
ORIGINAL ARTICLE

Towards a taxonomy of errors in PLC programming

Kerstin C. Duschl • Denise Gramß •

Martin Obermeier • Birgit Vogel-Heuser

Received: 14 January 2014 / Accepted: 18 September 2014 / Published online: 27 September 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Based on previous studies on programming

errors and their causes, the presented paper investigates

errors that application engineers in the area of machine and

plant automation make while creating either function block

diagrams, plcML [an adaption of the unified modelling

language (UML)] or modAT4rMS code (a newly devel-

oped modelling language that adapts and combines aspects

of UML and SysML). A laboratory-based study with 52

mechatronics apprentices and electrical engineering tech-

nicians with knowhow in manufacturing system design but

comparably undeveloped programming skills has been

conducted, in which the subjects’ errors and think-aloud

statements during code creation were recorded. In a sub-

sequent step, these data have been analysed by the cogni-

tive causes of the coding errors applying the skill-rules-

knowledge framework. As a result, a taxonomy of errors is

presented. Results indicate that most of the errors in the

subjects’ code are due to insufficient understanding of the

notation’s syntax, problems with the rules of encapsulation,

the creation of modules and finally with the creation of

variants and aggregations, which are all located at the rule-

based level. Errors at the skill-based level mainly occurred

during behavioural modelling with modAT4rMS. It is

argued that the provided insights can be used for improving

education on programmable logic controller (PLC) lan-

guages and for the design of tools that support PLC pro-

grammers at detecting and fixing errors within their code.

Keywords Automation � Errors � Human factors �
Object-oriented methods � Software engineering

1 Introduction

The correctness of programming code is a critical com-

ponent of its quality. However, conventional man–machine

interaction methods rather focus on aspects like learnability

and efficiency of a programming language instead of error

proneness (Ko and Myers 2005).

After all, it definitely makes sense to deal with the latter,

as even relatively simple-structured programming lan-

guages like HTML still are so complex that they provide a

variety of options for syntax errors, runtime errors and

bugs, i.e. unintended or exceptional behaviours (Blackwell

2002; Park et al. 2013). In experiments on so-called pro-

grammable logic controller (PLC) programming languages,

which are used for automation of manufacturing systems

and are subject of the study described below, errors usually

are in the double-digit per cent range (Braun 2013; Ha-

jarnavis and Young 2008). For that reason, a subsequent

code testing and debugging is essential. According to Ko

and Myers (2005), software engineers spend between about

70 and 80 % of their time detecting, diagnosing and

repairing software problems, with an average software bug

taking 17.4 h to fix. Thus, software errors are a significant

cost factor. In automation technology, this is even more

pronounced as the debugging cannot be done at the desk,

but must take place at the construction site.

On the other hand, learning also happens through trial

and error—assuming the novice has the opportunity to

recognize the errors he made. In order to be able to provide

better support during this process, both to novices

(apprentices, students) and experienced programmers, it is

K. C. Duschl � D. Gramß � M. Obermeier �
B. Vogel-Heuser (&)

Chair of Automation and Information Systems, Technische

Universität München, Boltzmannstr. 15, 85747 Garching,

Germany

e-mail: vogel-heuser@ais.mw.tum.de

123

Cogn Tech Work (2015) 17:417–430

DOI 10.1007/s10111-014-0307-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s10111-014-0307-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10111-014-0307-x&domain=pdf

worthwhile to examine, which errors are common (or even

particularly frequent) in which modelling language and

which cognitive causes they probably result of. So far,

mistakes that are made while using programming lan-

guages for PLCs have been hardly investigated. This can be

stated to constitute an important gap in the literature. One

of the few exceptions is described by Hajarnavis and

Young (2008), who conducted an experimental study on

‘‘right first time’’ rates and completion time during process

modification using four different PLC notations. However,

they only named some easily observable subjective ‘‘main

problems’’, but did not perform any objective analysis on

that topic.

The study presented in the following pursues three main

objectives: first, to identify the errors programmers make

while writing code in FBD and plcML (Witsch and Vogel-

Heuser 2011) compared to the newly developed notation

modAT4rMS (Braun 2013). Second, to examine the cog-

nitive origins of these errors (skill-based, rule-based or

knowledge-based errors), and third, to utilize the knowl-

edge gained to create pedagogically superior tools.

All notations in this study provide a possibility of code/

model encapsulation, which means a construct that allows

the bundling of data with the methods or functions oper-

ating on that data. Such encapsulation constructs are a

prerequisite for reusability. Function block diagram (FBD)

is a common graphical programming language for PLCs

that is standardized in the worldwide industrial program-

ming standard IEC 61131-3 (International Electrotechnical

Commission 2003). The IEC 61131-3 defines five lan-

guages, two textual languages and three graphical lan-

guages including FBD. This standard is accepted and

widely used by software engineers to specify the software

part of industrial automation systems (Thramboulidis and

Frey 2011). These five languages of the IEC 61131-3 are

suitable for different application types; FBD is mostly used

for interlocking, reusable functions and communication. Its

primary concept is data flow from inputs to outputs through

function blocks or functions that offer a wide range of

signal operations. A clean encapsulation with FBD is

possible, but is easily disturbed by the use of global vari-

ables, which leads to poor reusability of modules, as

described in Zoitl and Vyatkin (2009). In order to provide

an elemental basis of reuse, IEC 61131-3 software can be

structured into function blocks (FBs). FBs encapsulate the

structure and behaviour programming of a collection of

elements used in automation projects (Thramboulidis and

Frey 2011).

In contrast to FBD, plcML uses the object-oriented (OO)

extension of the IEC 61131-3 specification adapting classes

and methods, interfaces and inheritance from the unified

modelling language (UML) for object-oriented PLC pro-

gramming. The object-oriented paradigm encourages a

modular design by different relation types, such as asso-

ciation among classes and inheritance for hierarchical

structuring. With the plcML class diagram, the structure of

automation control software can be modelled and the

understanding of the interdependencies of components can

be supported. The plcML state chart diagram offers states

and transitions between them to model the behaviour of

automation systems. The assumed benefits of OO pro-

gramming are among others ‘‘a more efficient code reuse

and increased safety and stability of software’’ (Vyatkin

2013).

Finally, modAT4rMS is a newly developed modelling

language described by Braun (2013) that adapts and com-

bines aspects of UML and SysML with the goal to simplify

OO PLC programming both for novices and experts by

providing a less abstract structure notation in comparison

to class diagrams. The modAT4rMS notation uses an

object-centred structure diagram. In order to clearly visu-

alize the connection between structure and behaviour dia-

gram, an adapted state chart diagram shows only the

accessible objects and their functionality according to the

prior defined structure model.

This paper is structured as follows: Sect. 2 reviews prior

research on programming errors in general and the diffi-

culties of PLC programming in particular. Section 3

describes a preliminary study on modelling errors in UML

and their results. Section 4 outlines the main study and

their methods. Section 5 describes detailed examples of the

observed coding errors and presents a taxonomy of the

errors that were found. Finally, Sect. 6 discusses the find-

ings in relation to education and for designing tools to

support both apprentices and technicians.

2 Related work

A considerable amount of literature is dealing with the

analysis and description of various types of coding errors

made by programmers, with their strategies to fix them and

the role of errors during the learning phase of code pro-

gramming. However, these studies usually deal with clas-

sical programming languages (such as Pascal or LISP) and

not with PLC programming languages. Moreover, they are

often quite old: the majority of the experiments took place

in the 1980s, before graphical user interfaces and object

orientation were common and sometimes the experiments

even analysed programming languages that became anti-

quated by now.

An example for these studies is, among others, Ander-

son and Jeffries (1985), who analysed errors of novices

(students) using LISP functions. They showed that error

frequency is even increased ‘‘by increasing the complexity

of irrelevant aspects of the problem’’ and that errors mainly

418 Cogn Tech Work (2015) 17:417–430

123

result from ‘‘a loss of information in the working memory

representation of the problem and when the resulting

answer still looks reasonable’’ (Anderson and Jeffries

1985). That means the errors made are rather the result of

slips (e.g. forgotten brackets) than misconceptions!

Another experiment was conducted by Panko (1998)

and Panko and Sprague (1999), who tested students’

spreadsheet performance. They found that 54 % of the

occurred errors were due to omission and 43 % were logic

errors that result from a mistake in reasoning. Mechanical

errors (i.e. typographical errors), however, were almost

nonexistent.

According to an analysis of debugging anecdotes of

industry experts, conducted by Eisenstadt (1993), the big-

gest error causes in COBOL, Pacal, C and Fortran pro-

grams were ‘‘memory overwrites’’ and ‘‘vendor-supplied

hardware or software faults’’ (e.g. a buggy compiler) (Ei-

senstadt 1993), together accounting for more than 40 % of

the problems occurred.

On the other hand, an error classification by Youngs

(1974), which is based on a study with 42 subjects using a

variety of different programming languages came to the

conclusion that novices have the biggest difficulties

regarding the semantics of a language, while experts show

an nearly equal number of syntax errors, semantic errors

and logic errors.

In a study by Perkins and Martin (1986), who inter-

viewed high school students, ‘‘fragile’’ (i.e. partial, inert,

misplaced, conglomerated) knowledge of the language

syntax (BASIC in this case) was the cause for most of the

students’ errors.

An extensive review of further user-based experiments

on software errors is given in Ko and Myers (2005).

As far as PLC programming is concerned, existing

studies mainly focus on a comparison of the performance

in code creation, but not on their cognitive causes. Vogel-

Heuser et al. (2012, 2013) conducted an extensive labora-

tory study with 85 apprentices from a vocational school for

production engineering in Munich with a specialization in

mechatronics comparing UML and FBD. No significant

performance differences were found between the two lan-

guages though. This finding was confirmed by Braun

(2013), who tested 168 apprentices that handled the same

task using either UML, FBD or modAT4rMS. However,

those subjects, who used modAT4rMS, performed signifi-

cantly better than those using FBD or plcML.

However, there are some studies on UML that focus on

knowledge of the problem domain instead of error mea-

surement. Siau and Tian (2001), for example, applied the

goals, operators, methods and selection rules (GOMS)

technique to evaluate the diagramming techniques in UML.

Siau and Loo (2006) used cognitive mapping to study

difficulties in learning UML. And Purao et al. (2002)

utilized the think-aloud method (Ericsson and Simon 1984)

to understand the intentions of two developers while using

UML.

2.1 Filling the gap: deficits of current evaluation

studies

Despite the amount of literature on programming errors, we

still lack a detailed understanding of the errors people are

likely to make when creating code in FBD, plcML or

modAT4rMS. All we know is that the latter appears to be

less prone to errors (novices’ correct mean modelling

performance M = 0.60 for structure and M = 0.42 for

behaviour), while the novices’ correct performance rates in

FBD (M = 0.25 for structure and M = 0.15 for behaviour)

and plcML (M = 0.21 for structure and M = 0.16 for

behaviour) seem to be comparable (Braun 2013). The latter

is confirmed by Vogel-Heuser et al. (2012, 2013), who

compared performance rates in FBD (M = 0.86 for struc-

ture and M = 0.43 for behaviour) and UML (M = 0.86 for

structure and M = 0.45 for behaviour). The performance

differences between Braun (2013) on the one hand and

Vogel-Heuser et al. (2012, 2013) on the other hand are

probably due to differences in task difficulty: the task used

by Braun (2013) is far more complex.

In order to provide an empirically based reasoning, why

this newly developed notation leads to a superior perfor-

mance compared to the other two languages and what is

particularly difficult in each language, qualitative and

quantitative data are needed on (a) what errors people make

when creating code in FBD, plcML and modAT4rMS, as

well on (b) what are the causes of these errors.

Another deficit of existing studies that should be

addressed is that the defined classifications usually do not

actually describe pure software errors, but often mixes

them with runtime faults, runtime failures and cognitive

failures. For this reason, Ko and Myers propose to differ-

entiate between four salient aspects of software errors:

1. The surface qualities of the error (syntactic or

notational anomalies in a particular code fragment,

as, for example, typos or oversights).

2. The cognitive causes of software errors (e.g. lack of

knowledge about language syntax, data types, attention

issues such as forgetting or a lack of vigilance, and,

strategic problems like unforeseen code interactions or

poorly designed algorithms).

3. The programming activity in which the cause of the

software error occurred (e.g. during specification

activities or during algorithm design activities).

4. The type of action that led to the error (creating,

reusing, modifying, designing, exploring or

understanding).

Cogn Tech Work (2015) 17:417–430 419

123

One possible problem with classifications that are based

only on the surface qualities is that an incorrectly coded

algorithm can have many causes: it might be due to ‘‘an

invalid understanding of the specifications, a lack of

experience with a language construct, misleading infor-

mation from a debugging session or simply momentary

inattention’’ (Ko and Myers 2005). Depending on the

cause, the resulting error must be approached in a com-

pletely different way. The current contribution provides an

analysis of errors in modelling task performance. Beyond

an error classification based on surface qualities, the use of

the think-aloud technique enables a deeper understanding

of underlying cognitive processes during task performance.

2.2 Empirical evaluation concept

In order to overcome the deficits described in the previous

section, we suggest a classification scheme focusing on the

underlying cognitive mechanisms of human error. Thereby,

we suggest adapting a hierarchical model first proposed by

Rasmussen (1983) and further elaborated by Reason

(1990). According to that framework, human behaviour is

organized in terms of cognitive effort and is based either on

skills, rules or on knowledge. Rasmussen (1983) proposed

skilled-based behaviour as sensory motor performance in

activities, mostly without conscious control. The behaviour

is based on highly integrated patterns which are predomi-

nantly automated in human behaviour. Subroutines in

familiar situations are controlled by rules or procedures

which previously derived, e.g. from experience, persons’

knowhow or instructions. The rule-based performance is

goal-oriented, but the goal is not even explicitly formu-

lated. It is rather implicit in the situation. The distinction of

skilled-based and rule-based performances is not quite

clear. It depends on the level of training and attention of the

person. In unfamiliar situations in which knowhow or rules

are not available, the performance is controlled on a higher

conceptual level. The behaviour is knowledge based. The

goal is explicitly and based on the analysis of the envi-

ronment and the overall aims of the person. This level

contains functional reasoning, the development of an

internal structure in terms of a mental model and a plan to

achieve the explicitly formulated goal.

Reason (1990) assumes that routine actions in a familiar

environment are carried out in a highly automated manner

on the skill-based level. If a problem occurs, the human

being changes to the rule-based level, where he searches

(under consideration of local state information) for familiar

patterns, in order to apply a stored IF (situation) THEN

(action) rule. Ko and Myers (2005) compare these rules

with programming plans (Spohrer and Soloway 1986)

underlying the development of programming expertise

(Davies 1994). Only, if the rule cannot solve the problem, a

higher level analogy is searched on the knowledge-based

level. If none could be found, finally more abstract rela-

tions between structure and function are analysed and the

human being subsequently tries to infer diagnoses and to

formulate corrective actions.

According to Reason (1990), two types of error can

occur within this system: on the one hand, monitoring

errors, which are not intended by the human being but

happen incidentally, and on the other hand, mistakes,

which are the result of a properly executed but deficient

plan.

Monitoring errors are failures on the skill-based level.

They happen, because the progress of action (which are

especially important in the proximity of critical decision

points) is omitted or does not happen timely (e.g. because

of internal distraction). These unintended failures are either

due to inattention (e.g. typing errors) or due to memory

problems (e.g. omissions, where planned intermediate steps

of long action sequences are skipped) (Reason 1990).

Mistakes, however, happen on the rule- or knowledge-

based level. In the case of a rule-based failure, they result

either from the misapplication of a good rule (which is

useful elsewhere) or from the application of a (substantial)

bad rule. An example of the first is the choice of an

appropriate ‘‘while’’ loop for a problem (Shackelford and

Badre 1993); examples of the latter are simple syntax

errors and malformed Boolean logic. According to Ko and

Myers (2005), these bad rules derive from ‘‘learning dif-

ficulties, inexperience or a lack of understanding about a

particular program’s semantics’’.

Knowledge-based failures typically arise from a lack of

knowledge about the situation (especially, if the task is

very complex), a lack of understanding of causal rela-

tionships or an incomplete/inappropriate mental model of

the problem space (Reason 1990).

The rule-based and knowledge-based performances are

not quite distinct. The perception of information is gener-

ally not dependent on the form of representation. Rather

the context of information and expectations of the per-

ceiver are necessary (Rasmussen 1983).

Within the context of programming and modelling, the

differentiation of intended versus unintended action seems

to be very interesting, as experienced programmers may

solve modelling tasks in such an automated manner that

inattention or memory failures lead to unintended faulty

results. Sometimes, the reason of a particular error can be

identified quite easily when analysing the final model or

programming code. Unfortunately, this is not always

possible.

As a solution, we propose to observe the subjects during

the code creation process in combination with the think-

aloud method (Ericsson and Simon 1984; Boren and Ra-

mey 2000). Furthermore, we propose to record the progress

420 Cogn Tech Work (2015) 17:417–430

123

of their code together with self-reports of the subjects’

thoughts, the goals they pursue, their decision-making and

the rationale behind their actions. Using this method, it is

possible to obtain both the directly observable erroneous

behaviour and the corresponding type of cognitive break-

down as described by Reason (1990).

The goal of this analysis is to examine the different

kinds of programming errors according to Rasmussens

SRK model. The prior studies (e.g. Vogel-Heuser et al.

2012, 2013) lack analyses of reasons for performance dif-

ferences in structure and behaviour modelling tasks and

different notations (FBD vs. UML). Additionally, the

comparison of the errors occurring while using FBD,

plcML and modAT4rMS should reveal reasons for diffi-

culties in modelling with the specific notations. Knowledge

about the origin of errors in the modelling tasks is expected

to deduce implications for education as well as tool design

with the purpose to decrease errors in modelling tasks. A

deeper analysis of performance deficits in modelling with

specific notations should fill the gap of evaluation studies

in this specific domain.

3 Preliminary study: UML modelling failures and their

causes

The starting point for the survey presented in the following

was a study that examined UML modelling failures made

by mechanical engineering students and their reasons. The

objective then was to estimate the benefit of model-based

engineering with UML in machine and plant automation

and to decide on appropriate support methods. Moreover,

the impact of the modelling task order (structural model-

ling first versus behavioural modelling first) has been

examined, as Robins et al. (2003) and Mayrhauser and

Vans (1997) suspect it to have an effect on the subjects’

performance.

3.1 Experimental design

In total, 102 subjects (89.1 % male) with an age between

18 and 27 years participated in this study. All subjects were

mechanical engineering students in their second year of

education at the Technische Universität München (TUM),

who attended a small group course on ‘‘fundamentals in

informatics’’.

The study took place in a total of ten parallel courses at

the TUM and was part of a practice course the subjects

attended. The subjects were introduced to the topic during

two 90-min lecture sessions. During the experiment, the

subjects had to create UML diagrams of the structure and

behaviour of a given sorting system that should have been

able to handle two different work piece types and sort each

type in one of two different storages using given sensors in

combination with two cylinders. The subjects had 25 min

to complete this task, whereby 70 of the students started

with structural modelling and the remaining 32 students

started with behavioural modelling.

The performance assessment was done using a proven

coding system, in which points were awarded for correct

representations of relevant features, but no points were

deducted for errors or incomplete/missing data. A total of

46 points were achievable, including 22 for structural

modelling and 24 for behavioural modelling.

A week later, when the UML models had been evaluated

and the perfect solution was presented and explained, the

subjects were either interviewed or had to fill out a ques-

tionnaire on the assumed reasons of their failures (both in

general and specific). During the specific questions, they

first were asked, if a particular error reason (e.g. poor

concentration) applied, and, if yes, which of the occurred

failures were the result of that problem. The statements

made in the questionnaires and interviews were transferred

to a data matrix and supplemented with the objective

behaviour and structural modelling performance measures

of the respective subject. In a second step, the subject’s

linkages between particular failure causes (e.g. lack of

time) and the specific failures attributable to them were

checked.

3.2 Results

Considering the UML models, the average participant

reached 19.97 out of 46 points (SD = 9.1819), while the

performance gap between the participants ranged from 2 to

42 points.

According to 72 % of the subjects, lack of time for

processing the task was part of the problem. Another 56 %

complained about difficulties to ‘‘translate’’ their mental

model of the sorting system into a correct UML model, and

31 % declared to have made some of the errors due to

distraction from the task. Moreover, 25 % indicated that

they have misunderstood parts of the task and thus have

formed an incorrect mental model of the sorting system and

21 % reported to have overlooked essential aspects of the

task.

Unfortunately, 24 % and 19 % of the lacking points (for

structural modelling and behaviour modelling), respec-

tively, could not be linked by the subjects to any of the

tested variables.

A regression analysis including demographics (field of

study, age and gender), the subjective failure causes and

the modelling order as independent variables explained

about 40 % of the observed scatter in the performance data.

Highly significant were the factors ‘‘modelling order’’

(behaviour first was better than structure first), ‘‘lack of

Cogn Tech Work (2015) 17:417–430 421

123

time’’ and ‘‘translation problems’’ (from the mental model

to a UML model) on structural and behavioural modelling

performance.

3.3 Consequences/constraints for further studies

The results indicate that (besides the UML modelling order

and lack of time) difficulties to ‘‘translate’’ the subject’s

mental model of the sorting system into a UML model

were the main reason for the shortcomings in the subjects’

performance. Thus, it can be concluded that in future

education of UML, the focus should be on these ‘‘transla-

tion’’ problems.

In order to reduce the percentage of failures that could

not be linked to any of the tested variables, an experimental

procedure applying observation and think aloud seems to

be promising. Further insights could be gained by analys-

ing the modelling process with the help of tools like key

logging, eye tracking and/or video recordings.

4 Experimental design

In order to understand the errors that PLC programmers

make when writing code using either plcML, modAT4rMS

or FBD and being able to understand their causes, it was

necessary to collect detailed observations in a laboratory-

based study. A total of 52 subjects had been observed and

recorded using a think-aloud protocol as they completed a

given PLC programming task using the language they had

been trained 2 days before (plcML, modAT4rMS or FBD).

Afterwards, the audio and screen capture data were ana-

lysed via a process similar to open and axial coding from

grounded theory (Strauss and Corbin 1998) in order to

construct a taxonomy of errors.

4.1 Participants

The study involved 52 subjects with the youngest being 17

and the oldest 27 years (M = 20.5, SD = 2.797). Forty-

seven subjects were male—only five were female. All

subjects received 2 days of training in either plcML (eight

subjects), modAT4rMS (24 subjects) or FBD (20 subjects)

2 days prior to the test described here.

Twenty-one subjects were mechatronics apprentices in

their second year at a vocational school in Munich, 13

subjects were in their third year at the same school, and 18

were electrical engineering technicians, who took part in a

further training at a school for state-certified technicians in

Munich.

Participation in the study was carried out on a voluntary

basis and was not remunerated.

4.2 Instruments

The subjects were tested individually in a quiet room at

their school in single sessions lasting approximately

45 min. The coding task was carried out using a computer

with the necessary programming/modelling software (pro-

totype for modAT4rMS and Codesys for FBD and plcML),

a 24 inch screen, and the progress was audio-recorded and

video-recorded with the screencasting software Camtasia

Studio.

Programming/modelling performance was assessed with

a coding task that was identical for all three languages and

was pretested by the experimenters to ensure that it could

be completed in about 15–20 min. The task was handed out

to the subjects at the beginning of the session as a printed

instruction containing multiple subgoals as well as an

image and a table depicting the configuration of the system

(see Fig. 1; Table 1).

The subjects had to programme the sorting section of a

bottle-storing system, where only one conveyor belt (each

with a motor driving the conveyor in one direction) should

Delivery
belt

Storage
4

Storage
3

Storage
2

Storage
1

Switch belt

Switch 1Switch 2Switch 3Switch 4LS_big
LS_dark

Light sensor

Lightsensor_L4

Lightsensor_L3

Lightsensor_L2

Lightsensor_L1

Bo�le type
detection

MotorMotor Motor Motor Motor

Motor

Fig. 1 Configuration of the system that is to be programmed/

modelled by the subjects

Table 1 Logic of the bottle sorting

Sensor

big—small

Sensor

bright—dark

Sensor bottle

provided

Sensor

storage

Bottle small,

white

0 0 1 1

Bottle small,

brown

0 1 1 2

Bottle big,

white

1 0 1 3

Bottle big,

brown

1 1 1 4

422 Cogn Tech Work (2015) 17:417–430

123

be active at a time. One bottle was already set on the

delivery belt. That belt had to run for at least 5 s in order to

make sure that the bottle is on the course tape. On the

switch belt, the bottle first moved to the bottle-type

detection that consisted of three sensors: one that generally

recognized that a bottle passes, one that distinguished

bright from dark material, and finally, one that detected

whether the bottle is big or small. Thus, the bottle type

could be detected. After recognition of the bottle type, the

corresponding switch should be activated by a binary

control signal (transport to the corresponding storage belt

vs. let pass). Afterwards, the belt should run for a while

according to the provided switch in order to transport the

bottle to the switch.

The transport time from detection to switch 1 should

be 8 s, 6 s to switch 2, 4 s to switch 3 and 2 s to switch

4. After the bottle had been transported to the switch, the

switch belt should stop and the corresponding storage belt

should eventually carry away the bottle. The bottle should

be considered sorted when the light sensor at the end of

the storage belt was activated. Finally, a new bottle

should be automatically set to the delivery belt, the

switches should be reset, and the process should begin

again.

For the identification of cognitive error causes, the

subjects were asked to think aloud during the whole task

completion. Thereby, their statements were recorded and

saved as an audio file parallel to the screencasting.

Towards the end of the test, the subjects also were taught

about errors they made during task completion and were

questioned about their assumptions regarding the causes of

their errors.

4.3 Procedure

After the subject had arrived in the test room and made

brief statements on his/her demographic characteristics, he/

she received the printed instruction of the coding task and

was asked to complete it to the best of his/her ability using

the respective language that he/she had learned in the

previous training. That is, eight subjects created a plcML

model, 24 subjects worked with modAT4rMS, and 20

subjects were using FBD. Moreover, the think-aloud pro-

tocol was explained and the subjects were continuously

encouraged to express their thought processes as they

completed the task (‘‘Go on, tell me! What are you doing at

the moment?’’). The disturbance by the experimenter was

kept to a minimum.

A maximum of 45 min was provided for the task. After

the task had been completed (or the time limit exceeded),

the experimenters asked follow-up questions about the

errors that have been made in order to clarify the subject’s

understanding and intent.

The sessions were audio-recorded and video-recorded

with the subjects’ consent.

4.4 Data analysis

An analysis schema was not developed previously. For data

analysis, the methods of open and axial coding from the

ground theory were applied. Rather open coding concerned

with identifying, naming, categorizing and describing of

phenomena found in data. The first step of data analysis

results in abstract categories and concrete ones to describe

errors. In the next step, after open coding, axial coding is a

procedure to put data together in new ways by connections

between several categories (Strauss and Corbin 1998).

Heuristics for error classification in different levels (skill,

rule and knowledge) are described.

A total of more than 40 h of video and audio data were

analysed by two researchers in three iterative rounds. No

predetermined codebook had been applied. Instead, the

inventory of errors was developed during the coding by

using an inductive, data-driven process. A common con-

ceptual vocabulary was ensured by the cooperation and

permanent discussion between the two coders.

In the initial round of coding, every occurrence of an

error was noted and described together with the time

stamp of the occurrence and with the number of missed

points relative to the total number of points that were

achievable. Thereby, errors were defined as code with

invalid syntax or as code that resulted in output that was

not desirable according to the task (see Youngs 1974).

Errors that were resolved by the subjects themselves

during the task completion were noted, but were not

classified as errors. However, they sometimes led to a

substantial time delay.

In the next round, the identified errors were classified

according to the evolving coding scheme, which was

inspired by the skill-rule-knowledge framework first pro-

posed by Rasmussen (1983) and further elaborated by

Reason (1990) (see Chapter 1 for details). Each error was

considered to be the result of a cognitive breakdown on

either the skill-based, rule-based or knowledge-based level

and consequently was assigned to one of them. In doing

so, the researchers relied both, on observed behaviours,

the subjects’ verbalizations while creating code, as well as

their statements in the follow-up discussion on the errors

they had made. For instance, a misapplication of the timer

function, suggesting rule-based behaviour, or a typo-

graphical error occurring only once, would be typical for a

skill-based breakdown. The heuristics used for the clas-

sification of errors occurring at the skill-, rule- and

knowledge-based levels of performance are based on

suggestions by Ko and Myers (2005) and are outlined in

Table 2.

Cogn Tech Work (2015) 17:417–430 423

123

In the third round of analysis, the derived categories in

the classifications were further refined and/or combined to

umbrella terms. Moreover, the classification was specified

resulting in a detailed taxonomy of error types.

5 Results

Results are considered separately for behavioural and

structural modelling. The first analysis contains the per-

centage of the correct code solved suitable for task

requirements. Accordingly, the remaining percentages are

errors, technical bugs or were classified as unclear. Sec-

ondly, these errors are analysed in terms of skill-based,

rule-based and knowledge-based error levels.

First, an analysis of the performance achieved in pro-

cessing the structural and behavioural part of the task was

carried out, comparing the three languages. In the structural

modelling, participants modelling with plcML completed

65.75 % on average (SD = 36.26, range from 0 to 100),

those who used modAT4rMS completed 92.37 %

(SD = 15.40, range from 22 to 100), and those program-

ming with FBD achieved 76.55 % (SD = 24.45, range

from 21 to 100). Performance at the behavioural modelling

was 10.87 % on average (SD = 8.77, range from 0 to 25)

when using plcML, compared to 74.75 % (SD = 21.74,

range from 0 to 100) and 60.25 % (SD = 32.13, range

from 2 to 96) with modAT4rMS and FBD, respectively

(see Table 3).

Both for the structural and the behavioural modelling,

single factor variance analyses reveal a highly significant

performance difference depending on the language used.

ModAT4rMS leads to better structural models than FBD

and plcML (p\ 0.01), while the behavioural part is

modelled worst with plcML, while FBD and ModAT4rMS

were comparable (p\ 0.001).

In the following, some example cases are described in

detail, representing errors at the skill-based, rule-based and

knowledge-based level. Afterwards, a taxonomy of errors

is presented that is based on all of the observed errors.

5.1 Examples of errors at the three levels

5.1.1 Skill-based errors

Participant uml3cip11, a 21-year-old male trainee in his

second year of education, working on the behavioural part

of the plcML modelling once inadvertently types

binAktor:status.an: = 1 und 0

instead of

binAktor:status_an: = 1 und 0

Table 2 Heuristics for the classification of errors according to Ko and Myers (2005)

Skill Rule Knowledge

Type of activity Active execution of routine, practiced

actions in a familiar context

Detection of a deviation from

the planned for conditions

Execution of unpracticed or novel actions

Internal focus on problem solving, rather

than executing the routine actions

Seeking of signs in the

environment to determine

what to do next

Comprehending, hypothesizing or otherwise

reasoning about a problem using knowledge of

the problem space

Situation, when

breakdown

happens

Interruption by an external event Taking of the wrong action Decision-making without consideration of all

courses of action or all hypotheses (biased

reviewing)

Delay between an intention and a

corresponding routine action

Missing of an important sign False hypothesis (confirmation bias)

Performing of routine actions in

exceptional circumstances

Information overload Seeing of a nonexistent relationship between

events (simplified causality)

Performing of multiple, similar plans of

routine action

Acting in an exceptional

circumstance

Illusory correlation or failure to notice a real

correlation between events

Missing of an important change in the

environment while performing routine

actions

Missing of ambiguous or

hidden signs

Inattention to logically important information

when making a decision (selectivity)

Attention to routine actions and false

assumption about their progress

(omission, repetition)

Acting on incomplete

knowledge

Not considering logically important information

that is difficult to recall

Acting on inaccurate

knowledge

Overconfidence about the correctness and

completeness of one’s own knowledge

Use of an exceptional, albeit

successful rule from past

experience

424 Cogn Tech Work (2015) 17:417–430

123

indicating a slip of the finger as the two keys lie directly

next to each other.

Participant mod6pru03, a 24-year-old male technician

using modAT4rMS, forgets the reset of the storage vari-

ables during the behavioural modelling and types

Lager ==0

instead of

Lager: = 0

while the remaining assignments are mostly correct before

and after this instance.

And, finally, participant fup2pru08, a 18-year-old male

trainee in his second year of education, accidentally links

the sensor queries for different work pieces without the

required SR function blocks with TON function blocks

with the respective waiting periods. After briefly examin-

ing his code in the follow-up interview, he realizes the

error himself and tells the experimenters what the correct

solution would have been.

5.1.2 Rule-based errors

Participant uml3cip15, a 21-year-old male in his second

year of education using plcML, creates an aggregation of

binary sensors for work piece recognition in the binary

actuator, which points to a lack of understanding in

encapsulation and the forming of modules as the aggre-

gation does not correspond to the existing hardware

structure.

In modAT4rMS, subject mod4cip11, who is a 19-year-

old male in his third year of education, creates a bottle

detection with the type binSensoren. Later, he declares that

he does not know the difference to binSensor, which

indicates a lack of understanding in encapsulation, too. In

particular, the relationship between signal and method

seems to be unclear.

An example of a rule-based error in FBD is provided by

subject fup5pru18, a 17-year-old male in his third year of

education: he creates function calls in the motor under the

Var_output category instead of the Var_input

category, which can be interpreted as incomplete under-

standing of the notation’s syntax.

5.1.3 Knowledge-based errors

Participant uml3pru10, a 22-year-old male in his second

year of education, modelled the task with plcML without a

delay time after the activation of the switch belt. On

questioning, he stated that he had difficulties to understand

the process, i.e. he was unable to really understand the task.

The same happened to subject mod1pru18, a 20-year-old

male, who also was in his second year of education, but

used modAT4rMS. He, too, had difficulties with the

understanding of the process, resulting in a faulty order of

the function Lagerband start, where the conveying starts

only after checking, if the sensor is on 1.

In FBD, no knowledge-based errors have been noticed.

5.2 Classification of the errors

As described in Chapter 3, the errors were classified via

open and axial coding that was inspired by the skill-rule-

knowledge framework considering both the errors’ context

and the subjects’ statements. The analysis revealed that by

far the most errors occurred at the rule-based level, while

errors on the skill-based and on the knowledge-based levels

were quite rare.

Points that were missed due to lack of time were clas-

sified in the category ‘‘unclear’’, since it cannot be deter-

mined with certainty whether these parts would have been

properly resolved, whether the subjects had more time to

process the task, or which errors would have occurred. In

general, lack of time is caused by prior inefficiency in

modelling or by very long thinking pauses throughout the

processing of the task.

Errors due to technical failure of the programming

environment were recorded only in FBD, when a bug

occurred during programming with CoDeSys.

Table 4 provides an overview on the percentage of skill-

based, rule-based and knowledge-based errors in the

structural and behavioural part of the task when using

either plcML, modAT4rMS or FBD.

Although being quite frequent, mixed-design variance

analyses (with notation as a between-subject variable and

task—structural vs. behavioural modelling—as a within-

subject variable) do not reveal significant differences in the

occurrence of rule-based errors depending on the notation

used. The same is the case with the comparably exotic

knowledge-based errors and with errors due to a technical

failure (bug) in the modelling software. However, rule-

based and knowledge-based errors show a significant task

effect being more frequent during behavioural modelling

than during structural modelling.

Table 3 Mean per cent (with standard deviation) of correct code in

the structural and behavioural modelling of the task when using either

plcML, modAT4rMS or FBD

Structural modelling %

correct

Behavioural modelling %

correct

plcML M = 65.75

SD = 36.26

M = 10.87

SD = 8.77

modAT4rMS M = 92.37

SD = 15.40

M = 74.75

SD = 21.74

FBD M = 76.55

SD = 24.45

M = 60.25

SD = 32.13

Cogn Tech Work (2015) 17:417–430 425

123

As far as skill-based errors are concerned, there is a

significant interaction effect between notation and task, i.e.

the two factors cannot be considered separately. A closer

view on the data reveals that especially the behavioural

modelling with modAT4rMS seems to be quite prone to

errors of this kind.

Missed points that are assigned to the category

‘‘unclear’’, too, cannot be attributed to either notation or

task effects but a combination of them. Attributable to lack

of time, this phenomenon mainly occurs at behavioural

modelling with plcML.

In Table 5, a summary of resulting statistics for all

ANOVAs is given.

At the skill-based level, errors were caused by unin-

tentional actions (e.g. mental or physical slip) during

highly routine activities. Typical error types were as fol-

lows: forgotten elements (e.g. control signal, signal type,

sensors for storing), errors due to an imprecisely studied

task description, confused notation elements, typing errors

and careless mistakes. As these errors do not always occur

at the skill-based level, the subjects’ statements during the

modelling and in the interview afterwards were crucially

important for the classification. A summary of all skill-

based error types can be found in Table 6.

Errors at the rule-based level were caused by the

intentional and consistent use of faulty rules that were

mostly due to insufficient understanding of the notation’s

syntax or—in the case of OO modelling—due to problems

with the rules of encapsulation, the creation of modules and

the creation of variants and aggregations. An overview on

rule-based error types is given in Table 7.

At the knowledge-based level, errors occurred only

during behaviour modelling in plcML and in modAT4rMS,

where a few of the participants had problems to fully

understand the challenges of the task (0.75 % of all errors

in plcML, 0.12 % of all errors in modAT4rMS).

Tables 6 and 7 provide a detailed analysis of errors

explaining faulty modelling performances in different

notations. The results help to understand the reasons and

causes for deficits in structural and behavioural modelling.

The analysis revealed specific deficits in concepts inherent

to particular notations.

6 Discussion

Both the preliminary study of UML failures and the

experiment with the error analysis indicated the ‘‘transla-

tion’’ problems from the task to an appropriate mental

model as an important factor for modelling tasks as well as

time. The mental model of the system and the application

to the notation are essential for modelling tasks. Deficits in

Table 4 Mean per cent (with

standard deviation) of erroneous

code on the skill-based, rule-

based and knowledge-based

level in the structural and

behavioural part of the task

when using plcML,

modAT4rMS or FBD

% Skill-

based errors

% Rule-

based errors

% Knowledge-

based errors

% Unclear % Technical

failure

plcML structural

modelling

M = 0.25

SD = 0.71

M = 21.50

SD = 23.80

M = 0

SD = 0

M = 12.50

SD = 19.09

M = 0

SD = 0

plcML behavioural

modelling

M = 0.62

SD = 1.19

M = 25.37

SD = 31.10

M = 0.75

SD = 2.12

M = 62.25

SD = 26.49

M = 0

SD = 0

modAT4rMS structural

modelling

M = 0.67

SD = 1.74

M = 6.37

SD = 15.55

M = 0

SD = 0

M = 0.33

SD = 1.13

M = 0

SD = 0

modAT4rMS

behavioural

modelling

M = 5.12

SD = 5.98

M = 15.12

SD = 21.90

M = 0.12

SD = 0.61

M = 5.04

SD = 7.14

M = 0

SD = 0

FBD structural

modelling

M = 0.85

SD = 2.18

M = 14.85

SD = 22.38

M = 0

SD = 0

M = 7.75

SD = 16.42

M = 0

SD = 0

FBD behavioural

modelling

M = 2.50

SD = 3.43

M = 27.30

SD = 33.92

M = 0

SD = 0

M = 9.45

SD = 20.77

M = 0.50

SD = 2.24

Table 5 Summary of resulting

statistics for all ANOVAs;

significant effects are set in

boldface

ST structural task, BT

behavioural task

Effect df Skill-based

errors

Rule-based

errors

Knowledge-

based errors

Unclear Technical

failure

F p F p F p F p F p

Notation 2, 49 3.00 0.059 1.61 0.210 2.03 0.143 19.91 <0.001 0.79 0.458

Task (ST, BT) 1, 49 8.59 0.005 6.96 0.011 4.31 0.043 89.39 <0.001 0.595 0.444

Notation 9 task 2, 49 3.09 0.055 0.53 0.593 2.03 0.143 45.07 <0.001 0.79 0.458

426 Cogn Tech Work (2015) 17:417–430

123

the translation of the mental model in the modelling system

were the main reasons for the shortcomings in the perfor-

mances. The error analyses revealed predominantly dif-

ferent rule-based errors in behaviour and structure

modelling performance. For instance, the rules of encap-

sulation and the creation of the modules were deficient.

The lack of time for modelling tasks performance was a

problem in both studies which is a result of less prior

experience and practice. It should be noted that results of

error analysis may be different with more experienced

participants with more competence in modelling tasks.

Unintentional errors at the skilled-based level were

forgotten elements, errors due to an imprecisely studied

Table 6 Summary of skill-based error types in plcML, modAT4rMS

and FBD (in %)

plcML modAT4rMS FBD

% Skill-based errors during structural

modelling

Forgotten control signal 0.25 0.17 0

Forgotten signal type 0 0.08 0.30

Forgotten sensors for storage belts 0 0.33 0

Task description studied

imprecisely

0 0 0.30

Sensors partly created as bool 0 0 0.15

Confused notation element 0 0 0.10

% Skill-based errors during

behavioural modelling

Task description studied

imprecisely

0 1.67 0.95

Typing error 0.12 0 0.05

Careless

mistake == versus = versus :=

0 1.04 0

Wrong sensor function 0 0 0.45

Confused notation element 0 0 0.05

‘‘conveyor_done’’ attached to

‘‘sr.q’’ that starts the conveyor

0 0 0.10

Functions for signal forgotten to

program

0 0.08 0

Forgotten timer 0 0.37 0

Forgotten reset 0 0.46 0

Forgotten SR 0 0 0.20

Forgotten task parts 0 0.17 0.20

Forgotten sensors for bottle storing 0 0.33 0

Forgotten signal at comparison 0 0.21 0

Forgotten type 0 0.12 0

Overall process at system level

forgotten

0 0.25 0

Forgotten VOs 0 0.17 0

Forgotten dot operator 0 0 0.20

Transitions in method

‘‘Sortieren()’’ forgotten

0 0.08 0

Forgotten to switch-off the

conveyor/storing belt

0.50 0.08 0

Behaviour of switch and conveyor

belt forgotten

0 0 0.30

Table 7 Summary of rule-based error types in plcML, modAT4rMS

and FBD

plcML modAT4rMS FBD

% Rule-based errors during

structural modelling

Problems with the rules of

encapsulation and the creation of

modules

13.00 6.05 2.65

Insufficient understanding of the

creation of variants and

aggregations

8.50 0 0

Insufficient rule knowledge of the

notation’s syntax

0 0 10.80

Insufficient understanding of the

transfer of values

0 0.33 0

Insufficient understanding of the

examination of the input state

0 0 0.20

Faulty function block call 0 0 1.20

% Rule-based errors during

behavioural modelling

Problems with the rules of method

encapsulation

20.62 9.79 8.60

Insufficient understanding of

encapsulation: module to

(sub)module

0 0.92 0

Insufficient understanding of

encapsulation: data access

0 0.21 0.20

Problems with the formation of

modules and the rules of

inheritance

0.87 0 0

Insufficient understanding of the

difference between function and

operation

0 0.17 0

Insufficient understanding of

cross-module transfer of values

0 1.33 0

Insufficient rule knowledge of the

notation’s syntax

0.37 0.33 16.55

Insufficient understanding of

network sequence (in FBD)

0 0 0.70

Insufficient understanding of

operators

0 1.96 0.15

Insufficient understanding of the

timer function

1.50 0.58 0.90

Insufficient understanding of the

difference between

transition and state (in

plcML)

1.37 0 0

Insufficient understanding of task

sequence: no return to state
but new state required

0.12 0 0

Insufficient understanding of

transition conditions

0.50 0 0

Cogn Tech Work (2015) 17:417–430 427

123

task description or confused notation elements. Skilled-

based errors are due to inattention or memory problems,

and this could partly be caused by the think-aloud tech-

nique but also less practice with the modelling tasks. The

classification as rule based also reflects that those kinds of

tasks need more practice and experience to develop and

apply rule knowledge as required for successful task per-

formance. Rule-based errors result from intentional and

consistent use of faulty rules. The 2-day training is only a

short period of time to develop abilities for modelling

tasks. Although the test task was very similar to the

training task, the transfer of new learned rules and

knowledge and their application in the new task was lim-

ited and results in the use of faulty rules. Only an incom-

plete mental model could be developed during the training

session. As a result of the error analysis, we further gained

knowledge about the rules and concepts that are error

prone, and therefore, cause errors in modelling. In contrast

to prior results (e.g. Vogel-Heuser et al. 2012, 2013), the

detailed analysis of errors in modelling task is attributed to

concepts and characteristics inherent to different notations.

Comparison of the different notations (plcUML, mod-

A4rMS, FBD) showed that behavioural modelling with

modA4rMS is quite more error prone than the other nota-

tions. The modA4rMS led to more unintended failures due

to inattention (e.g. forgotten reset, forgotten timer) and

careless mistakes. There were no significant differences in

the occurrence of rule-based errors. Knowledge-based

errors rarely occurred. During behaviour modelling in

plcML and in modA4rMS, comprehension problems about

the challenges of the task appeared.

As already outlined in the introductory part of this

paper, the taxonomy presented above has two main appli-

cation areas: education and tool design.

6.1 Implications for education

The error analysis by the use of SRK model in mechanical

engineering provides a detailed description about concepts

and requirements of notations which cause errors in

structural and behavioural modelling tasks. On the one

hand, it can be helpful to get to know the errors that

mechatronics apprentices and technicians commonly make

in FBD and in which respects these differ to those made

with plcML and with modAT4rMS. Hereafter, the knowl-

edge about which errors occur when and why can be used

for improving education, as students can deliberately be

advised, which errors are mainly to be expected and how

they can be detected and resolved successfully. Moreover,

instructors have the possibility to become more alert about

common errors and misconceptions and can specifically

address aspects of the notation to be learned that are gen-

erally poorly received by their apprentices. The awareness

of difficulties in learning rules or the requirements of ele-

ments provide could further be used for the development of

training or tutorials in education.

In the study described above, knowledge-based errors

only had a marginal effect on the total number errors

(independent of the notation used). This in part can be

attributed to the previously completed training, which

included a very similar task. Secondly, it is very likely also

due to the simplicity of the task, which was relatively

undemanding in terms of logic and problem solving skills.

In all three notations by far the most common were rule-

based errors, especially during the behavioural modelling

part of the task. So, it is in particular on this level, where

teachers and students should act, if they want to achieve a

reduction of programming errors. With FBD, instructors

should place more emphasis on teaching the notation’s

syntax rules. In contrast, plcML and modAT4rMS seem to

be more prone to errors that are due to misinterpreted rules

of OO fundamentals. Here, a training focusing on encap-

sulation rules, the formation of modules and the formation

of variants and aggregations are most promising.

Skill-based errors were only a minor problem in our

study, but are likely to become more relevant once the

apprentices are familiar with the notation’s rules. On this

level, most errors occurred in modAT4rMS—a notation

that produces significant less mental workload than the

other two languages (Braun 2013). As these errors typi-

cally were only small slips or lapses, participants tended

to overlook them and to focus on less familiar parts of

the code. Given the fact that the correct solution is

known to them, tuition presumably is of limited effec-

tiveness here.

Outstanding regarding plcML was the fact that the time

required for structural modelling often was enormous,

often leading to a hardly processed behaviour modelling

part. Although there were few errors in the strict sense, it

seems obvious that the apprentices’ solutions were quite

inefficient. A training focusing on this aspect might

improve the overall quality of the created models.

6.2 Suggestions for tool design

On the other hand, the taxonomy provides inspiration for

the future design of tools that support apprentices and

technicians at detecting and fixing errors within their code.

The results of the presented study make it advisable to

choose different feedback approaches, depending on the

level where the error occurred in order to be most effective.

As skill-based errors are unintentional and not based on

faulty knowledge, it is likely to be sufficient to indicate

their existence and their position. A check similar to a

front-end compiler analysis that validates lexical correct-

ness, syntax and semantics (e.g. type checking and object

428 Cogn Tech Work (2015) 17:417–430

123

binding) and issues warnings (if necessary) already may

help counter these errors.

As rule-based errors are concerned, such a tool could be

instrumental, too. However, it is likely that only common

syntax and semantic errors can be identified by these

comparably simple heuristic checks. For instance, a class

that is used only once is likely to be a mistake and the

programmer can be drawn to this fact—possibly by offer-

ing additional warning information and (short) explana-

tions in the event that an error is caused by insufficient rule

knowledge.

At all levels, a virtual testing environment could provide

further feedback that is likely to help programmers at

detecting and resolving errors. Nevertheless, this should

never be the only mode of feedback: for example, code

often compiles, although it may still contain plenty of bugs.

If there is no time for extended testing, these errors remain

unresolved and may reinforce the programmer’s faulty rule

knowledge—making it even more difficult to be corrected.

Another promising approach could be the further

development and optimization of the modelling notations

themselves, and in particular, of the modAT4rMS notation

that has proved to be the easiest and most user friendly of

the three tested notations (Braun 2013). However, prob-

lems with the rules of encapsulation and the creation of

modules were still the most prominent error sources with

modAT4rMS. Consequently, the greatest potential for a

further reduction of the number of errors and thus an

increase of the overall modelling performance seems to lie

in a better support of the user during encapsulation and the

creation of modules. If this should be done through an

adaptation of the modelling language itself or through a

modification of the modelling procedure (or both), this

needs to be clarified in subsequent studies.

6.3 Evaluation of the method

The described methodology of error analyses in modelling

tasks has proved its usefulness for studying apprentices’

failures when writing code in plcML, modAT4rMS or FBD

and the differences between them. However, it also has

some limitations: first of all, it requires experience with

human subjects and the think-aloud paradigm, with the

skill-rule-knowledge framework and with coding according

to grounded theory. Second, it also requires extensive

knowledge in all three modelling languages that are com-

pared in order to be able to identify the errors that were

made by the subjects as well as being able to ask questions

in the follow-up interview that are helpful for the sub-

sequent analysis by the experimenters. Another limitation

is the time required for data collection and analysis, which

may take weeks (or even months).

However, these trade-offs have to be weighed against

the benefits of the method described: we gained far more

specific and practically usable information as it would

have been possible with more economic methods like

task analysis. Moreover, direct observation combined

with the think-aloud technique led to deeper insights than

it would be possible with the previously applied methods

of code inspection and/or interviews and made the

interpretation and classification of the occurred errors

much simpler. Nevertheless, the assignment still was

anything but easy. For the participants, the think-aloud

technique was quite an unfamiliar task. From time to

time, the experimenter had to encourage the participants

to verbalize their thought process. The method also has

several constraints, for instance, the unaccustomed ver-

balization of thoughts during task performance. Thinking

aloud also affects cognitive processes which results in

time delay for task performance or changes of behaviour.

The lack of time was also a problem in the described

experiment.

The coding process by the use of open and axial coding

from grounded theory (Strauss and Corbin 1998) is an

iterative process. Analysts considered collected data sev-

eral times. At first noted occurrence of an error, after-

wards, a coding scheme and labels for chunks are

developed, and finally, categories of the classification

were refined and/or combined to umbrella terms. The

analysts were a team of software experts and a psychol-

ogist that examined the data in an iterative process. The

method of the grounded theory did not analyse previously

defined categories, but rather generate the coding scheme

and categories in the analysis of the data. This implies the

constant comparison of data according to similarities or

differences. Finally, a classification results with distinct

categories derived from the data. In particular, the dis-

tinction between rule-based and knowledge-based errors

often led to lengthy discussions between the analysts. It

was decided to classify faulty code that is obviously due

to incomplete rule knowledge as being rule based, as the

subjects had successfully applied the necessary knowledge

during the training 2 days before in a very similar task

that was even more difficult. However, it should be kept in

mind that the differentiation between these two categories

is quite delicate. According to the method applied for

analysis, the reliability could not be proved as other

methods with previously defined classification provide.

Therefore, the explanatory power of the results is limited.

Nevertheless, we could show a comprehensive analysis of

errors and by the use of the SRK model errors are

attributed to the different causes. The knowledge gained

has several implications of education and tool design as

mentioned above.

Cogn Tech Work (2015) 17:417–430 429

123

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

Anderson J, Jeffries R (1985) Novice LISP errors: undetected losses

of information from working memory. Hum Comput Interact

1(2):107–131

Blackwell AF (2002) First steps in programming: a rationale for

attention investment models. In: Proceedings of the IEEE

symposia on human centric computing languages and environ-

ments, pp 2–10

Boren MT, Ramey J (2000) Thinking aloud: reconciling theory and

practice. IEEE Trans Prof Commun 43(3):261–278

Braun S (2013) Adaptation and practical evaluation of notations for

modular, object-oriented programming of open loop control

systems in machinery and plant engineering in the context of

usability. Ph.D. thesis at Mechanical Engineering Department,

TU Munich

Davies SP (1994) Knowledge restructuring and the acquisition of

programming expertise. Int J Hum Comput Stud 40(4):703–726

Eisenstadt M (1993) Tales of debugging from the front lines. In:

Empirical studies of programmers, 5th Workshop, Palo Alto,

CA, pp 86–112

Ericsson KA, Simon HA (1984) Protocol analysis: verbal reports as

data. MIT Press, Cambridge, MA

Hajarnavis V, Young K (2008) An assessment of PLC software

structure suitability for the support of flexible manufacturing

processes. IEEE Trans Autom Sci Eng 5(4):641–650

International Electrotechnical Commission (2003) IEC International

standard IEC 61131-3: programmable logic controllers, part 3:

programming languages

Ko A, Myers B (2005) A framework and methodology for studying

the causes of software errors in programming systems. J Vis

Lang Comput 16:41–84

Mayrhauser Av, Vans AM (1997) Program understanding behaviour

during debugging of large scale software. In: Empirical studies

of programmers, 7th workshop, Alexandria, VA, pp 157–179

Panko R (1998) What we know about spreadsheet errors. J End User

Comput 10(2):5–21

Panko RR, Sprague RHJ (1999) Hitting the wall: errors in developing

and code-inspecting a ‘simple’ spreadsheet model. Decis Sup-

port Syst 22:337–353

Park TH, Saxena A, Jagannath S, Wiedenbeck S, Forte A (2013)

Towards a taxonomy of errors in HTML and CSS. In:

Proceedings of the 9th annual international ACM conference

on international computing education research. ACM, pp 75–82

Perkins DN, Martin F (1986) Fragile knowledge and neglected

strategies in novice programmers. In: Empirical studies of

programmers, 1st workshop, Washington, DC, pp 213–229

Purao S, Rossi M, Bush A (2002) Towards an understanding of the

use of problem and design spaces during object-oriented system

development. Inf Organ 12:249–281

Rasmussen J (1983) Skills, rules, and knowledge; signals, signs, and

symbols, and other distinctions in human performance models.

IEEE Trans Syst Man Cybern 13(3):257–266

Reason J (1990) Human error. Cambridge University Press,

Cambridge

Robins A, Rountree J, Rountree N (2003) Learning and teaching

programming: a review and discussion. Comput Sci Educ

13(2):137–172

Shackelford RL, Badre AN (1993) Why can’t smart students solve

simple programming problems? Int J Man Mach Stud

38:985–997

Siau K, Loo P (2006) Identifying difficulties in learning UML. Inf

Syst Manag 23:43–51

Siau K, Tian Y (2001) The complexity of unified modelling language:

a GOMS analysis. In: 14th international conference on infor-

mation systems, New Orleans, December 16–19, pp 443–448

Spohrer JG, Soloway E (1986) Analyzing the high frequency bugs in

novice programs. In: Empirical studies of programmers, 1st

workshop, Washington, DC, pp 230–251

Strauss A, Corbin J (1998) Basics of qualitative research: techniques

and procedures for developing grounded theory. Sage Publica-

tions, Thousand Oaks

Thramboulidis K, Frey G (2011) Towards a model-driven IEC

61131-based development process in industrial automation.

J Softw Eng Appl 04(04):217–226

Vogel-Heuser B, Braun S, Obermeier M, Jobst F, Schweizer K (2012)

Usability evaluation on teaching and applying model-driven

object-oriented approaches for PLC software. ACC, Montréal

Vogel-Heuser B, Obermeier M, Braun S, Sommer K, Jobst F,

Schweizer K (2013) Evaluation of a UML-based versus an IEC

61131-3-based software engineering approach for teaching PLC

programming. IEEE Trans Educ 56(3):329–336

Vyatkin V (2013) Software engineering in factory and energy

automation: state of the art review. IEEE Trans Ind Inf

9(3):1234–1249

Witsch D, Vogel-Heuser B (2011) PLC-statecharts: an approach to

integrate UML-statecharts in open-loop control engineering:

aspects on behavioural semantics and model-checking. In: 18th

IFAC World Congress, Milano

Youngs E (1974) Human errors in programming. Int J Man Mach

Stud 6:361–376

Zoitl A, Vyatkin V (2009) IEC 61499 architecture for distributed

automation: the ‘Glass Half Full. IEEE Ind Electron Mag

3(4):7–23

430 Cogn Tech Work (2015) 17:417–430

123

	Towards a taxonomy of errors in PLC programming
	Abstract
	Introduction
	Related work
	Filling the gap: deficits of current evaluation studies
	Empirical evaluation concept

	Preliminary study: UML modelling failures and their causes
	Experimental design
	Results
	Consequences/constraints for further studies

	Experimental design
	Participants
	Instruments
	Procedure
	Data analysis

	Results
	Examples of errors at the three levels
	Skill-based errors
	Rule-based errors
	Knowledge-based errors

	Classification of the errors

	Discussion
	Implications for education
	Suggestions for tool design
	Evaluation of the method

	Open Access
	References

