Skip to main content
Log in

Signature microRNAs in human cornea limbal epithelium

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

This study was aimed to identify the signature microRNAs, which regulate the biological processes of corneal epithelial progenitor cell (CEPC) homeostasis and regulation through characterizing the differential expression profile of microRNAs in human limbal epithelium containing adult CEPC versus central corneal epithelium without CEPC. MicroRNA microarray had identified 37 microRNAs enriched in human corneal epithelium. Among them, nine were significantly upregulated in limbal epithelium and one in central corneal epithelium after validation by TaqMan® real-time polymerase chain reaction. In addition to our previous finding of miR-143 and 145, the expression of miR-10b, 126, and 155 was localized in limbal epithelium (LE) (predominantly basal layers) by using locked nucleic acid-based in situ hybridization. Potential target genes were predicted by TargetScan Human v6.0 and compared to the reported human cornea epithelial gene profile GSE5543. Analyzed by web-based Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and DAVID Functional Annotation Bioinformatics Resources v6.7, the downregulated genes were involved in pathways of immune response and cellular protection, apoptosis, and cell movement whereas upregulated genes with cell survival, cell-matrix interaction, and cell–cell adhesion. We found a constant occurrence of miR-143, 145, and 155 in all KEGG pathways regulating limbal epithelial events. By Ingenuity Systems (IPA®) analysis, these microRNAs could cooperatively regulate cell growth and apoptosis via tumor necrosis factor activation and MYC repression. Our findings thus suggest a unique microRNA signature existing in human limbal epithelium and participating in CEPC homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad S, Kolli S, Li DQ, de Palva CS, Pryzborski S, Dimmick I, Armstrong L, Figueiredo FC, Lako M (2008) A putative role for RHAMM/HMMR as a negative marker of stem cell-containing population of human limbal epithelial cells. Stem Cells 26:1609–1619

    Article  CAS  PubMed  Google Scholar 

  • Bala S, Marcos M, Kodys K, Csak T, Catalano D, Mandrekar P, Szabo G (2011) Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor alpha (TNFα) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 286:1436–1444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Balakathiresan NS, Dalgard C, Gutti U, Armistead D, Jozwik C, Srivastava M, Pollard HB, Biswas R (2011) Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol Chem 286:11604–11615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, Barbosa-Morais NL, Teschendorff AE, Green AR, Ellis IO, Tavare S, Caldas C, Miska EA (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8:R214

    Article  PubMed Central  PubMed  Google Scholar 

  • Briolay A, LencelP BL, Caverzasio J, Buchet R, Magne D (2013) Autocrine stimulation of osteoblast activity by Wnt5a in response to TNF-alpha in human mesenchymal stem cells. Biochem Biophys Res Commun 430:1072–1077

    Article  CAS  PubMed  Google Scholar 

  • Budak MT, Alpdogan OS, Zhou M, Lavker RM, Akinci MA, Wolosin JM (2005) Ocular surface epithelia contain ABCG2-dependent side population cells exhibiting features associated with stem cells. J Cell Sci 118:1715–1724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Casamassima A, Rozengurt E (1998) Insulin-like growth factor I stimulates tyrosine phosphorylation of p130(Cas), focal adhesion kinase, and paxillin. Role of phosphatidylinositol 3′-kinase and formation of a p130(Cas).Crk complex. J Biol Chem 273:26149–26156

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Gelfond J, McManus LM, Shireman PK (2011) Temporal microRNA expression during in vitro myogenic progenitor cell proliferation and differentiation: regulation of proliferation by miR-682. Physiol Genomics 43:621–630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng LC, Tavazoie M, Doetsch F (2005) Stem cells: from epigenetics to microRNAs. Neuron 46:363–367

    Article  CAS  PubMed  Google Scholar 

  • del Monte DW, Kim T (2011) Anatomy and physiology of the cornea. J Cataract Refract Surg 37:588–598

    Article  Google Scholar 

  • Dua HS, Saini JS, Azuara-Blanco A, Gupta P (2000) Limbal stem cell deficiency: concept, aetiology, clinical presentation, diagnosis and management. Indian J Ophthalmol 48:83–92

    CAS  PubMed  Google Scholar 

  • Funari VA, Winkler M, Brown J, Dimitrijevich SD, Ljubimov AV, Saghizadeh M (2013) Differentially expressed wound healing-related microRNAs in the human diabetic cornea. PLoS One 8:e84425

    Article  PubMed Central  PubMed  Google Scholar 

  • Greene SB, Gunaratne PH, Hammond SM, Rosen JM (2010) A putative role for microRNA-205 in mammary epithelial cell progenitors. J Cell Sci 123:606–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008a) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    Article  CAS  PubMed  Google Scholar 

  • Gregory PA, Bracken CP, Bert AG, Goodall GJ (2008b) MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7:3112–3118

    Article  CAS  PubMed  Google Scholar 

  • He M, Xu Z, Ding T, Kuang DM, Zheng L (2009) MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta. Cell Mol Immunol 6:343–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hildebrand J, Rutze M, Walz N, Gallinat S, Wenck H, Deppert W, Grundhoff A, Knott A (2011) A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo. J Invest Dermatol 131:20–29

    Article  CAS  PubMed  Google Scholar 

  • Hulsmans M, De Keyzer D, Holvoet P (2011) MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J 25:2515–2527

    Article  CAS  PubMed  Google Scholar 

  • Hurteau GJ, Carlson JA, Roos E, Borck GJ (2009) Stable expression of miR-200c alone is sufficient to regulate TCF8 (ZEB1) and restore E-cadherin expression. Cell Cycle 8:2064–2069

    Article  CAS  PubMed  Google Scholar 

  • Karali M, Peluso I, Gennarino VA, Bilio M, Verde R, Lago G, Dolle P, Banfi S (2010) miRNeye: a microRNA expression atlas of the mouse eye. BMC Genomics 11:715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katoh M (2009) Transcriptional mechanisms of WNT5A based on NF-kappaB, Hedgehog, TGFbeta, and Notch signaling cascades. Int J Mol Med 23:763–769

    CAS  PubMed  Google Scholar 

  • Kent OA, Chivukula RR, Mullendore M, Wentzel EA, Feldmann G, Lee KH, Liu S, Leach SD, Maltra A, Mendell JT (2010) Repression of miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev 24:2754–2759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kutty RK, Nagineni CN, Samuel W, Vijayasarathy C, Hooks JJ, Redmond TM (2010) Inflammatory cytokines regulate microRNA-155 expression in human retinal pigment epithelial cells by activating JAK/STAT pathway. Biochem Biophys Res Commun 402:390–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SK, Teng Y, Wong HK, Ng TK, Huang L, Lei P, Choy KW, Liu Y, Zhang M, Lam DS, Yam GH, Pang CP (2011) MicroRNA-145 regulates human corneal epithelial differentiation. PLoS One 6:e21249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leivonen SK, Rokka A, Ostling P, Kohonen P, Corthals GL, Kallioniemi O, Perala M (2011) Identification of miR-193b targets in breast cancer cells and systems biological analysis of their functional impact. Mol Cell Proteomics 10(M110):005322

    PubMed  Google Scholar 

  • Lindsay MA (2008) microRNAs and the immune response. Trends Immunol 29:343–351

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Liu Y, Mo W, Qiu R, Wang X, Wu JY, He R (2011a) MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. Nucleic Acids Res 39:2869–2879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Lin Z, Zhou T, Zong R, He H, Liu Z, Ma JX, Liu Z, Zhou Y (2011b) Anti-angiogenic and anti-inflammatory effects of SERINA3K on corneal injury. PLoS One 6(1):e16712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu R, Qu Y, Ge J, Su Z, Pfulgfelder SC, Li DQ (2012) Transcription factor TCF4 maintains the properties of human corneal epithelial stem cells. Stem Cells 30(4):753–761

    Article  CAS  PubMed  Google Scholar 

  • Lund AH (2010) miR-10 in development and cancer. Cell Death Differ 17:209–214

    Article  CAS  PubMed  Google Scholar 

  • Mayr C, Hemann MT, Baretl DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–1579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohan RR, Kim WJ, Wilson SE (2000) Modulation of TNF-alpha-induced apoptosis in corneal fibroblasts by transcription factor NF-kappaB. Invest Ophthalmol Vis Sci 41:1327–1336

    CAS  PubMed  Google Scholar 

  • Nakashima A, Kumakura S, Mishima S, Ishikura H, Kobayashi S (2005) IFN-alpha enhances TNF-alpha-induced apoptosis through down-regulation of c-Myc protein expression in HL-60 cells. J Exp Clin Cancer Res 24:447–456

    CAS  PubMed  Google Scholar 

  • Nakatsu MN, Ding Z, Ng MY, Truong TT, Yu F, Deng SX (2011) Wnt/beta-catenin signaling regulates proliferation of human cornea epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci 52:4734–4741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neilsen PM, Noll JE, Mattiske S, Bracken CP, Gregory PA, Schulz RB, Lim SP, Kumar R, Suetani RJ, Goodall GJ, Callen DF (2012) Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene 32:2992–3000

    Article  PubMed  Google Scholar 

  • Obernosterer G, Martinez J, Alenius M (2007) Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat Protoc 2:1508–1514

    Article  CAS  PubMed  Google Scholar 

  • Pajoohesh-Ganji A, Ghosh SP, Stepp MA (2004) Regional distribution of alpha9beta1 integrin within the limbus of the mouse ocular surface. Dev Dyn 230:518–528

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, Ponzin D, McKeon F, de Luca M (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A 98:3156–3161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng H, Hamanaka RB, Katsnelson J, Hao LL, Yang W, Chandel NS, Lavker RM (2012a) MicroRNA-31 targets FIH-1 to positively regulate corneal epithelial glycogen metabolism. FASEB J 26:3140–3147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng H, Kaplan N, Hamanaka RB, Katsnelson J, Blatt H, Yang W, Hao L, Bryar PJ, Johnson RS, Getsios S, Chandel NS, Lavker RM (2012b) microRNA-31/factor-inhibiting hypoxia-inducible factor 1 nexus regulates keratinocyte differentiation. Proc Natl Acad Sci U S A 109:14030–14034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rama P, Matuska S, Paganoni G, Spinelli A, de Luca M, Pelligrini G (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363:147–155

    Article  CAS  PubMed  Google Scholar 

  • Ryan DG, Oliveira-Fernandes M, Lavker RM (2006) MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity. Mol Vis 12:1175–1184

    CAS  PubMed  Google Scholar 

  • Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, Mo YY (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A 106:3207–3212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schermer A, Galvin S, Sun TT (1986) Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103:49–62

    Article  CAS  PubMed  Google Scholar 

  • Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 81:12836–12845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun Y, Bai Y, Zhang F, Wang Y, Guo Y, Guo L (2010) miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem Biophys Res Commun 391:1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Yan W, Wang Y, Sun G, Luo H, Zhang J, Wang X, You Y, Yang Z, Liu N (2011) MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Res 1389:9–18

    Article  CAS  PubMed  Google Scholar 

  • Tivnan A, Foley NH, Tracey L, Davidoff AM, Stallings RL (2010) MicroRNA-184-mediated inhibition of tumour growth in an orthotopic murine model of neuroblastoma. Anticancer Res 30:4391–4395

    CAS  PubMed  Google Scholar 

  • Trinh XB, Tjalma WA, Vermeulen PB, van den Eynden G, van der Auwera I, van Laere SJ, Helleman J, Berns EM, Dirix LY, van Dam PA (2009) VEGF pathway and AKT/mTOR/p70S6K1 signalling pathway in human epithelial ovarian cancer. Br J Cancer 100:971–978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93

    Article  CAS  PubMed  Google Scholar 

  • Tsitsiou E, Lindsay MA (2009) microRNAs and the immune response. Curr Opin Pharmacol 9:514–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turner HC, Budak MT, Akinci MA, Wolosin JM (2007) Comparative analysis of human conjunctival and corneal epithelial gene expression with oligonucleotide microarrays. Invest Ophthalmol Vis Sci 48:2050–2061

    Article  PubMed Central  PubMed  Google Scholar 

  • Walsh MF, Ampasala DR, Hatfield J, Vander Heide R, Suer S, Richi AK, Basson MD (2008) Transforming growth factor-beta stimulates intestinal epithelial focal adhesion kinase synthesis via Smad- and p38-dependent mechanisms. Am J Pathol 173:385–399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15:261–271

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang FE, Zhang C, Maminishkis A, Dong L, Zhi C, Li R, Zhao J, Majerciak V, Gaur AB, Chen S, Miller SS (2010) MicroRNA-204/211 alters epithelial physiology. FASEB J 24:1552–1571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Werner S, Munz B (2000) Suppression of keratin 15 expression by transforming growth factor beta in vitro and by cutaneous injury in vivo. Exp Cell Res 254:80–90

    Article  CAS  PubMed  Google Scholar 

  • Yam GH, Lee SK, Pang CP (2010) Corneal progenitor cells and regenerative potential. In: Stem cell and regenerative medicine. pp 187–201

  • Yin Q, Wang X, McBride J, Fewell C, Flemington E (2008) B-cell receptor activation induces BIC/miR-155 expression through a conserved AP-1 element. J Biol Chem 283:2654–2662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoo HJ, Byun HJ, Kim BR, Lee KH, Park SY, Rho SB (2012) DAPk1 inhibits NF-kappaB activation through TNF-alpha and INF-gamma-induced apoptosis. Cell Signal 24:1471–1477

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Shimmura S, Kawakita T, Miyashita H, Den S, Shimazaki J, Tsubota K (2006) Cytokeratin 15 can be used to identfy the limbal phenotype in normal and diseased ocular surface. Invest Ophthamol Vis Sci 47:4780–4786

    Article  Google Scholar 

  • Yu J, Ryan DG, Getsios S, Oliveira-Fernandes M, Fatima A, Lavker RM (2008) MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc Natl Acad Sci U S A 105:19300–19305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S (2011) Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23~27~24 clusters. Proc Natl Acad Sci U S A 108:8287–8292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the donor relatives in donating the corneas for research purpose. This study was supported by Direct Grant, The Chinese University of Hong Kong (2006.1.059 and 2041576).

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi Pui Pang or Gary Hin-Fai Yam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 21 kb)

Supplementary Table 2

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, Y., Wong, H.K., Jhanji, V. et al. Signature microRNAs in human cornea limbal epithelium. Funct Integr Genomics 15, 277–294 (2015). https://doi.org/10.1007/s10142-014-0417-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0417-9

Keywords

Navigation