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Abstract Professionals working in risky or emergency

situations have to make very accurate decisions, while the

quality of the decisions might be affected by the stress that

these situations bring about. Integrating task feedback and

biofeedback into computer-based training environments

could improve trainees’ stress-coping behaviour. This pa-

per presents and assesses a refined version of the cognitive

performance and error (COPE) model that describes the

effects of stressful events on decisions as a foundation for

such a support tool. Within a high-fidelity simulator of a

ship’s bridge at the Royal Netherlands Naval College,

students of the naval college (n = 10) were observed while

completing a 2-h-long shadowing and boarding operation

combined with a search-and-rescue operation. For every

action, variables were measured: objective and subjective

task demand, challenge and threat appraisal, and arousal

based on heart rate and heart rate variability. The data

supported the COPE model and were used to create pre-

dictive models. The variables could provide minute-by-

minute predictions of performance that can be divided into

performance rated by experts and errors. The predictions

for performance rated by experts correlated with the ob-

served data (r = 0.77), and 68.3 % of the predicted errors

were correct. The error predictions concern the chances of

making specific errors of communication, planning, speed,

and task allocation. These models will be implemented

into a real-time feedback system for trainees performing in

stressful simulated training tasks.
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1 Introduction

Professionals working in safety-related fields such as the

police force, fire department, aviation, and the army may

enter uncertain and unexpected situations that bring along

high levels of stress and demands (Driskell and Johnston

1998). For example, naval ship operators encounter si-

tuations where they have to process a great amount of

complex information in a short period of time and make a

decision that can have severe consequences. Unfortu-

nately, high levels of stress can negatively affect cogni-

tive functions that are needed to execute several cognitive

processes (Mendl 1999). For example, errors are likely to

occur in cognitive functions such as: attention, memory

formation, and memory recall (Kleider et al. 2010; Mendl

1999; Orasanu and Backer 1996). In order to mitigate

negative effects of stress, it is important to understand (1)

the underlying processes and their effects on performance

and (2) the experiences with decision support systems that

have been developed to improve performance. Under-

standing these two topics will help to achieve the aim of

this paper: establishing predictive models that can be used

in a new decision or training support system. This intro-

duction starts with an overview of the literature on de-

cision-making under stress. Next, past and current

decision support systems and other training methods are

discussed to give an idea on what is important when

designing such a system. The introduction then ends with
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a more detailed formulation of the research aim and hy-

potheses of this paper.

Decision-making involves a specific cognitive process

that is influenced by high stress levels (Starcke and Brand

2012; Kerstholt 1994). Considering alternative decision

options is a step in the decision-making process where

stress can have negative effects. Individuals are more likely

to decide without considering all alternatives (premature

closure), use a non-systematic manner to consider the al-

ternatives (non-systematic scanning), and seem unable to

allocate time to consider all the alternatives (temporal

narrowing) (Keinan et al. 1987). Time constrains seem to

play a key role in these circumstances. For example, Maule

et al. (2000) found that time pressure induced feelings of

being energetic and anxious in people. But time pressure is

not a prerequisite for stress. Keinan et al. (1987) reported

that people can show disorganized and incomplete scan-

ning when time limits are not present. Another observation

relevant to these situations is that making a decision should

not be seen as a single action, but as a chain of unfolding

events and decisions. Ozel (2001) mentioned that human

behaviour seems to be episodic in stressful and dangerous

events. Every episode focuses on a certain goal that needs

to be reached by executing appropriate actions. Achieving

the goals can be seen as ‘decision-making between epi-

sodes’, and achieving the actions can be seen as ‘decision-

making within episodes’. Distinguishing goals and actions

in human behaviours during emergency handling makes it

easier to investigate where in the decision processes stress

plays a role. Another aspect of professionals working in

stressful environments is that professionals often operate in

teams. Working in a team can have obvious benefits, but

also brings along extra-cognitive issues that can have

negative effects on performance during team decision-

making. Dowell and Hoc (1995) group these cognitive is-

sues of coordinating decision-making and actions in four

groups: planning, action, communication, and task

knowledge.

Current practices aiming to reduce negative effects of

stress make use of technical advances such as decision

support systems or training environments that induce stress.

Since the early 80s, research has tried to create effective

digital decision support systems, or Intelligent Decision

Aids (IDAs) (Kontogiannis and Kossiavelou 1999). Early

support systems were designed to create decisions without

biases. These systems provided limited options for the

users to assess system’s outcome: the users could merely

accept or reject the decision made for them. This might

have been a reason that the users had problems accepting

these kinds of decisions and support systems (Kontogiannis

and Kossiavelou 1999). Other problems were that the de-

cision tools, even when focussed on naturalistic decisions,

rarely showed decision improvement because individuals

using them were often ahead of the tool (Cohen 1993), and

the tool designers cannot anticipate all possible scenarios

that might occur (Reason 1987). Therefore, recent and

current IDAs are being designed to collaborate with its

users to reach decisions, e.g. aiming at a ‘joint (human

technology) cognitive system’ (cf. Hollnagel and Woods

2005). In their review, Kontogiannis and Kossiavelou

(1999) also propose that IDAs should try to prevent and

delay stress. This can be done by implementing suggestions

for changes in team strategies proven to be efficient while

working under stress into IDAs. IDAs should provide in-

sight into event escalations and the anticipation of rare

events. They should point out changes in communication

necessary to work under stress and help the team members

to keep track of each other’s activities. Also the structure

and task allocation of teams should adapt to stressful

situations.

Another approach to prepare professionals to stressful

environments is to expose them to stressful conditions

during scenario-based training, so that they can learn to

cope with such conditions and to keep their performances

at a high level in a stressful environment (Driskell and

Johnston 2006; Peeters et al. 2014). Previous research has

found several aspects that can be applied to create effective

stress training. First, training environments should clearly

convey a naturalistic environment. Making decisions in a

real-life event is hardly the same as making decisions in a

laboratory setting on which the classical decision theory is

based (Beach and Lipshitz 1993). Orasanu and Connolly

(1993) listed eight factors that have been ignored in deci-

sion research, but are clear features of decision-making in a

naturalistic environment. The factors they list are as fol-

lows: ill-structured problems, uncertain dynamic environ-

ments, shifting or competing goals, action or feedback

loops, time stress, high stakes, multiple players and orga-

nizational goals, and norms. The presence of several of

these factors in stressful situations will complicate the task

of making a decision. Besides properties of naturalistic

environments, specific guidelines have been suggested with

regard to simulation training. For example, Sime (2007)

listed seven properties for simulation training that help to

reduce stress and its negative effects on decisions. Her

seven suggestions are as follows: (1) when training certain

skills that are to be applied in a stressful environment, the

training setting should be a stressful environment as well;

(2) reducing workload caused by time pressure can be

achieved by rehearsing cognitive and behavioural skills up

to automation; (3) by training heuristics of task prioritiza-

tion; (4) cognitive rehearsal of a task can help increase

one’s confidence and ability; (5) while team training in-

creases team performance through the sense of team

identity; (6) changing the training environments helps train

flexibility, which makes it easier to work in an unknown
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situation; and last (7) negative emotions and fear of the

unknown can be reduced with the right training such as

biofeedback training and cognitive control strategies.

Besides training in naturalistic environments, Sime

(2007) suggested that biofeedback can be an effective tool

to decrease stress during training. Whereas biofeedback

increases control over one’s physiological stress reactions

(Bouchard et al. 2012), e.g. increased heart rate and fast

respiration, cognitive control strategies can reduce emo-

tions and distracting thoughts (Sime 2007; Driskell and

Johnston 2006). Having a clear understanding of one’s

emotions will help individuals to experience fewer cogni-

tive difficulties. It is argued that when under stress, cog-

nitive attention resources will not only be depleted by the

task at hand, but also be depleted by the emotional reac-

tions (Gohm et al. 2001; Driskell and Johnston 2006).

When less cognitive resources are available, performance

will decline. In other words, a better insight into one’s

emotional reactions improves performance under stress.

The project ‘better decisions under high pressure’ was

started to develop computer-based training support for

mitigating negative effects of stress on decision-making.

The envisioned support tool incorporates above-mentioned

training and biofeedback approaches, i.e. by combining

biofeedback (Sime 2007), and suggestions for changes in

strategies (Kontogiannis and Kossiavelou 1999) and cog-

nitive control strategies. Using only biofeedback teaches

individuals to control their physiological reactions to stress,

but not their cognitive reactions (Mendl 1999; Keinan et al.

1987; Gohm et al. 2001). Cognitive feedback by suggesting

efficient team strategies, together with biofeedback, could

help trainees to overcome cognitive issues or impairments

due to stress. In addition, it is expected that a tool that

provides such combined support will be accepted better by

the end-users.

To establish the real-time biofeedback and performance

feedback, a model is needed that assesses the task and

emotional load and provides performance predictions. The

first model development step is to combine situational

factors and cognitive and physiological indicators in a

descriptive model and, subsequently, to refine it into a

predictive model for cognitive processes and performances

that are likely to occur in certain stressful situations. Cohen

et al. (2012) provided a first (descriptive) version of this

model based on the literature on cognitive reactions to

stress, called the COgnitive Performance and Error (COPE)

model. The goal of this study is to validate a refined ver-

sion of the COPE model and test its ability to predict

cognitive errors and performance. This paper describes the

acquisition of training data and the subsequent analysis of

the relationships between the COPE variables. The first

hypothesis states that the variables are related as suggested

by the COPE model. The second hypothesis states that the

cognitive and situational variables in the COPE model can

be used to predict performance and errors under stress. The

next section of this paper will describe the variables of the

COPE model and their expected relations.

2 COPE model

The graphical representation of the COPE model displayed

in Fig. 1 shows a cognitive process of decision-making

under stress (Cohen et al. 2012). It roughly consists of three

components: the external world, the individual’s cognition

and the individual’s actions interpreted as the performance

on a task or decision.

In this model, the external environment consists of an

event and the corresponding objective task demand. An

event itself is not stressful, but an individual can experi-

ence an event as a stressful event. Whether an event is

experienced as a stressful one or not depends on the indi-

vidual’s cognitive perception of the event. The task de-

mand variables are based on Neerincx’s (2003) model of

Cognitive Task Load. In this model, task demand is divided

into three dimensions: level of information processing,

time occupied, and task-set switches. By measuring these

three dimensions, it is possible to determine cognitive task

load during a specific task. The distinction between ob-

jective and subjective task demand implies that task de-

mands can be determined ‘from the outside’, e.g. by

external experts or task analysts (called ‘objective’) and by

the task performers themselves (called ‘subjective’). The

subjective task demands can be lower or higher than the

objective task demands (Bosse et al. 2008).

Stress reactions that follow a stressful event can be

explained as indirect reactions to the stressful event

(Lazarus 1999). After perceiving a stressful event, the

severity of potential danger is assessed by the person

experiencing it. This assessment is called the primary

appraisal. If a situation is appraised as dangerous, it can

be seen as a challenge when the individual feels he or she

can cope with the event, or as a threat when the indi-

vidual feels he or she is lacking the resources to cope

with the event. This is called the secondary appraisal. An

individual that is experiencing a situation appraised as a

threat or a challenge will try to cope with the situation by

applying an appropriate coping strategy (Gaillard 2007).

Which coping strategy is used by the individual depends

on the appraisal, but also on the individual’s emotional

state, since affect influences judgment (Forgas 1995). The

chosen coping strategy, in its turn, influences the deci-

sions and actions made by the individual (Delahaij 2009).

Thunholm (2004, 2008) investigated individual’s deci-

sion-making styles while under stress and found that an

avoidant decision style relates to higher levels of distress

Cogn Tech Work (2015) 17:503–519 505

123



and that a spontaneous decision style did not. Although

decision-making styles and coping strategies fit in the

COPE model, they are out of the scope of this study,

since there are no quick and easy ways to determine

which style is used by the trainees.

A common way of measuring Emotional State is by

using the valence, arousal, and dominance scale (Bradley

and Lang 1994; Mehrabian 1996). While valence is a scale

that indicates the pleasantness of stimuli experienced by an

individual, the arousal scale ranges from being excited to

relaxed. The dominance scale represents the level of con-

trol an individual feels. Instead of using a questionnaire,

arousal can be measured in a less obtrusive way by mea-

suring physiological aspects using biosensors (Haag et al.

2004). Physiological measures related to arousal induced

by stress are, for example, heart rate (HR), heart rate

variability (HRV), and stress hormone levels (Krantz et al.

2004; Hjortskov et al. 2004).

HR increases due to the sympathetic nervous system

(SNS) stimulation caused, for example, by stress, exercise,

or cardiovascular disease. Activation of the parasympa-

thetic nervous system (PNS) causes a decrease in HR.

Changes in the balance between PNS and SNS activation

produce heart rate fluctuations known as HRV. HR and

HRV are used in the literature as measures of mental effort;

an increase in mental effort will increase HR and decrease

HRV (Mulder 1992). Mulder (1992) described a decrease

in HRV as invested effort and not just a higher task diffi-

culty. The effort needed to perform a more difficult task is

shown by lowered HRV.

At the end of the cycle, an individual’s cognition will

lead to certain decisions and actions. Whether these deci-

sions or actions are appropriate for the stressful event will

determine the performance on the task. Reacting to the

event will eventually result in changes of the external

world and new tasks to perform and decision to make.

3 Methods

After the explanation of the COPE model in the previ-

ous sections, the hypotheses can be described in more de-

tail. The first hypothesis states that the arrows in Fig. 1

represent correlations between the variables. The second

hypotheses states that the cognitive variables (appraisal,

task demand, and physiological arousal) and the objective

task demand can predict performance values.

To validate the COPE model and use the variables to

predict performance and cognitive errors under stress,

seven variables from the COPE model were measured

(Sect. 3.3) while participants performed tasks in a stressful

virtual scenario. The scenario took place in two simulated

ship environments at the Royal Netherlands Naval College

(RNNC) in Den Helder, The Netherlands. In every session,

two teams of three participants were formed, each team in a

separate simulator (simulators were connected). They ex-

perienced the same stressful scenario in which they needed

to make decisions and execute tasks that would lead to a

positive outcome.

3.1 Participants

Twenty-six students from the RNNC in Den Helder, The

Netherlands, were recruited to participate in this ex-

periment, including seven females. The median age was

22 years, with a minimum of 19 and a maximum of

41 years. Due to participant dropouts (caused by deploy-

ment, courses, etc.), two teams consisted of only two par-

ticipants, and one session had only one team. Only

participants with a complete data set, consisting of elec-

trocardiogram (ECG) signals; questionnaires; and video

data, were included in the analyses. The final data set

consisted of 10 participants; two females and eight males

of whom eight had between 0 and 2 years of operational

Fig. 1 Schematic view of the

COPE model of external and

cognitive factors, predicting an

individual’s performance and

errors
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service and two had over 2 years of operational service.

The participants signed a consent form, and the study was

approved by the ethical committee of Delft University of

Technology, and the ethical committee of TNO.

3.2 Materials

Two static bridge simulators from the RNNC were used:

the primary simulator simulated the ‘Hr. Ms. Tromp’ fri-

gate (Fig. 2), and the secondary simulator simulated the

‘Hr. Ms. Van Amstel’ frigate. These simulators consisted

of a replica of the ships bridge and virtual surroundings,

such as a moving horizon that gave the perception of ship

movement. To control the ships, communication was nec-

essary between the crew on the bridge (the participants),

the superiors ashore (trainers), the crew on deck (trainers),

and other ships (participants and trainers). In both

simulators, at least two trainers were present during the

scenarios.

3.3 Measurement of variables

Seven variables were measured that appear in the COPE

model as appeared in Fig. 1: (1) events, (2) objective task

demand, (3) appraisal, (4) subjective task demand, (5)

emotional state/arousal, (6) performance, and (7) errors.

For every event that occurred, these variables were mea-

sured. Since there were 21 identifiable events, it was not

preferred to use long questionnaires since interruptions of

complex tasks lower their performance (Speier et al. 1999).

For coping strategy, no short questionnaire was found so a

long questionnaire was used that measured general coping

and not task-specific coping. This questionnaire was filled

in once. Therefore, the coping strategy measures were not

used in the analyses. The different measurements are ex-

plained in the next subsections.

3.3.1 External world: stressful events

A stressful, realistic scenario was written especially for this

experiment by the simulator trainers of the RNNC. In

Table 1, the episodes, goals, and actions of the tasks as

suggested by Ozel (2001) are described. Five main epi-

sodes were identified: (1) shadowing the smuggling ship,

(2) avoiding other vessels (this goal stays a goal during the

whole experiment), (3) preparing for boarding, (4) execute

boarding, and (5) reacting to and execute a search and

rescue (SAR). Within these main episodes, different ac-

tions can be identified as indicated in Table 1 by the letters

‘a’ through ‘g’.

The scenario took place in the North Sea, which is fa-

miliar territory for the participants. The scenario started

with two navy warships shadowing a ship that was sus-

pected of smuggling refugees. This ship discovered that it

was being followed, which means they were likely to

‘destroy evidence’. In other words: throwing the refugees

overboard. The participants needed to board the smuggling

ship. Before the ship could be boarded, several actions

needed to be taken. When the boarding was being

executed, a Mayday call came in on the radio. The two

Navy ships needed to decide to follow the distress call and

transfer the boarding operation to another ship. When the

search-and-rescue (SAR) was being executed, several ac-

tions needed to be taken. Depending on previous decisions

and speed of the actions, some of the tasks could not be

performed. All teams played the scenario for ap-

proximately 130 min.

3.3.2 External world: objective task demand

Several questionnaires were available for measuring task

demand. A reliable, fast, and easy scale is the Overall

Workload questionnaire (Hill et al. 1992). This question-

naire consists of one scale, ranging from 0 to 100. A similar

single-scale questionnaire was used in this study to mea-

sure task demand assessed by the trainers. They filled in the

10-point task demand scale for novice students (0–2 years

of experience) and more experienced students (more than

2 years of service). Although the measurement itself is

‘subjective’, the trainers rated the events as external and

objective experts (i.e. not participating in the stressful si-

tuation) from the trainees’ point of view. It was therefore

used as measure for objective task demand as described in

Sect. 2.

Fig. 2 Bridge simulator based on the ‘Van Tromp’ ship, seen from two angles and the trainer control room
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3.3.3 Cognition: appraisal

For every event in the scenario (Table 1), the participants

filled in an appraisal questionnaire. One scale running from

(1) challenge to (10) threat was filled in for every event in

the scenario. With this scale, the appraisal could not be

filled in as 0 but was always biased towards either chal-

lenge or threat. The scores were separated into two vari-

ables: challenge and threat. The challenge variable was

created out of the scores from 1 to 5 correspond to ‘very

challenging’ (1) and ‘little challenging’ (5). A threat vari-

able was created out of the scores from 6 to 10 where 6

corresponds to ‘little threatening’ and 10 corresponds to

‘very threatening’. The appraisal scores 5, 4, 3, 2, and 1

were reversed to challenge scores 1, 2, 3, 3, and 5. The

appraisal scores 6, 7, 8, 9, and 10 were converted to the

threat scores of 1, 2, 3, 4, and 5. In this manner, the two

appraisal variables could be compared.

3.3.4 Cognition: subjective task demand

The subjective task demand was measured with the same

questionnaire as the objective task demand. A single scale,

ranging from 1 ‘not at all demanding’ to 10 ‘very de-

manding’, was filled in by the participants scoring their

own (subjective) task demand.

3.3.5 Cognition: emotional state: arousal

To measure the participant’s arousal levels during the ex-

periment without having the participants fill in a

questionnaire, six mobi8 systems from TMSi (Enschede,

The Netherlands) were used. These devices measure elec-

trocardiographs (ECG), which can be translated into heart

rate and heart rate variability. Each mobi8 has three sen-

sors: one sensor was placed on the right collarbone, another

sensor under the left ribs, and a ground sensor was placed

on the right side, as shown in Fig. 3. To ensure that par-

ticipants could walk around freely, they carried the mobi8

devices in a suitable case.

3.3.6 Action: performance

At the end of the experiment, the ‘performance’ was

assessed by the trainers. All events from the session were

rated on a 10-point scale for every participant. At least two

trainers scored each participant, in order to create an av-

eraged performance score. Z-scores were calculated for the

performance rates, to extinguish possible trainer biases.

Table 1 Actions that need to

be executed in different stages

of the scenario

Episode Time in scenario Stressful events: actions for episode goal

1. Shadowing target ship Start to ±25 min (a) Start of the training

(b) Reacting when shadowing is discovered

2. Avoiding other vessels in the dark During entire

scenario

3. Preparing to board target ship ±25 to ±90 min (a) Deciding what team does what

(b) Positioning of the ships

4. Executing combined boarding ±35 to ±90 min (a) Hailing of the target ship

(b) Positioning the target vessel

(c) Directing the crew

(d) Mutual communication

(e) Reacting on incoming Mayday

5. Executing search and rescue ±90 to end (a) Transfer target ship to arriving coastguard

(b) Launch helicopter

(c) Gearing up against traffic flow

(d) Navigate between sandbars

(e) Searching for ‘man-over-board’

(f) Deploying the medic

(g) Carrying away injured

Fig. 3 Sensor placement for

ECG
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Z-scores for a single participant’s performance rate were

calculated with the mean and standard deviation of all the

performance scores from all participants.

3.3.7 Action: error

Two Sony HDR-CX300E cameras, a Sony handy cam

DCR-SR55 and a Panasonic HDC-RM300 camera, were

used to record the activities in the simulators. Two cameras

were placed in each simulator. The video data were used to

define what situation and action occurred every minute.

These videos were used to observe the trainer comments

that could be used to determine whether, when, and what

kind of errors occurred.

Within the video data, some errors were clearly identi-

fiable. These errors were a direct result from faulty actions

(Rasmussen 1982). For example, in one team, the members

were all focusing on their own task which made them

forget to keep track of the radar and look outside. They did

not notice a buoy in front of the ship and navigated over the

buoy. Only relative few of these kinds of errors happened

during the experiment. Other errors were not directly

visible, but the actions taken by the participants would not

meet the planned goal. These actions would only unfold

into an error, after a substantial amount of time had passed

(Rasmussen 1982). To identify these unfitting actions, the

comments from the trainers were analysed. An example:

the team members forgot to communicate their plan to the

crew of the ship. If the crew does not prepare for action, the

action cannot be performed when the participants want it to

be performed. These errors, or more precisely, tendencies

to err, were identified based on the comments and

suggestions made by the trainers. Comments were

categorized into five groups, which corresponded to the

groups of cognitive issues indicated by Dowell and Hoc

(1995): communication; planning; speed; task allocation;

and ‘other’. For every category, an example is given in

Table 2.

3.4 Procedure

Five experimental sessions were performed. In an ex-

perimental session, the scenario was played with six par-

ticipants divided over two teams and simulators. The

scenario lasted about 2 h, with a 15-min break halfway the

scenario. Each team had a participant fulfilling the role of

an officer of the watch, a navigation officer and a

steersman.

Before running the scenario, the participants gathered in

a classroom where they received a briefing about the sce-

nario and the general aim of the study from the trainers.

The participants were assigned to teams and divided the

roles within the teams. After this, a questionnaire was filled

in, in which general information about the participants was

asked: e.g. years of service; experience in the simulators;

and some general health questions, e.g. do you smoke,

drink alcohol, or caffeine. Next, the mobi8 systems were

explained and connected to the participants. After the

briefing, the participants went to the simulators where

video cameras were turned on.

At the moment the simulators were started, the par-

ticipants turned on the mobi8 systems that started recording

ECG. The first half of the scenario was played, followed by

a 15-min break, in which the participants answered the

Table 2 Trainer comments can help in identifying the error category

Category and description Example

Communication: Participants forget to communicate information to other

participants. This is a crucial point in co-operation

The participants want to execute a boarding soon, and they are

informing the crew

Trainer: ‘You should not yet tell them about the boarding if it is

not confirmed by the commander’

Planning: When relevant information enters the bridge, it can be used to

make a plan for further actions. Often, participants have the information

but have not made a plan yet

The participants started a particular engine of the ship, which

cannot run for longer than 15 min

Trainer: ‘What are you going to do with these engines? They are

going to break down soon’

Speed: Speed is of major essence in this scenario. Plans need to be made

fast, and actions need to be executed fast. The decision-making often

takes too much time

Between the ship and the Mayday location are sandbanks. The

students want to go around them

Trainer: ‘Why do you want to go around them? Going between

them is much faster’

Task allocation: Three people are on the bridge at all times (in this

setting). They all have their own task, but when needed, task can be

allocated differently to relieve one person of too much tasks. This is

often forgotten

One student is only focusing on reading the map

Trainer: ‘You should alternate between your tasks more’
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appraisal and task demand questionnaire for every action

they encountered in the first half of the scenario. The

scenario was then continued. Due to differences in the

decisions and actions taken by the different teams, not all

sessions lasted the same amount of time. After ap-

proximately 2 h, the scenario was ended by the trainers,

and the second appraisal and task demand questionnaires

were filled in about the events in the second half of the

scenario.

The participants returned to the classroom where they

took off the mobi8 sensors and were debriefed by the

trainers. After the debriefing, the participants left and the

trainers filled in the performance questionnaires, rating the

actions of every participant. Although the basics of the

scenarios were the same during every session, decisions

made by the participants led to small differences in the

storyline and the order of the events.

4 Results

The results section is divided into two parts. The first part

focuses on the variables of the COPE model. The second

part focuses on creating a predictive model out of the data

set. Before the data could be analysed, the raw measure-

ments were first transformed into a data set ready for

analysis.

4.1 Data preparation

The ECG data, as collected with the mobi8 from TMSi,

were converted into heart rate (HR) and heart rate vari-

ability (HRV) per minute, using Matlab R2011a (The

Mathworks). The signal measured in mV was first passed

through a high-pass (0.5 Hz) and a low-pass (40 Hz) filter.

After filtering, a peak-detection function was applied to the

ECG signal. A minimum value had to be set in order to

only detect the R-tops of the heart beat. Counting the

number of R-tops per minute resulted in the HR value per

minute.

Nine outliers in the HR data, defined as values larger

than three times the inter-quartile range, were removed

from the data set, as they probably occurred because the

heart rate measurement devices had stopped, or were mo-

mentarily turned off. The HRV was calculated by the root

mean squared successive differences (RMSSD) method.

This method squares the average of the differences be-

tween two consecutive R-tops and was calculated for every

minute.

A reliability analysis was conducted across the par-

ticipants to examine similarity between participants’ re-

sponses to their subjective task demand and appraisal.

Table 3 shows the Cronbach’s alpha values for both

variables for the 26 participants and the group of n = 10

from the final data set. Alpha values range from 0.75 to

0.99; it seems that there was a strong correlation between

the participants’ appraisal and subjective task demand.

With the help of video data, it was determined which

action (from Table 1) was executed at which time by each

participant. The comments from trainers were used to de-

termine whether errors were (almost) made by the par-

ticipants. For every action, data about the appraisal, task

demand, and performance were collected by means of the

questionnaires described in the method section. Knowing

what actions were executed every minute allowed us to

calculate the appraisal, task demand, and performance per

minute. If multiple tasks were performed in one particular

minute, the associated appraisal and task demand scores

were summed. For performance, scores were normalized

and averaged per minute for all the tasks performed. Since

the sessions all lasted over 2 h, around 130 data points per

participant were collected. As an example, a small part of

the data set is displayed in Table 4.

Besides the minute-by-minute data, six extra lag vari-

ables were created for HR, HRV, threat, challenge, ob-

jective and subjective task demand, and the errors and

performance variables. These lag variables were created

by taking the average value over a window of the pre-

vious 5 min. Using lag variables might result in better

predictions if the effects of stress are delayed or take

more time to appear than 1 min. For the error variable,

the lag-variable would be a ‘1’ if the previous 5 min

would contain a ‘1’.

The trainer comments were coded by three independent

coders into five categories (Table 2). Coder 1, the ex-

periment leader, coded the comments into the five cate-

gories and made a description of the categories. These were

explained to coder 2 and 3. The first round of codes was

examined, and the non-matching codes were discussed.

Then, coders 2 and 3 coded the comments a second and a

third time. As can be seen in Table 5, coder 2 fully agreed

with the coding of coder 1 while coder 3 had some dis-

agreements. Table 5 shows the Cohen’s kappa for inter-

rater agreement. The inter-rater agreement ranges between

0.72 and 1, except for the ‘other’ category that had the

lowest inter-rater correlation of 0.46. This category was

therefore left out of the analyses.

Table 3 Cronbach’s alpha for appraisal and subjective task demand

scores between participants and subjective task demands scores be-

tween trainers

Cronbach’s alpha

26 pp 10 pp

Appraisal 0.92 0.92

Subjective task demand 0.99 0.75
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4.2 COPE model exploration

The first step into the exploration of the COPE model was

to examine the different variables and therewith testing the

first hypothesis. Table 6 shows the sample size, minimum

and maximum score, mean and standard deviation for each

variable in the data set. There are less data points for the

lag variables than for the non-lag variables, because the lag

variables were calculated starting at the sixth minute of the

session. After removing the heart rate outliers, the lowest

heart rate recorded is 45.48 beats per minute, and the

highest is 116.82 beats per minute. It is interesting to note

that the mean of the normalized performance lies below 0.

The error scores are either one or zero. The mean scores for

all the error variables are close to zero, which illustrates an

underrepresentation in the error data, which will be dis-

cussed later in this paper.

Next, the correlations between the different variables

were examined. To control for between participants

variance, correlations of the variables were first calculated

per participant and then averaged. The average amount of

data points per participant is 116, which gives a df of 114.

The critical correlation value for df = 114, and a = 0.05

is rc = 0.179. Table 7 shows all the correlations. Those

bold faced are significant, and those bold faced and

highlighted are significant correlations between different

variables.

Table 7 shows a negative correlation between heart rate

and heart rate variability; higher HR correlates to lower

HRV and vice versa. These relations can be seen in both

the 5-min lag measure and the 1-min measure. Among the

regular variables, six significant correlations were found.

Challenge and threat appraisals show a negative correlation

as expected since appraisal was measured on a single scale

ranging from challenge to threat. Objective and subjective

task demand correlated positively, indicating that par-

ticipant and trainer perception corresponded to each other.

Likewise, a positive correlation was found between task

demands and both threats and challenge appraisals. This

suggests that low task demand situations were not likely to

be appraised as a threat or a challenge, while highly de-

manding situations were.

The correlations between the lag variables show similar

patterns, with two exceptions: a challenge appraisal was no

longer found to correlate with subjective task demand, but

was found to correlate positively with hearth rate and

negatively with heart rate variability. In other words, this

result supports the COPE model’s link between arousal and

challenge appraisal. Interestingly, no direct correlations

were found between variables from the model and the

minute-by-minute performance and errors (Table 7). Still,

on a 5-min window, the lag variables show that challenge

appraisal was reversely correlated with errors.

4.3 Predictive models

Four generalized linear mixed model (GLMM) analyses

were conducted to analyse the relation between the COPE

model variables and the observed performance and cogni-

tive errors. These analyses tested the second general hy-

pothesis of this study. Performance and errors were

modelled as dependent variables, using a linear model and

a binary logistic regression model, respectively. The fixed

factors consisted of the independent variables HR, HRV,

threat, challenge, objective task demand and subjective

Table 4 A small part of the

complete data set

The columns indicate;

participant, minute, heart rate,

heart rate variability, appraisal

(threat and challenge) task

demand (objective and

subjective) normalized

performance and the error status

(0 = No, 1 = Yes)

pp Time HR HRV Appraisal Task demand

Threat Challenge Objective Subjective Performance Error

2 1 104.32 0.58 0 1 4.50 5 -0.79 0

2 2 97.75 0.61 2 1 8.50 13 -0.20 0

2 3 98.03 0.61 2 0 4.00 8 0.39 0

2 4 97.07 0.61 0 1 4.50 5 -0.79 0

2 5 99.73 0.60 0 6 5.67 0 0.00 0

2 6 101.65 0.59 0 6 5.67 0 0.00 0

2 7 97.72 0.61 2 6 9.67 8 0.19 0

2 8 104.82 0.57 2 0 4.00 8 0.39 1

2 9 101.16 0.59 0 6 5.67 0 0.00 0

2 10 107.49 0.56 0 7 10.17 5 -0.40 0

Table 5 Cohen’s kappa for the inter-rater correlations between 3

raters and 5 categories

Category Coder 1 Coder 1

Coder 2 Coder 3

Communication 1.00 0.77

Planning 1.00 0.72

Speed 1.00 0.80

Task allocation 1.00 0.76

Others 1.00 0.46
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task demand, and their the lag variables. ‘Participant’ was

included as a random factor, thereby including a random

intercept for each participant. The variance component

type was used for random effect covariance type.

4.3.1 Performance

A GLMM shows that the fixed factors can explain the

performance per minute [F(6,1.161) = 8.60, p\ 0.01]

with a correlation of r = 0.77 between observed and pre-

dicted performance. The individual variance differed sig-

nificantly from the standard intercept (varintercept = 0.718,

Std Err = 0.35, Z = 2.08, p = 0.037), indicating that on

average the participants differed in their performance

variance among each other. Examining the coefficients in

Table 8 shows that an increase in threat or challenge ap-

praisal coincided with significant increase in the perfor-

mance. The analysis shows an opposite effect for objective

task demand. An increase in this factor coincided with

significant decrease in performance. Including the lag

variables in the GLMM analysis resulted again in a model

with explaining ability [F(12,1.106) = 5.99, p\ 0.01]

with a correlation of r = 0.79 between predicted and

objective performance. Also this model shows a significant

random intercept for individual participants (varInter-

cept = 0.723, Std Err = 0.35, Z = 2.06, p = 0.039). In

addition to factors already found in the previous model, the

extended model also revealed that an increase lagged threat

appraisal of the last 5 min coincided with reduction in

performance (Table 9).

4.3.2 Predictive error models

The GLMM analysis revealed a significant binary logistic

model for the error variable, F(6,1.161) = 5.57, p\ 0.01.

On average, the model predicted 91.2 % of the error status

correctly, with 100 % correct predictions for ‘no error’,

and 0 % correct predictions for ‘error’. The model found

no significant (varintercept = 0.195, Std. Err = 0.198,

Z = .984, p = 0.33) difference between the participants

with regard to making an error. Table 10 shows that an

increase in challenge appraisal coincided with an increased

chance of making an error. Extending the model with lag

variables resulted again in a significant model

[F(12,1.106) = 4.29, p\ 0.01], however, without any

significant coefficient (all p[ 0.05).

Table 6 Descriptive statistics

of the model’s variables and the

lag variables

N Minimum Maximum Mean SD

Emotional state (arousal)

Heart rate 1,168 45.48 116.82 80.96 12.56

Heart rate variability 1,168 0.51 1.38 0.76 0.14

Appraisal

Threat 1,168 0 8 0.68 1.43

Challenge 1,168 0 20 4.76 3.75

Task demand

Objective 1,168 0 24.33 8.31 4.54

Subjective 1,168 0 26.00 7.20 5.55

Actions

Performance 1,168 -3.15 1.57 -0.45 1.06

Errors 1,168 0 1 0.09 0.28

Communication 1,168 0 1 0.04 0.19

Planning 1,168 0 1 0.04 0.20

Speed 1,168 0 1 0.01 0.12

Task allocation 1,168 0 1 0.01 0.11

Other 1,168 0 1 0.02 0.14

Lag variables

Heart rate 1,119 50.50 109.59 81.01 12.06

Heart rate variability 1,119 0.55 1.22 0.76 0.14

Appraisal threat 1,119 0.00 6.20 0.69 1.29

Appraisal challenge 1,119 0.00 15.98 4.71 3.32

Objective task demand 1,119 1.80 18.93 8.29 3.48

Subjective task demand 1,119 0.00 19.60 7.20 4.64

Performance 875 -3.15 1.57 -0.43 0.96

Error 1,103 0 1 0.37 0.48
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The analysis of errors led to two important observa-

tions: (1) as only 91.2 % (1,065/1,168) of intervals in-

cluded no error, the prediction was strongly biased

towards no error prediction and (2) no individual differ-

ence between participants was found. Such an error

prediction model would not be useful in a training setting.

Instead, in such a setting, it would be acceptable to have

some level of false alarms, if it would increase the

number of correct predicted errors, i.e. hits. Therefore,

analyses were also conducted that corrected for the bias

Table 8 Results of GLMM analysis on performance without lag variables

df1 df2 F Sig Coefficient Std error t Sig. Lower Upper

Corrected model 6 1.161 8.60 <0.01

HR 1 1.161 0.18 0.68 0.00 0.01 -0.42 0.68 -0.02 0.02

HRV 1 1.161 0.78 0.38 -0.73 0.83 -0.88 0.38 -2.36 0.9

Appraisal threat 1 1.161 20.46 <0.01 0.12 0.03 4.52 <0.01 0.07 0.18

Appraisal challenge 1 1.161 33.67 <0.01 0.07 0.01 5.8 <0.01 0.05 0.09

Objective task demand 1 1.161 22.99 <0.01 -0.06 0.01 -4.8 <0.01 -0.08 -0.04

Subjective task demand 1 1.161 0.62 0.43 0.01 0.01 0.79 0.43 -0.01 0.03

Intercept 0.42 1.45 0.29 0.77 -2.42 3.26

Bold p values are significant

Table 9 Results of GLMM analysis on performance with lag variables

df1 df2 F Sig Coefficient Std t Sig Lower Upper

Corrected model 12 1.106 5.99 <0.01

HR 1 1.106 0.58 0.45 -0.01 0.01 -0.76 0.45 -0.03 0.01

HRV 1 1.106 0.72 0.407 -0.80 0.94 -0.85 0.40 -2.64 1.05

Appraisal threat 1 1.106 34.64 <0.01 0.19 0.03 5.89 <0.01 0.13 0.26

Appraisal challenge 1 1.106 21.14 <0.01 0.07 0.01 4.60 <0.01 0.04 0.10

Objective task demand 1 1.106 18.65 <0.01 -0.06 0.01 -4.32 <0.01 -0.09 -0.03

Subjective task demand 1 1.106 0.37 0.55 0.01 0.01 0.61 0.55 -0.02 0.03

Lag_HR 1 1.106 0.07 0.80 0.00 0.01 -0.26 0.80 -0.03 0.02

Lag_HRV 1 1.106 0.60 0.44 -0.86 1.11 -0.77 0.44 -3.03 1.32

Lag_appraisal threat 1 1.106 15.48 <0.01 -0.17 0.04 -3.93 <0.01 -0.25 -0.08

Lag_appraisal challenge 1 1.106 0.16 0.69 -0.01 0.02 -0.40 0.69 -0.04 0.03

Lag_objective task demand 1 1.106 0.00 0.96 0.00 0.02 0.05 0.96 -0.04 0.04

Lag_subjective task demand 1 1.106 0.18 0.67 0.01 0.01 0.42 0.67 -0.02 0.03

Intercept 1.78 1.83 0.97 0.33 -1.81 5.37

Bold p values are significant

Table 10 Multilevel linear regression for error prediction without lag variables

df1 df2 F Sig Coefficient Std t Sig Exp coefficient Confidence interval

for exp (coefficient)

Lower Upper

Corrected model 6 1,161 5.57 <0.01

HR 1 1,161 1.83 0.18 0.11 0.08 1.35 0.18 1.12 0.95 1.32

HRV 1 1,161 3.24 0.07 17.04 9.46 1.80 0.07 25.05 9 106 0.22 2.88 9 1015

Appraisal threat 1 1,161 2.45 0.12 0.21 0.13 1.57 0.12 1.23 0.95 1.59

Appraisal challenge 1 1,161 5.64 0.02 0.15 0.06 2.37 0.02 1.16 1.03 1.31

Objective task demand 1 1,161 3.08 0.08 0.10 0.05 1.76 0.08 1.1 0.99 1.22

Subjective task demand 1 1,161 1.60 0.21 -0.06 0.05 -1.27 0.21 0.94 0.86 1.03

Intercept -20.51 13.79 -1.49 0.14 0.00 0.00 700.79

Bold p values are significant
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towards no error and no longer included participants as a

random intercept, i.e. a normal logistic regression was

deemed sufficient.

The underrepresentation of errors in the data set was cor-

rected by giving weights to the different cases. A receiver

operation characteristic curve (ROC curve) was used to de-

termine the proportion for the case weighting that gives the

most optimal logistic regression results. Figure 4 shows the

ROC curve with the false alarm rate on the x-axis and the hit

rate on the y-axis. Two methods for determining the optimal

weighting were used, namely the closest point to the ideal

situation of 100 % hits and 0 % false alarm (d2), and the

maximum sum of sensitivity (Sn) plus specificity (Sp) (Kumar

and Indrayan 2011). Applying these methods, a weight ratio

of 90:10 was determined for error versus no error, as this ratio

resulted in a logistic regression with the highest sum of

specificity plus sensitivity (1.33) and the shortest distance

from the ideal left upper corner of ROC (distance = 0.23).

Applying this weighing ratio led to significant logistic re-

gression model [v2(6, n = 1,168) = 3,761.26, p\ 0.01] that

included an intercept and the other COPE model variables.

Whereas the logistic regression model with only an intercept

had a correct prediction rate of 53.5 %, adding the variables

improved this to 66.4 %, with an Cox and Snell’s R2 = 0.17.

Adding the lag variables also created a significant model

[v2(12, n = 1,168) = 4,567.445, p\ 0.01] with a correct

prediction rate of 68.3 % and a Cox and Snell’s R2 = 0.21.

This model had a correct prediction of 52.3 % when only the

intercept was used. As Table 11 shows, all the coefficient in

the model are significant (all p\ 0.05).

This same procedure was also used to conduct logistic

regression analysis on the specific type of errors, i.e.

communication, planning, speed, and task allocation.

Table 12 shows the different weighting ratios used for each

error category. The correct prediction ranged from 66.4 %

for planning errors to 91.5 % for task allocation errors. All

logistic regression models were significant (p\ 0.05) with

Cox and Snell’s R2 ranging from 0.19 to 0.55.

4.4 Cross-validations

To test the generalizability of the performance model, a

cross-validation was conducted (Refaeilzadeh et al. 2009).

This means that the data set was divided into two sets: one

to train the model and one to validate the model. The leave-

one-out cross-validation, a specific form of k-fold cross-

validation, was applied. Here, the data set was divided into

ten parts. Data from nine participants were used as the

training part to create the regression model, i.e. determine

the coefficients. This would lead to formulas with a general

form:

Pr edicted performance ¼ intercept þ ðb � Heart RateÞ
þ ðb � Heart Rate VariabilityÞ þ ðb � ThreatÞ
þ ðb � ChallengeÞ þ ðb � Objective Task DemandÞ
þ ðb � Subjective Task DemandÞ

Data from the participant that was left out were used as

the validation part of the model by entering the actual

values of the predictors, included the lag variables, and

calculating the predicted performance. Every participant

was used once as the validation part, which created pre-

dictive performance values for all the participants.

The predicted performance values from a GLMM (in-

cluding lag variables) without random factors, also known

as a linear regression, correlated with observed perfor-

mance values (r = 0.56). A cross-validation for this model

still showed a significant correlation, although reduced

[r(1,168) = 0.17, p\ 0.01].

A similar procedure conducted for the weighted logistic

regression model on the cognitive error, in general, where

the total logistic regression model (including lag variables)

correlated with the observed errors with an r = 0.23, the

cross-validation model lowered this correlation with the

observed errors to r(1,165) = 0.13, p\ 0.01. This cross-

validation model for the errors had a correct prediction of

67.3 %, which is close to the 68.3 % correct prediction for

the model based on total sample.

5 Discussion and conclusion

The first hypothesis of this study states that there are re-

lationships between the variables of the COPE model. As

the correlation table shows, correlations exist between the

variables. Only the physiological variables of heart rate and

heart rate variability do not seem to correlate to the other

cognitive or performance variables.

The second hypothesis was also confirmed. Models were

created that use situational and cognitive variables to
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Fig. 4 ROC curve consisting of logistic regressions for the error
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predict performance and errors. Tables 8, 9 and 11 show

the contribution of the variables to the different outcome

variables. Figure 5 shows how performance and errors can

be predicted out of the COPE variables. The analyses used

in this study showed how much of the variance in the

performance and error variables was accounted for by the

COPE model’s variables. The significant predictions found

in the analyses are presented as arrows in Fig. 5. Perfor-

mance rated by experts can be predicted out of the threat,

challenge, and objective task demand variables (solid li-

nes), but not out of the physiological measures of arousal.

Participants walked around in the simulator, and this might

have been a distorting factor in the measurements of

arousal. The strong correlation that was found between HR

and HRV but not between HR or HRV and the other

variables might show a ceiling effect.

Errors, on the other hand, could be predicted out of the

physiological measures, which might indicate that the

method used for scoring ‘expert-rated-performance’ might

have been un-synchronized with the ECG measures. The

errors were extracted every minute from the videos and are

therefore better synchronized with the ECG measures that

were also measured per minute. The performance scores

were measured with questionnaires that listed the executed

tasks in the same way as the questionnaires for appraisal

and task demand did. Future studies should look into the

combination of different measurement systems and how to

improve synchronization between these different

measurements.

Errors can be predicted out of all variables (dotted li-

nes). The ability to predict errors varies between error

categories, with planning errors having the lowest and task

allocation errors having the highest correct prediction rates.

Furthermore, the cross-validation analysis showed the

possibility of making a significant prediction for a new data

set, suggesting the generalisation of these prediction

models. Other studies have done similar research, but

within different context and with different methods. As a

first example, Neerincx et al. (2009) created a naı̈ve

Bayesian network to predict performance of naval op-

erators. The COPE model includes Neerincx’ model, ad-

dressing more factors and distinguishing several error

types, and can therefore be used for training purposes. A

second example is the Structural Equation Model of

Kylesten (2013) that describes dynamic decisions-making

on operative levels. Kylesten (2013) also used a descriptive

model to describe dynamic decision-making and fitted data

to this model. In contrast to the COPE model, this model

did not include an objective measure from an instructor,

and no physiological measures were used.

Table 11 Results of weighted

logistic regression for the error

variable including lag variables

B S.E. Wald df Sig. Exp(b)

HR -0.04 0.02 5.32 1 0.02 0.964

HRV -7.61 1.76 18.66 1 \0.01 4.95 9 10-4

Appraisal threat -0.36 0.03 208.30 1 \0.01 0.696

Appraisal challenge -0.14 0.01 139.39 1 \0.01 0.868

Objective task demand -0.07 0.01 36.99 1 \0.01 0.937

Subjective task demand 0.03 0.01 13.81 1 \0.01 1.034

Lag_HR -0.21 0.02 119.41 1 \0.01 0.813

Lag_HRV -21.29 2.07 106.22 1 \0.01 5.67 9 10-10

Lag_appraisal threat 0.33 0.03 144.09 1 \0.01 1.39

Lag_appraisal challenge 0.03 0.01 6.93 1 0.01 1.035

Lag_objective task demand 0.08 0.01 43.09 1 \0.01 1.079

Lag_subjective task demand 0.02 0.01 4.72 1 0.03 1.021

Intercept 41.12 2.43 287.36 1 \0.01 7.18 9 1017

Table 12 Logistic regressions for the four error categories with lag variables

Optimal

case weight

d2 Sn ? Sp Model Correct predictions for intercept

model and for intercept

? variables model (%)

Cox and

Snell’s R2

Communication 98:02 0.141 1.48 v2 (12, n = 1,119) = 2,288.835, p\ 0.05 51.3–74.1 0.34

Planning 98:02 0.266 1.308 v2 (12, n = 1,119) = 1,180.384, p\ 0.05 53.9–66.4 0.19

Speed 99:01 0.194 1.385 v2 (12, n = 1,119) = 860.390, p\ 0.05 56.3–69.9 0.24

Task allocation 99:01 0.017 1.822 v2 (12, n = 1,119) = 2,219.745, p\ 0.05 64.3–91.5 0.55
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This study has a number of limitations that should be

noted. Although observation data were collected from 26

participants, only data of 10 participants were included in

the analysis, giving this study a small sample size regard-

ing the number of participants involved. When it comes to

the amount of 1-min observations, this study had a

relatively large sample (n = 1,168). This sample ratio

seems appropriate as the focus of the work was not to

examine performance and cognitive errors between indi-

viduals, but between different stressful situations within

subjects. Cross-validation analyses showed a reduction in

prediction accuracy compared to the GLMM models, but

the predictions still correlated significantly with the ob-

servation data. This supports the prediction models’ ability

to generalize outside the sample of individuals included in

this study. Another limitation was that the data were col-

lected within teams, and therefore, individual observations

might not be completely independent. Future studies that

include more individuals might consider to include differ-

ent teams as a random factor in the analysis. Future studies

might also consider the effect of different individual

characteristics, as this study found that performance pre-

diction differed between the participants. For the arousal

measurements, other physical indicators, such as galvanic

skin response, might be more suitable for a setting in which

physical movement is inevitable.

There are several ways to increase the prediction accu-

racy of the models. First, broadening the 1-min interval

prediction window, for example, to 5 min might lead to

higher accuracy in the predictions. Compared to the 1-min

performance and error variables, correlations between the

5-min performance and error variables and the other vari-

ables are slightly stronger, with one significant correlation.

It might be easier to predict over a longer period of time,

but for a fast-paced stressful training scenario, it might not

be appropriate to deliver feedback for a 5-min period;

hence, this paper mainly had a minute-by-minute focus.

Second, in this study, cognitive errors were defined as an

intervention or comment by the trainers. When exactly a

trainer decides to intervene or make a comment, might vary

and the predictions per minute are likely to be error prone.

Therefore, when giving minute-by-minute error feedback

in a training situation, giving error likelihood feedback

might be more appropriate than a simple yes or no error

type of feedback.

A third way to improve the models prediction accuracy

might be to add information about the participants coping

strategies. As can be seen in Figs. 1 and 5, coping strategy

is an intervening variable between the other cognitive

variables and the actions of the individual. According to

the COPE model, the data used to predict the errors and

performance were all indirect factors and therefore less

able to provide information for accurate prediction.

Besides the support found for the COPE model, the

second contribution of this paper is the demonstration of

creating a model for minute-by-minute predictions of per-

formance and cognitive errors in a virtual stressful situa-

tion. When using such a model, the necessary information

needs to be available per minute, in this case: the stressful

environment, task demand, appraisal, and arousal. Arousal

data could be obtained from physiological indicators. As-

suming application of the models for the same training

scenario as presented in this study, the same trainer data

about the objective task demand could be used again. In an

integrated environment, e.g. a virtual environment, a

computer generates specific events in the training scenario,

which provides the information about the stressful situa-

tion. Every event can be linked, for example, to a look-up

table that holds the corresponding information about ob-

jective task demands for every event. In this study, the

subjective task demand and appraisal information were

obtained from students after completion of the scenario.

For a minute-by-minute feedback system, this would not be

suitable, since the information is needed every minute.

Asking the trainees to provide this information, each time

they are confronted with a new task would provide indi-

vidual real-time information, but is too obtrusive and will

lower the performance of the task (Speier et al. 1999) and

affect their engagement or feeling of being present in such

a situation (Hartanto et al. 2012) A less interruptive way

Fig. 5 COPE model with

indications of validated

correlations, and validated

predictive values

Cogn Tech Work (2015) 17:503–519 517

123



would be to use the data provided by participants in this

study as a more general appraisal and subjective task de-

mand. This last approach seems possible since high simi-

larities were found between the participants’ item

responses (Table 3).

The methods suggested in this paper are in principle not

limited to the training scenario used in this study. When

applying it for other training scenarios, the variables re-

lated to the tasks (appraisal, task demand) need to be re-

measured for every action or event occurring in that sce-

nario. This will lead to new task coefficients that can be

implemented in the created predictive models.

To conclude, the observational study and analysis pre-

sented in this paper give an overview of which variables are

important when making decisions in stressful situations and

present a method to predict performance and errors from

these variables. With the creation of predictive models, the

next step is to implement them in a feedback system for

training purposes as described in the introduction. Profes-

sionals would get real-time feedback on their expected per-

formance and the possibility of making errors, based on their

current state and the state of the external world. Training

decision-making under stress while receiving feedback

would hopefully lead to an increase in performance and a

diminishing of errors in real-live scenarios.
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