii K (1998) Clinical and neuroimaging features of Chiari type I malformations with and without associated syringomyelia. Neurol Med Chir (Tokyo) 38:541–546

    Google Scholar 

  209. Yeh DD, Koch B, Crone KR (2006) Intraoperative ultrasonography used to determine the extent of surgery necessary during posterior fossa decompression in children with Chiari malformation type I. J Neurosurg 105(1 Suppl):26–32

    PubMed  Google Scholar 

  210. Yilmaz N, Kiymaz N, Mumcu C (2005) Surgical treatment of craniocervical decompression without Chiari malformation in syringomyelia. Hiroshima J Med Sci 54:109–111

    PubMed  Google Scholar 

  211. Yundt KD, Park TS, Tantuwaya VS, Kaufman BA (1996) Posterior fossa decompression without duraplasty in infants and young children for treatment of Chiari malformation and achondroplasia. Pediatr Neurosurg 25:221–226

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izumi Koyanagi.

Additional information

Comments

Fumio Suzuki and Kazuhiko Nozaki, Shiga, Japan

The authors are to be congratulated for this comprehensive overview on the pathophysiology of syringomyelia. They made a modification of the theory proposed by Greitz D. in that a decreased compliance of the large veins in the subarachnoid space, which results from the reduced compliance of CSF below the obstruction, decreases the absorption of the extracellular fluid from intramedullary venous channels, resulting in the accumulation of extracellular fluid in spinal cord. This phenomenon might contribute partly to the development of syringomyelia but does not seem to be a main cause of syrinx formation. Although Greitz D. reported in his review that venous congestion might contribute to syrinx formation, venous congestion is not so obvious in Chari malformation type 1 as in spinal dural AVFs, in which large veins of the spinal cord are congested severely and compromised veins should reduce their compliance. These abnormal venous conditions may induce necrotizing myelitis but do not necessarily accompany syrinx formation. The authors referred to the report by Heiss J. et al. as an evidence of reduced CSF compliance, but the data was not statistically significant. More data about the changes in compliance of CSF space in Chiari Type 1 should be needed before establishing their modified theory.

Comments

Ricardo V. Botelho, São Paulo, Brazil

The authors performed a comprehensive review of mechanisms and concepts related to the pathogenesis of syringomyelia in Chiari malformation and have designed a hypothetical model of pathogenesis for syringomyelia.

Some of the factors reviewed are well established and others are hypothetical:

1. Patients with CM and sirirngomielia have smaller posterior fossa than those who did not have syringomyelia.

2. In patients with Chiari malformation, smaller tonsillar herniations are associated more frequently with syringomyelia than larger herniations.

The combination of these two features, small and shallow posterior fossa and small herniation of the tonsils might suggest a lower compliance of the foramen magnum, at the same time, prevents the descent of the tonsils and produces an early and intense blockage of free flow of craniocervial CSF in patients with syrinx.

3. Patients with syringomyelia have a blockage of subarachnoid CSF flow and less complacency of the subarachnoid space and posterior spinal veins.

4. The reduced absortion mechanism from the extracellular fluid from the spinal Cord parenchyma would result in syringomyelia in Chiari type 1 malformation, as speculated by the authors.

One real and observed effect in patients with syringomyelia and MC is that decompression of the posterior fossa often decreases syringomyelia cavity, probably by restoring the caniocervical flow of CSF.

The importance of reducing capacity venos absorption of extracellular fluid is an interesting suggestion posed by the authors that future works will confirm or not these suggestions.

Comments

Jörg Klekamp, Quakenbrück, Germany

In this paper, Koyanagi and Houkin present a hypothesis that was supposed to explain the development of syringomyelia in patients with a Chiari type I malformation. The authors correctly summarize in their paper that previous theories trying to explain syringomyelia by cerebrospinal fluid (CSF) entering the spinal cord via the 4th ventricle or other avenues have failed to demonstrate such a communication and are not able to explain several observations in these patients. Even though several thoughts and conclusions by the authors are well founded, I do have some reservations against this paper.

In table 1, the authors provide a list of previous theories and disqualify each of these as speculative. This statement is grossly negligent. Gardner's and Williams' theories, for instance, may no longer be tenable but were based on careful clinical tests, pressure recordings in patients and several animal studies. Given the technical conditions at the time, these works were state of the art and well founded on the observations made. Likewise, the theories of extracellular origin relating syringomyelia to edema formation are based on animal experiments and clinical observations and by no means just the result of a literature review.

The concept of syringomyelia as a spinal cord edema is by no means new. Tannenberg in 1924 and Liber and Lisa in 1937 were the first to propose this view. Taylor and Byrnes in 1974, Aboulker in 1979, and Yamada et al. in 1996 further elaborated on this theory and already emphasized the importance of venous obstruction, which they thought to cause syrinx formation in combination with CSF flow obstruction.

I do not agree with the authors' initial statement, that theories concerning the pathophysiology of syringomyelia on this basis do not apply to patients with a Chiari malformation. Several experimental studies have provided new insights into the physiological exchange between extracellular fluid (ECF) of the spinal cord and CSF under normal conditions as well as with CSF-flow obstructions. It appears that any pathology causing a CSF-flow obstruction and/or spinal cord tethering as well as certain intramedullary tumors are able to disturb the balance between ECF und CSF in the spinal canal, which may then lead to syrinx formation. This concept applies to patients with a Chiari malformation just as well as to those with posttraumatic syringomyelia, for instance. After all, syrinx formation in Chiari patients is the result of CSF-flow obstruction at the foramen magnum as it is in posttraumatic syringomyelia with CSF-flow obstruction at the level of the posttraumatic arachnopathy. With their hypothesis, Koyanagi and Houkin simply add a reduced compliance of posterior spinal cord veins to this concept of ECF/CSF imbalance. Spinal cord veins may turn out to contribute to syrinx formation in this setting but this assumption does not imply a completely novel hypothesis.

References

1. Aboulker J. (1979) La syringomyelie et les liquides intra-rachidiens. Neurochirurgie 25 (Suppl):1–144.

2. Liber AF, Lisa JR. (1937) Rosenthal fibres in non-neoplastic syringomyelia: a note on the pathogenesis of syringomyelia. J. Nerv. Ment. Dis. 86:549–558.

3. Tannenberg J. (1924) Über die Pathogenese der Syringomyelie, zugleich ein Beitrag zum Vorkommen von Capillarhämangiomen im Rückenmark. Z. Neurol. 92:119–174.

4. Taylor AR, Byrnes DP. (1974) Foramen magnum and high cervical cord compression. Brain 97:473–480.

5. Yamada H, Yokota A, Haratake J, Horie A. (1996) Morphological study of experimental syringomyelia with kaolin-induced hydrocephalus in a canine model. J. Neurosurg. 84:999–1005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyanagi, I., Houkin, K. Pathogenesis of syringomyelia associated with Chiari type 1 malformation: review of evidences and proposal of a new hypothesis. Neurosurg Rev 33, 271–285 (2010). https://doi.org/10.1007/s10143-010-0266-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-010-0266-5

Keywords

Navigation