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Abstract In this study, we analysed metagenomes along with
biogeochemical profiles from Skagerrak (SK) and Bothnian
Bay (BB) sediments, to trace the prevailing nitrogen path-
ways. NO3

− was present in the top 5 cm below the
sediment-water interface at both sites. NH4

+ increased with
depth below 5 cm where it overlapped with the NO3

− zone.
Steady-state modelling of NO3

− and NH4
+ porewater profiles

indicates zones of net nitrogen species transformations.
Bacterial protease and hydratase genes appeared to make up
the bulk of total ammonification genes. Genes involved in
ammonia oxidation (amo, hao), denitrification (nir, nor), dis-
similatory NO3

− reduction to NH4
+ (nfr and otr) and in both of

the latter two pathways (nar, nap) were also present. Results
show ammonia-oxidizing bacteria (AOB) and ammonia-
oxidizing archaea (AOA) are similarly abundant in both sed-
iments. Also, denitrification genes appeared more abundant
than DNRA genes. 16S rRNA gene analysis showed that the
relative abundance of the nitrifying group Nitrosopumilales

and other groups involved in nitrification and denitrification
(Nitrobacter, Nitrosomonas, Nitrospira, Nitrosococcus and
Nitrosomonas) appeared less abundant in SK sediments com-
pared to BB sediments. Beggiatoa and Thiothrix 16S rRNA
genes were also present, suggesting chemolithoautotrophic
NO3

− reduction to NO2
− or NH4

+ as a possible pathway.
Our results show the metabolic potential for ammonification,
nitrification, DNRA and denitrification activities in North Sea
and Baltic Sea sediments.
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Introduction

Nitrogen is one of the essential elements of life and its cycle is
driven mostly by microbial activities. Anthropogenic and
physical processes also contribute to different sources of ni-
trogen (Delwiche 1970; Söderlund and Svensson 1976).
Elucidating the pathways of nitrification and denitrification
has been a topic of interest since the late nineteenth century
when Winogradsky isolated Nitrosococcus Winogradsky
(Winogradsky 1890). In marine sediments, nitrogen is cycled
as part of the redox zonation in the suboxic zone (Froelich
et al. 1979; Jørgensen 1989; Middelburg et al. 1993; Herbert
1999). Ammonium (NH4

+) is mainly liberated into the
porewater by ammonification involving multiple steps of mi-
crobial breakdown of proteins, peptides and amino acids by
proteolytic enzymes and deaminases (Herbert 1999 and
references therein; Fig. 1). Also, the breakdown of nucleic
acids can lead to release of urea (Therkildsen et al. 1996,
1997). Whether certain steps in the ammonification process
in marine sediments dominate more than others remain poorly
understood.
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With respect to nitrification, whereby ammonia (NH4
+/

NH3) is oxidized to NO3
−, it is still unclear whether

ammonia-oxidizing archaea (AOA) (Könneke et al. 2005;
Wuchter et al. 2006; Francis et al. 2007) or ammonia-
oxidizing bacteria (AOB) (Freitag et al. 2006) play a more
important role in the first step of this pathway in marine sed-
iments (Schleper and Nicol 2010). AOA (e.g.Nitrosopumilus)
and AOB (e.g. Nitrosospira, Nitrosococcus, Nitrosomonas)
mediate oxidation of NH3 to nitrite (NO2

−) using the copper-
containing enzyme ammonia monooxygenase (AMO). While
AOB use the protein hydroxylamine oxidoreductase (HAO)
as an intermediate in the ammonia oxidation process, it is not
yet clear what that intermediate protein is in the AOA process
(Norton et al. 2001; Walker et al. 2010; Fig. 1). In the Baltic
Sea, AOA have been observed to be abundant in the water
column (Pitcher et al. 2011; Bale et al. 2013) and in sediments
(Jørgensen 1989). It also remains debatable which groups of
nitrate-oxidizing bacteria (NOB) including Nitrobacter,
Nitrospira, and Nitrospina (Teske et al. 1994; Spieck and
Bock 2005; Lücker et al. 2010) are likely to contribute most
to oxidation of NO2

− to NO3
− in marine sediments.

Besides ammonification, dissimilatory nitrate (NO3
−) re-

duction to NH4
+ (DNRA) can also serve as a source of

NH4+ for primary producers and benthic organisms, yet it
remains an understudied pathway (Giblin et al. 2013). In this
step, respiratory and fermentative microorganisms reduce
NO3

− to NH4
+ (Fig. 1). In the first step of denitrification,

NO3
− is reduced to NO2

− (Nar proteins). Once NO2
− is pro-

duced, it can proceed to the next step of the denitrification
pathway, or NO2

− can be converted to NH4
+ (via NrfA,

NirBD proteins) via the DNRA pathway (Fig. 1). A number
of bacteria including Beggiatoa are capable of DNRA (Baggs
and Phillipot 2011; Giblin et al. 2013).

In comparison to DNRA, the denitrification pathway is a
more intensively studied pathway in marine sediments.
Denitrification includes the conversion of NO3

− to NO2
−,

NO2
− to nitric oxide (NO) (Nir proteins), NO to nitrous oxide

(N2O) (Nor proteins) and N2O to N2 (Nos proteins) (Teske
et al. 1994; Spieck and Bock 2005; Lücker et al. 2010; Pauleta
et al. 2013 and references therein). Bacteria that are capable of
completing different parts of the reaction are phylogenetically
diverse but most are members of the Proteobacteria and are
facultative aerobes (Shapleigh 2013). Under low oxygen con-
ditions, most AOB can reduce NO3

− to N2O (Fig. 1; Ward
2013). AOB such as Nitrobacter and Nitrosomonas can re-
duce NO3

− to NO2
− using bacterial NO3

− reductases (Nar;
Lücker et al. 2010) (Fig. 1). Nitrosomonas have also been
shown to reduce NO2

− to NO using the copper-containing
enzyme NirK and associated Nir proteins (Cantera and Stein
2007) and to reduce NO to N2O with the Nor proteins (Spieck
and Bock 2005) (Fig. 1). Furthermore, several Thiothrix spp.
have been shown to reduce NO3

− to NO2
− by oxidizing

thiosulphate using the narGHI gene products (Trubitsyn
et al. 2013). In spite of our better knowledge about the deni-
trification pathway, the environmental factors that determine
the balance between DNRA and denitrification are far from
being understood. In some estuary sediments, DNRA has
been found to be the dominant process influencing the fate
of NO3

− as opposed to denitrification (Soonmo and Gardner
2002; Giblin et al. 2010). Continuing to determine the abun-
dances of microbial groups throughout the Baltic Sea and
other areas could help elucidate their level of importance with
respect to nitrogen cycling in these areas.

A number of studies have identified AOA and AOB in the
water column and sediments using primers for 16S rRNA and
the amoA gene via cloning and sequencing or by using lipid
biomarker techniques (Francis et al. 2005, 2007; Dang et al.
2008; Pitcher et al. 2011, Bale et al. 2013). Similar techniques
have been applied to study denitrifying communities in ma-
rine sediments (Scala and Kerkhof 1998, 1999; Braker et al.
2000; Michotey et al. 2000). Furthermore, metagenomics has
been extensively used as an initial step in inferring the func-
tional and metabolic potential of microbial communities in
environmental studies (Xie et al. 2011; Dini Anderote et al.
2012; Kimes et al. 2013; Scott et al. 2014). Thureborn et al.
(2013) studied metagenomes associated with nitrification and

Fig. 1 Ammonification, DNRA, nitrification and denitrification
pa thways and the enzymes involved in those pa thways
(Figure modified after Cabello et al. (2009)
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denitrification in three anoxic sediment samples from
Landsort Deep (Baltic Sea). However, a combined
metagenomic and biogeochemical approach to study ammo-
nification, nitrification, DNRA and denitrification pathways
has not been reported for suboxic surface sediments of the
North Sea and Baltic Sea.

To better understand which microorganisms and metabolic
pathways could be contributing most to nitrification, ammo-
nification, DNRA and denitrification, we studied N-cycling
gene distributions in three sediment samples using an
Illumina technique. Sediments came from the Skagerrak
(SK), located at the North Sea-Baltic Sea, and from the
Bothnian Bay (BB) located in the Baltic Sea. Computational
analysis of the sequencing data using theMetagenomic RAST
Analysis Server (MG-RAST) pipeline allowed for the analysis
of an unprecedented number of sequences in these sediments
providing a more complete representation of microbial com-
munities and their genes. Porewater concentrations of SK and
BB ferruginous sediments showed on-going NO3

− reduction
and NH4

+ production providing the opportunity to relate these
pathways to biogeochemical zones in the surface sediments.

Methods

Study Site

Sediment cores of up to 38 cm in length (10 cm in diameter)
were taken during the RV Meteor cruise No. M86-1 in
November 2011 using a multi-corer device (Oktopus GmbH,
Kiel, Germany). The two sampling locations considered in
this study were BB site At4 (65° 26.71′ N/23° 17.92′ E) and
SK Site Geo 2a (58° 29.513′N/9° 35.855′ E) (Fig. 2). Samples
were taken from a water depth of 75 m at site At4 and from a
water depth of 554 m at site Geo 2a. After collection, cores for
microbiological analyses from each site were frozen at −20 °C
on board the ship and later transferred to −80 °C in the shore-
based laboratory. For a more detailed description of the study
sites refer to Reyes et al. (2016).

Porewater Analysis

Parallel cores were recovered for geochemical analyses and
porewater was extracted from 23 depths from SK cores and 16
depths from BB cores directly after recovery by using Rhizon
samplers (Rhizosphere Research Products B.V, Wageningen,
The Netherlands) (Seeberg-Elverfeldt et al. 2005). Porewater
samples for NO3

− and NH4
+ were kept frozen until later anal-

ysis at the IOW (Leibniz Institute for Baltic Sea Research
Warnemünde) and measured after the methods of Grasshoff
et al. (1999) by using a continuous flow nutrient analyser
(QuAAtro, Seal Analytical GmbH, Norderstedt, Germany).

Additional geochemical measurements of these cores were
made and are discussed in Reyes et al. (2016).

Pore Water Modelling

Interpretation of interstitial water profiles of dissolved NO3
−

and NH4
+ at sites Geo 2a and At4 were carried out using the

PROFILE (Berg et al. 1998) and the REC (Lettmann et al.
2012) models, considering steady-state conditions. Porewater
profiles for the dissolved species used in the modelling can be
found in Reyes et al. (2016). Local or non-local irrigation was
neglected in the interpretation of porewater profiles. The dif-
fusion coefficients in free solution at in situ salinity and
temperature were calculated according to Boudreau (1997)
and Schulz and Zabel (2006). The molecular diffusivity in
the sediment was corrected for tortuosity according to
Iversen and Jørgensen (1993), considering sediment porosities
after Flemming and Delafontaine (2000). Both models calcu-
late net and not gross process rates.

DNA Extraction

Frozen cores were sliced into 1 cm or 2 cm diameter discs with
a band saw (K330S, Paul Kolbe GmbH, Elchingen, Germany)
with a WIKUS blade (WIKUS DIAGRIT S Nr. 572 D254 VA,
WIKUS-Sägenfabrik, Spagenburg, Germany). The blade was
cleaned and sterilized with ethanol (70%) after cutting each
slice. The sediment that was in contact with the blade was
removed, and only the interior parts of the frozen disc were
sectioned into aliquots for DNA extraction. DNAwas extracted
from two BB samples (BB 3–4 cm and BB 6–7 cm) and one
SK sample (SK 6–8 cm). Extractions were made from ~0.5–
0.6 g of sediment based on the method of Lueders et al. (2004).
Following extraction, samples were pooled and the nucleic acid
pellet was dissolved in 200 μl of RNase/DNase free water.
Humic substances and phenols from the crude extracts were
removed with the Zymo PCR Inhibitor Removal kit (Zymo
Research, Freiburg, Germany) following the manufacturer in-
structions. The total DNAwas purified by digesting the RNA
with 10 μl of 10 mg/ml of Roche RNase A (Sigma-Aldrich,
Munich, Germany) for 5 min at room temperature and the
Zymo Genomic DNA Clean and Concentrator kit (Zymo
Research, Freiburg, Germany). The following modification
was made to the manufacturer method: following the first elu-
tion through the column, the eluate was not discarded. Instead
the eluate was added to a new column. Both columns were
processed according to manufacturer instructions and total
DNA eluted with water from both columns. Extracts were
checked for nucleic acid concentration by NanoDrop
Spectrophotometer ND-1000 (PeqLab-VWR International
GmbH, Erlangen, Germany) and using the Invitrogen Quanti-
iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific,
Darmstadt, Germany) following the manufacturer instructions.
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Fluorescence measurements were made using a fluorimeter
(Fluoroskan Ascent FC, Thermo Labsystems, Milford, USA).

Metagenome Sequencing

DNA shotgun libraries were generated using the Nextera
DNA Library preparation kit following the manufacturer in-
structions (Illumina, San Diego, USA). The metagenomes
were sequenced in a 112-bp paired end single indexed run
with the Genome Analyzer IIx (Illumina, San Diego, USA).

Processing of Short Reads

Quality filtering of the metagenomic reads was performed
with trimmomatic (0.25) (Bolger et al. 2014). This included
the removal of Illumina adaptors and sequences that were
shorter than 50 bp. Additionally, sliding window clipping
was performed to remove read spaces that had an average
quality below 15 (Phred score 33) within a 4-bp window.
Samples were analysed using the Metagenomic Analysis
Server (MG-RAST) (Meyer et al. 2008) using default settings.
Sequences were normalized via transformation, standardiza-
tion and multiple sample scaling as described in the MG-
RAST manual (Wilke et al. 2015). Briefly, for normalization,
raw abundances were transformed by a (log2 + 1) transforma-
tion, standardized and scaled from 0 to 1 (Meyer et al. 2008).

To compare 16S rRNA sequence abundances, the MG-
RAST M5RNA database, which integrates SILVA,

Greengenes and RDP databases, was used. An e value cut-
off of 1e-05, minimum identity 60% cut-off and a minimum
alignment cut-off of 15 were the default parameters used in the
analysis. The best hit classification option was selected.
Before analysis, BB forward and reverse sequences were clus-
tered as one group and SK forward and reverse sequences as
another group using the PCoA option. Following classifica-
tion, the average of forward and reverse abundances was com-
pared between samples. Normalized abundances of AOA
were combined and compared to normalized abundances of
AOB.

Protein-coding genes were annotated against the SEED
Level (function) Subsystems of MG-RAST using the default
parameters described above. The hierarchical classification
option was selected. Ward Clustering and Bray Curtis distance
options were selected for the heat map analysis.
Normalization and standardization of forward and reverse se-
quences was accomplished using the R statistical computing
system (version 3.2.1; R Core Team 2013), R package BmatR^
(version 0.9) (Braithwaite and Keegan 2013) and accessory
apps built on the BmatR^ package for MG-RAST (Keegan
2015). Following classification, the average of forward and
reverse abundances were compared between samples.

A one-way ANOVA (alpha 0.05) and unpaired t tests (al-
pha 0.05) were used to determine if the abundances of protein-
coding genes between and within samples were significant
(StatPlus, Microsoft Excel 2011). When comparing between
sites, BB samples were grouped together for the analysis. For

a

cb

c

b

Fig. 2 (a) Map of the Baltic Sea (b) showing locations of the two sampling Sites Geo 2a and At4. c The Skagerrak showing the locations of Site Geo2a
with respect to the locations of Sites S1 through S9 of the transect studied by Canfield et al. (1993)
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the ANOVA analysis, the following gene abundances were
compared: SK DNRA, SK denitrification, SK both (referring
to genes belonging to both DNRA and denitrification path-
ways), BB DNRA, BB denitrification and BB both. To deter-
mine differences in gene abundances between sites in terms of
ammonification, DNRA, denitrification and genes belonging
to both DNRA and denitrification pathways, the following
steps were carried out: (i) an F test was used to determine
equal or unequal variance, (ii) differences in the number of
genes being compared between sites was corrected by ran-
domly sampling the BB gene abundance data to match the
number of genes in the SK and (iii) a two-tailed distribution
was used to determine significance.When comparing between
BB34 and BB67 samples, BB AOAvs. BB AOB groups and
SK AOAvs. SK AOB groups, step (ii) was excluded because
the number of genes were similar between these samples or
groups.

Results

Characteristics of Skagerrak and Bothnian Bay
Metagenomes

Following Illumina sequencing of two BB samples and one
SK sample, approximately 4.9 Gb of sequencing data were
generated consisting of 19–21 million (BB samples) and 4
million (SK sample) reads with an average read size of
112 bp. The metagenome data was deposited in the MG-
RAST database (Table S1). To our knowledge, this is the
largest metagenomic dataset to date of Baltic Sea sediments.
An average of 700–800 k genes were annotated as non-rRNA
proteins for BB samples and 155 k genes for the SK sample.
For comparative purposes, reads were normalized to rule out
the effect of inter-sample variations on the read abundances as
described in the BMethods^ section above.

Overview of Nitrogen Metabolism Genes Detected
in Metagenomes

Protein-coding genes involved in the nitrogen cycle detected
in our samples were not the most abundant of all genes in
samples (Fig. 3). Furthermore, genes for ammonification,
DNRA, nitrification and denitrification pathways were detect-
ed in metagenomes and are summarized in Fig. 4. One-way
ANOVA analysis of DNRA, denitrification gene abundances
and genes involved in both pathways revealed a significant
difference between samples (P < 0.05).

Biogeochemistry in Surface Sediments

The vertical profiles of dissolved NO3
− and NH4

+ observed at
SK (Fig. 5a) and BB (Fig. 5b) indicate different zones of net

production or consumption. They follow the expected
porewater redox zonation for sediments (e.g. Froelich et al.
1979). Based on steady-state modelling (Berg et al. 1998;
Lettmann et al. 2012), the gradients of measured dissolved
NO3

− and NH4
+ were interpreted quantitatively to estimate

the zones of net (de-) nitrification and ammonium production.
NO3

− and NH4
+ models for SK (Fig. 5a) and for BB (Fig. 5b)

yield similar rates and vertical zones of net transformations,
with the major difference being the use of discrete zones in the
PROFILE model (Berg et al. 1998), whereas continuous
smooth rate changes are used in the REC model (Lettmann
et al. 2012).

At the SK site, NO3
− occurs below 0.5 cm and is present

down to about 5 cm (Fig. 5a). Calculated rates of NO3
− con-

sumption from concentration gradients show a maximum con-
sumption at 5 cm (Fig. 5a) due to NO3

− reduction. NH4
+

occurs below 2.5 cm within the zone of NO3
− reduction and

increases constantly below this depth (Fig. 5a). The rate cal-
culations indicate net NH4

+ consumption occurs below the
surface and a second consumption peak below ~12 cm, and
net production below ~17 cm (Fig. 5a).

At the BB site, NO3
− increases immediately below the

surface and is present to 5 cm (Fig. 5b). Modelling results
indicate NO3

− production in the top ~4 cm (Fig. 5b).
Nitrification at the sediment-water interface is the likely
source of NO3

−. Below 4 cm, NO3
− is consumed by NO3

−

reduction. NH4
+ appears at 0.5 cm and increases strongly

below 5 cm but only a minor increase occurs below this depth
(Fig. 5b). Modelling results indicate NH4

+ production mainly
between 5 and 10 cm, while its production is masked by NH4

+

consumption by nitrification in the top 4 cm (Fig. 5b).

Ammonification

The relative abundance of protein-coding genes involved in
ammonification appeared abundant in SK and BB samples
(Table 1). However, an unpaired t test analysis did not reveal
any significant difference in ammonification gene abundances
between samples (P > 0.05). Ammonification genes were
composed of protease, hydratase, peptidase, urease and deam-
inase genes (Fig. 6).

Nitrification

The 16S rRNA genes showed tha t unc lass i f ied
Thaumarchaeota (AOA), Nitrosospherales (AOA),
Nitrosopumilales (AOA), Nitrosomonas (AOB/NOB),
Nitrosospira (AOB/NOB), Nitrosovibrio (AOB/NOB),
Nitrosococcus (AOB/NOB), Nitrospira (NOB), Nitrobacter
(NOB) and Nitrospina (NOB) were present in both samples
(Fig. 7a). Comparison of AOA and AOB 16S rRNA gene
abundances showed AOB and AOA abundances were not
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significantly different in BB and SK sediments (unpaired t
test; P > 0.05).

The genes amo and the hao genes were present in all sam-
ples (≤0.02 normalized abundances). AMO and HAO are in-
volved in the first step of nitrification in AOB; however, no
hao homologue has been found in archaeal genomes (Stahl
and de la Torre 2012). We also include additional supporting
pyrosequencing results that show evidence for the high abun-
dance of Thaumarchaeota in BB sediments relative to other
archaea (Fig. S1).

Dissimilatory NO3
− Reduction to NH4

+ (DNRA)

The abundance of DNRA protein-coding genes was similar
within BB samples (unpaired t test; P > 0.05) and between SK
and BB samples (unpaired t test; P > 0.05) (Fig. 8a). In
Proteobacteria including Shewanella oneidensis MR-1,
NrfA (nitrite reductase) can associate with different types of
Nrf proteins as part of the DNRA pathway (Baggs and
Phillipot 2011; Cruz-García et al. 2007). Similarly, in δ and
ε-Proteobacteria, NrfH can donate electrons to NrfAwhile in
γ-Proteobacteria, NrfC and D are alternative electron donors
(Baggs and Philippot 2011). nrfA (cytochrome c552 NO2

−

reductase) was present at high abundance in all samples
(Fig. 8a). Accessory protein-coding nrfC, D, H and E genes
were present in low abundance (Fig. 8a). In Shewanella

oneidensis MR-1, an octaheme tetrathionate reductase (Otr)
(Atkinson et al. 2007) is active for DNRA. Protein-coding otr
genes were also observed in all samples (Fig. 8a).

Dissimilatory NO3
− reduction can also take place

chemolithoautotrophically, e.g. some Beggiatoa are capable
of DNRA, storing NO3

− in vacuoles and coupling its reduc-
tion to NH4

+, to sulphide oxidation (Muβmann et al. 2003;
Preisler et al. 2007 and references therein; Schulz-Vogt 2011).
16S rRNA Beggiatoa gene relative abundances appeared
slightly higher in BB vs. SK samples (Fig. 7b). Sulphide ox-
idation (soxADZBX) genes were also detected in all samples
(Fig. 9).

Fermentative bacteria such as Clostridium and Bacillus
spp. can use NO2

− as an electron acceptor during fermentative
growth, employing the use of cytoplasmic (NADH) nitrite
reductase NirBD proteins (Cabello et al. 2009), thereby con-
tributing to production of NH4

+ (Baggs and Phillipot 2011).
16S rRNA abundances showed they were more abundant in
BB samples (Fig. 7b). Protein-coding genes for NirB (nitrite
reductase [NAD(P)H] large subunit) and NirD were also pres-
ent in all samples (Fig. 8a). Comparison of DNRA protein-
coding gene abundances (≤0.014 normalized abundance)
(Fig. 8a) to denitrification protein-coding gene abundances
(≥0.01 normalized abundance) (Fig. 8b) within samples
showed genes for DNRA were significantly less abundant
(unpaired t test; P < 0.05) (Fig. 10a, b).

Fig. 3 Heat map showing normalized protein-coding gene abundances
predicted to be involved in various metabolic pathways detected in SK
and BBmetagenomes. The most abundant genes (red) and least abundant
genes (grey). BB34 refers to sample 3–4 cmbsf (centimetre below sea-
floor), BB67 refers to sample 6–7 cmbsf and SK68 refers to sample 6–

8 cmbsf. Values for samples were scaled from 0 (minimum value) to 1
(maximum value) using a uniform scaling method implemented in the
MG-RAST pipeline. Forward and reverse abundances were averaged and
a single value is reported per sample
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Denitrification Pathway

16S rRNA genes of Thiothrix were present in all samples
(Fig. 7b). At both sites, protein-coding genes for denitrification
were found. In BB samples, the abundances of protein-coding
genes involved in denitrification were similar between the two
depths (unpaired t test; P > 0.05) (Fig. 8b). Similar abundances
of protein-coding genes were also observed between SK and
BB samples (unpaired t test; P > 0.05). Genes including nirK
(copper-containing nitrite reductase), nirS (cytochrome cd1 ni-
trite reductase) (Helen et al. 2016) and nirV and nirN genes
were detected in all samples (Fig. 8b). While most α, β and γ-
Proteobacteria use NirK to reduce NO2

− to NO, other bacteria
use NirS as an alternative enzyme and NirN is a homologue of
NirS (van Spanning 2011). Additionally, NirV is sometimes
associated with NirK, and may incorporate copper into the

redox centre of NirK (van Spanning 2011). Nor genes
(norQD) were present (Fig. 8b) along with nitric oxide reduc-
tase (NOR) subunit C and B genes (EC 1.7.99.7). The catalytic
NOR enzyme encoded by norCB can be co-expressed with
accessory genes norQ, norD (although their function remains
elusive). Additionally, nos genes (nosRDFYLX) and a nitrous
oxide reductase gene (EC 1.7.99.6) were present in all samples
(Fig. 8b). NosFY and D are ABC transporters that are usually
linked to expression of NosZ, the main multi-copper enzyme
involved in N2O reduction, and NosR is required for transcrip-
tion of NosZ (Spiro 2012). Additionally, NosL, a membrane
anchored copper protein, and NosX, a periplasmic flavopro-
tein, may serve as accessory proteins to NosZ (Spiro 2012).We
found that with the exception of nirK, none of the other genes
that were abundant in our DNRA or denitrification heat maps
are known to occur in multiple copies. When the abundance of

Fig. 4 Ammonification, DNRA,
nitrification and denitrification
pathways based on protein-
coding genes detected in SK and
BB samples. Enzymes (blue) and
taxa (orange) that could
potentially be involved in each
pathway are written next to each
arrow. Question marks indicate
uncertainty in the organism’s
involvement in the pathway
despite detection. Figure modified
after Cabello et al. (2009)
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this gene was left out of the analysis, the results of the heat map
remained the same.

Genes Involved in Denitrification and DNRA Pathways

Genes in the Nar and Nap families that are involved in the first
step of the denitrification and DNRA pathways were detected
in all samples but were not significantly different between
samples (unpaired t test; P > 0.05) (Fig. 8c). The narGH
genes, which encode the alpha and beta subunit of the Nar
enzyme, were the most abundant genes detected out of all
denitrification and DNRA protein-coding genes (Fig. 8c).
The narI gene (gamma subunit), the chaperone encoding
narJ (delta subunit) gene, nitrate response regulator protein
(narQ/P) and nitrate/nitrite sensor protein (narX/L) were also
detected but at lower abundances (Fig. 8c) (Blasco et al. 1998;
Cabello et al. 2009). Among the Nap family of genes, a napC
(a membrane tetraheme c-type cytochrome), napA (NO3

− re-
ductase) and accessory proteins napG and H were detected.
The NapC protein is an essential component of certain δ and
γ-Proteobacteria (including Desulfovibrio spp. and MR-1)
and donates electrons to NapA (Potter and Cole 1999;
Brondijk et al. 2002; Simon 2002; Chen and Wang 2015).
However, an alternative pathway in these interactions can also
include NapG and H (Baggs and Phillipot 2011).

Discussion

Geochemistry

Modelling results suggest ammonification and nitrifica-
tion could be active processes in the BB (3–4 cm) sample.
While ammonification occurs most likely throughout the
SK core due to organic matter degradation, it is masked
by even higher rates of nitrification within the top 5 cm
(Fig. 5b). A double peak in NH4

+ consumption may result
from non-steady-state conditions, most likely due to bio-
turbation. In addition, modelling results indicate denitrifi-
cation and DNRA could take place in the SK (8–10 cm)
and BB (6–7 cm) samples (Fig. 5a, c). Sediments with a
high organic carbon input and nitrogen limitation are pre-
dicted to favour DNRA over denitrification based on pre-
vious studies (Giblin et al. 2013; Algar and Vallino 2014).
Both the SK and BB receive high inputs of organic matter
(sedimentation rate ~4 mm year−1 SK; ~1.1–1.6 mm year−1

BB; van Weering et al. 1987; Mattila et al. 2006).
However, the quality of organic matter could also be an
important factor. In the SK and BB, total organic carbon
(TOC) is available throughout both sediments (Reyes
et al. 2016) and could stimulate heterotrophic activity.
However, a more refractory organic matter in the BB
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could also slow down heterotrophic activity. Total nitro-
gen (TN) is also readily available in both sediments
(Reyes et al. 2016) resulting in a C/N ratio of ~10 and
30 for SK and BB, respectively. Due to the high input of
organic matter and nitrogen in both sites, denitrification
could possibly dominate over DNRA.

Metagenome

When interpreting results derived from DNA in sediments, it
is important to keep in mind certain physical processes that
could influence the distribution of genes. One process is sed-
imentation, which occurs as new sediment layers are

Table 1 Protein-coding genes
potentially involved in
ammonification in SK and BB
samples. Normalized abundances
are shown in Fig. 6

No. Protein-coding category

1 Arginine_and_Ornithine_Degradation----N-carbamoylputrescine amidase (3.5.1.53)
2 Polyamine_Metabolism----N-carbamoylputrescine amidase (3.5.1.53)
3 Branched_chain_amino_acid_degradation_regulons----Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4)
4 Histidine_Degradation----Histidine ammonia-lyase (EC 4.3.1.3)
5 Leucine_Degradation_and_HMG-CoA_Metabolism----Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4)
6 Methionine_Degradation----Cystathionine gamma-lyase (EC 4.4.1.1)
7 Branched_chain_amino_acid_degradation_regulons----Enoyl-CoA hydratase [isoleucine degradation]

(EC 4.2.1.17)
8 Histidine_Degradation----Urocanate hydratase (EC 4.2.1.49)
9 Isoleucine_degradation----Enoyl-CoA hydratase (EC 4.2.1.17)
10 Isoleucine_degradation----Enoyl-CoA hydratase [isoleucine degradation] (EC 4.2.1.17)
11 Phenylalanine_and_Tyrosine_Branches_from_Chorismate----Prephenate dehydratase (EC 4.2.1.51)
12 Threonine_anaerobic_catabolism_gene_cluster----Threonine dehydratase, catabolic (EC 4.3.1.19)
13 Threonine_degradation----Threonine dehydratase, catabolic (EC 4.3.1.19)
14 Threonine_degradation----Threonine dehydratase (EC 4.3.1.19)
15 Valine_degradation----Enoyl-CoA hydratase (EC 4.2.1.17)
16 Urea_decomposition----Urease alpha subunit (EC 3.5.1.5)
17 Urease_subunits----Urease alpha subunit (EC 3.5.1.5)
18 Inositol_catabolism----Epi-inositol hydrolase (EC 3.7.1.-)
19 Predicted_carbohydrate_hydrolases----COG2152 predicted glycoside hydrolase
20 Acetyl-CoA_fermentation_to_Butyrate----3-hydroxybutyryl-CoA dehydratase (EC 4.2.1.55)
21 Acetyl-CoA_fermentation_to_Butyrate----Enoyl-CoA hydratase (EC 4.2.1.17)
22 Novel_non-oxidative_pathway_of_Uracil_catabolism----Urease alpha subunit (EC 3.5.1.5)
23 Proteasome_bacterial----ATP-dependent Clp protease ATP-binding subunit ClpX
24 Proteasome_bacterial----ATP-dependent Clp protease proteolytic subunit (EC 3.4.21.92)
25 Proteasome_bacterial----ATP-dependent hsl protease ATP-binding subunit HslU
26 Proteasome_bacterial----ATP-dependent protease HslV (EC 3.4.25.-)
27 Proteasome_bacterial----ATP-dependent protease La (EC 3.4.21.53) Type I
28 Proteasome_bacterial----ATP-dependent protease La (EC 3.4.21.53) Type II
29 Proteolysis_in_bacteria,_ATP-dependent----ATP-dependent Clp protease adaptor protein ClpS
30 Proteolysis_in_bacteria,_ATP-dependent----ATP-dependent Clp protease ATP-binding subunit ClpA
31 Proteolysis_in_bacteria,_ATP-dependent----ATP-dependent Clp protease, ATP-binding subunit ClpC
32 Proteolysis_in_bacteria,_ATP-dependent----ATP-dependent Clp protease ATP-binding subunit ClpX
33 Proteolysis_in_bacteria,_ATP-dependent----ATP-dependent Clp protease proteolytic subunit (EC

3.4.21.92)
34 Proteolysis_in_bacteria,_ATP-dependent----ATP-dependent hsl protease ATP-binding subunit HslU
35 Proteolysis_in_bacteria,_ATP-dependent----ATP-dependent protease HslV (EC 3.4.25.-)
36 Proteolysis_in_bacteria,_ATP-dependent----ATP-dependent protease La (EC 3.4.21.53)
37 Proteolysis_in_bacteria,_ATP-dependent----ATP-dependent protease La (EC 3.4.21.53) Type I
38 Proteolysis_in_bacteria,_ATP-dependent----ATP-dependent protease La (EC 3.4.21.53) Type II
39 Aminopeptidases_(EC_3.4.11.-)----Cytosol aminopeptidase PepA (EC 3.4.11.1)
40 Aminopeptidases_(EC_3.4.11.-)----Membrane alanine aminopeptidase N (EC 3.4.11.2)
41 Aminopeptidases_(EC_3.4.11.-)----Xaa-Pro aminopeptidase (EC 3.4.11.9)
42 Metallocarboxypeptidases_(EC_3.4.17.-)----D-alanyl-D-alanine carboxypeptidase (EC 3.4.16.4)
43 Metallocarboxypeptidases_(EC_3.4.17.-)----Thermostable carboxypeptidase 1 (EC 3.4.17.19)
44 Protein_degradation----Aminopeptidase YpdF (MP-, MA-, MS-, AP-, NP- specific)
45 Protein_degradation----Dipeptidyl carboxypeptidase Dcp (EC 3.4.15.5)
46 Protein_degradation----Oligopeptidase A (EC 3.4.24.70)
47 Serine_endopeptidase_(EC_3.4.21.-)----Prolyl endopeptidase (EC 3.4.21.26)

No. refers to protein-coding gene number as shown in Fig. 6. Protein-coding genes with the highest abundances
are underlined and in bold
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continuously deposited over time, thereby shifting the biogeo-
chemical zones. Another process that could shift biogeochem-
ical zones is storm events. During storms, sediments from the
surface could be resuspended in the water column, bringing
deeper zones to the surface. Thus, extra-cellular DNA or cel-
lular DNA could end up preserved in a different biogeochem-
ical layer. Another important sedimentary process to be aware
of is bioturbation. Sedimentary layers could become homog-
enized by bioturbation, thereby influencing the distribution
(and hence abundance) of genes in sediments (Laverock
et al. 2014). Although the metagenome data do not directly
indicate activity with respect to a particular organism or path-
way, the presence of protein-coding genes in the sediment
represents a metabolic potential. In this case, the presence of
these genes represents a metabolic potential with respect to
nitrogen metabolism.

Since many dissimilatory bacteria are involved in amino
acid and protein degradation thereby contributing to ammoni-
fication, perhaps this explains the higher abundance of ammo-
nification genes over other types of nitrogen metabolism
genes in both samples. In sediments of Landsort Deep
(Baltic Sea), where DNRA and denitrification has been shown
to be important, metagenome results also show that
ammonification-coding genes are more abundant compared
to genes involved in other nitrogen pathways (Thureborn
et al. 2013). Moreover, bacterial proteases and hydratases

could potentially contribute most to the release of NH4
+ from

proteins and amino acids during ammonification in samples
from both sites (Table 1).

In other marine sediment studies, the abundance of AOA
and AOB varies and the factors that determine whether one
is more abundant than the other are not clear and may de-
pend on many variables including salinity (Caffrey et al.
2007; Mosier and Francis 2008; Santoro et al. 2008),
NH4

+ availability (Smith et al. 2014) and spatial and tem-
poral variations (Beman et al. 2012; Smith et al. 2015).
From the 16S rRNA metagenomic results, it appears that
mostly Thaumarchaeota and AOB could contribute to nitri-
fication at both sites (Fig. 7a). Thaumarchaeota have been
found to be abundant (Thureborn et al. 2013) and to play an
important role in ammonia oxidation at other locations in
the Baltic (Labrenz et al. 2010; Feike et al. 2012).
Furthermore, DNA pyrosequencing results of these samples
indicate Thaumarchaeota/Nitrosopumilus are abundant rel-
ative to other archaea and are the major archaeal type in BB
sediments (Fig. S1). While a diversity of archaea is present
in SK sediments, the BB appears to be dominated by
Thaumarchaeota (Reyes and Noriega-Ortega 2016).
Based on metagenomic comparisons between AOA and
AOB, however, it remains unclear whether AOA or AOB
are more important with respect to NH3-oxidation in BB and
SK sediments.

Fig. 6 Heat map showing normalized protein-coding gene abundances
predicted to be involved in ammonification metabolism detected in SK
and BBmetagenomes. The most abundant genes (red) and least abundant
genes (grey). BB34 refers to sample 3–4 cmbsf (centimetre below sea-
floor), BB67 refers to sample 6–7 cmbsf and SK68 refers to sample 6–

8 cmbsf).Numbers on the y-axis correspond to the genes listed in Table 1.
Values for samples were scaled from 0 (minimum value) to 1 (maximum
value) using a uniform scaling method implemented in the MG-RAST
pipeline. Forward and reverse abundances were averaged and a single
value is reported per sample
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In terms of denitrification, Thiothrix could have access to
both thiosulphates and NO3

− in SK and BB sediments,
allowing it to carry out thiosulphate oxidation coupled to
NO3

− reduction (Meyer et al. 2007). Porewater results of BB
samples showed a decrease in sulphate concentration, which
overlapped with the zone of NO3

− reduction but no sulphide
was present (Reyes et al. 2016). Thiothrix (including the iso-
late known to carry out this chemolithoautotrophic reac-
t ion) can live in freshwater and marine habitats
(Trubitsyn et al. 2013), possibly explaining the presence
of Thiothrix 16S rRNA genes in SK and BB samples.
The presence of protein-coding genes related to sulphur
oxidation and denitrification in both samples supports the
idea that one way in which denitrification could occur in
BB (6–7 cm) and SK (8–10 cm) samples is via a
chemolithoautotrophic pathway.

Other organisms such as Nitrosomonas and Nitrobacter,
which can carry out only certain steps of the denitrification
process, could potentially be involved in reduction of
NO3

− to NO2
− in BB (6–7 cm) and SK (8–10 cm) using

nar genes. Nitrosomonas could also contribute to NO3
−

reduction to N2 using nap, nir and nor genes in these same
samples (Fig. 4).

Some marine and freshwater Beggiatoa have the ability to
denitrify (Sweerts et al. 1990; Muβmann et al. 2007), and
DNRA is well documented in Beggiatoa (Preisler et al. 2007
and references therein). Beggiatoa have been shown to be
capable of surviving independently from external sources of
sulphur and NO3

− for up to 2 weeks in laboratory experiments
(Preisler et al. 2007). Protein-coding genes detected in all
samples such as otr (Fig. 8b; MacGregor et al. 2013) and
sulphide oxidation (soxADZBX) genes (Fig. 9) support the
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idea that chemolithoautotrophic microorganisms like
Beggiatoa could be involved in DNRA in these sediments.
Due to their metabolic versatility, it is less clear if
Shewanella and Desulfovibrio could be involved in
denitrification.

For similar reasons, it is unclear ifClostridium and Bacillus
could be involved in DNRA in these sediments. Although we
could not infer whether the above taxa could potentially be
involved in fermentative DNRA, the presence of small and
large NADH nitrite reductase subunit genes (Fig. 8b) supports
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the idea that DNRA could also occur via heterotrophic fer-
mentation in these sediments.

When genes for denitrification, DNRA or genes involved
in both processes were compared, genes involved in denitrifi-
cation were significantly greater in abundance than those in-
volved in DNRA (Fig. 10a, b). A study by Trimmer et al.
(2013) found rates of denitrification to be high at Skagerrak
sites (S4, S6, S8 and S9) neighbouring our site (Fig. 2) and the
potential for DNRA to be negligible tomoderate. Based on the
presence of specific taxa, protein-coding genes and geochem-
istry results, denitrification could potentially be a more impor-
tant pathway in the suboxic zone at both sites.

Conclusions

In this study, we are able to provide a model for ammonifica-
tion, nitrification, NO3

− reduction and denitrification process-
es in the SK and BB sediments based on the presence of
corresponding genes (Fig. 4). Proteases and hydratases ap-
peared to make up the bulk of ammonification genes at both
sites. Genes associated with aerobic ammonia oxidation (amo
and hao) were present and suggest AOA/AOB contribute to
aerobic ammonia oxidation at the sediment-water interface at
SK and BB. However, it remains unclear which one may have
a more important role in both sediments. In addition, the
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presence of nrfA, nirBD and otr and NADH nitrite-reductase
genes implies that DNRA could contribute to NH4

+ produc-
tion where NO3

− is available either via a respiratory or fer-
mentative pathway. Genes for sulphide oxidation
(soxADZBX) could allow for Thiothrix and Beggiatoa to carry
out chemolithoautotrophic NO3

− reduction coupled to
thiosulphate or sulphide oxidation either via denitrification
or DNRA. Nitrosomonas and Nitrobacter could contribute
to NO3

− reduction using nar, nap, nir and nor genes near the
surface where NO3

− is consumed. Biogeochemical and
metagenomic results suggest denitrification could play the
more important role in both sediments. Overall, these results
show that protein-coding genes for these cycles are potentially
operative in suboxic marine sediments at these sites. Our study
offers the first in-depth metagenomic characterization of ni-
trogen cycling and associated genes of suboxic SK and BB
sediments.
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