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Abstract
The paper applies synthetic instruments, initially developed for cross-sectional 
regression, to estimate dynamic spatial panel data models. These have two main 
advantages. First, instruments correlated with endogenous variables and yet inde-
pendent of the errors are difficult to find. Not only are synthetic instruments nor-
mally exogenous, but they are usually strongly correlated with endogenous varia-
bles, and thus help to avoid the problem of weak instruments. Secondly, they help 
to reduce instrumental variables proliferation, which is a common result of standard 
methods of avoiding endogeneity bias. As demonstrated by Monte Carlo simulation, 
instrument proliferation causes bias in the Sargan–Hansen J test statistic, which is 
an important indicator of instrument validity and hence estimation consistency. It 
is also associated with a downward bias in parameter standard error estimates. The 
paper shows the results of applying synthetic instruments across a variety of differ-
ent specifications and data generating processes, and it illustrates the method with 
real data leading to more reliable inference of causal impacts on the level of employ-
ment across London districts.

Keywords Dynamic spatial panel data models · Synthetic instruments · Sargan–
Hansen J test · Monte Carlo simulation · Inference · Migration · Employment
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1 Introduction

Progress in spatial econometrics has been stimulated by the increasing availability 
of spatio-temporal data, as shown by Anselin et  al. (2008), Elhorst (2014), Pesa-
ran (2015) and Baltagi (2021) among others. Static spatial panel data methods are 
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long-established, but more recently dynamic spatial panel data models have come 
to the fore as highly informative and relevant (see for example Parent and LeSage 
2012; Yu and Lee 2008; Elhorst 2014). The predominant approach in the spatial 
panel model literature has been an assumption that the regressors are exogenous, 
apart from spatial and/or temporal lag terms relating to the endogenous variable1 
and typically estimation has focused on maximum likelihood and related methods. 
This presents a challenge in the presence of endogenous regressors. The focus in 
this paper is on dynamic spatial panel models in which endogeneity extends beyond 
spatial and temporal lags of the dependent variable. Baltagi et al. (2019) give exten-
sive Monte Carlo simulations demonstrating the consistency of the estimates pro-
duced by a spatial version of ‘difference generalized method of moments (GMM)’, 
an approach which easily accommodates endogenous regressors.2

The main contribution of the paper is via the approach of Le Gallo and Páez 
(2013), who advocated the use of synthetic instruments to eliminate endogeneity 
bias in cross-sectional regressions, which is here extended to GMM estimation of 
dynamic spatial panel models. The intuition behind synthetic instruments is that 
because they are based on the invariant topology of the geographic space, typically 
they are exogenous to the spatio-temporal process being modelled. Specifically, 
because the endogenous variable(s) invariably has a non-random spatial distribution, 
some inherent dimensions of the topology will often be quite strongly correlated 
with the endogenous variable. Synthetic instruments deriving from these inherent 
dimensions typically possess hard-to-find ideal properties of instrumental variables, 
namely exogeneity and yet correlation with the endogenous variable.

In this paper, synthetic instruments help resolve some pitfalls of GMM estima-
tion arising when there is an overabundance of instrumental variables. This can be 
exacerbated with spatial data, where the suite of instruments might be enhanced by 
the use of the spatial lags of variables in addition to variables per se (Kelejian and 
Prucha 1998, 1999; Pace et  al. 2012; Baltagi et  al. 2019). Moreover, instruments 
are often weak, with negligible correlation with endogenous variables. In contrast, 
synthetic instruments are invariably strong, with typically very high correlations. By 
replacing weak instruments with fewer synthetic instruments, one is likely to obtain 
more reliable inference. In particular, reducing the number of instruments eliminates 
problems relating to the crucial Sargan–Hansen test of overidentifying restrictions. 
An associated problem is the downwardly biased parameter standard errors associ-
ated with two-step GMM estimation, which causes upward bias in t-ratios. To rem-
edy this, two related finite sample corrections are reported: the well-known Wind-
meijer correction and the ‘HKL’ double correction (Hwang et al. 2022), which also 
allows for overidentification bias. Finally as an illustration, synthetic instruments 

1 Although there are prominent papers where endogenous regressors are also introduced, including Liu 
and Lee (2013), Jin and Lee (2013), Drukker, Egger and Prucha (2013), Jeanty et al. (2010), Kelejian and 
Piras (2014, 2016, 2017, 2018) and Fingleton and Le Gallo (2008).
2 The estimates obtained in this paper can be replicated using the xtabond2 command available in Stata; 
the relevant code is available below.
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and standard error corrections are applied to real data to provide a stronger inferen-
tial basis to published research.

2  A dynamic spatial panel model

Consider first the estimation of the simple dynamic model given by Eq. (1),

In which there are N regions/locations/individuals and T  times, x is an exogenous 
variable, x̃ is an endogenous variable, wij is the i, j th element of an exogenous time-
invariant N by N connectivity matrix �N , � , �, �, �1  and �2 are parameters to be 
estimated. The error term is compound, thus

where �i  is a set of individual effects, one for each of the N regions, controlling 
for unobserved time-invariant heterogeneity across regions or locations. The term 
�it varies both by region and by time and represents other, unpredictable, random 
effects. The assumption is that each �i and �it is a random draw from independent 
and identically distributed distributions thus  �i ∼ iid(0, �2

�
) and �it ∼ iid(0, �2

�
) with 

�i and �it independent of each other and among themselves. Given  𝜎2
𝜇
> 0 , there is 

interregional heterogeneity with �i capturing unmodelled individual effects such as 
physical geography and also regional variation in unobserved effects.

A more general specification written in matrix terms is

in which �N =
(

�N − ��N

)

 , �N =
(

��N + ��N

)

 , �N ,�N and identity matrix �N are 
matrices of dimension N by N ,  �, � and � are scalar coefficients, �t is an N by 1 
vector, �t is an N by k1 matrix of exogenous regressors, �1 is a k1 by 1 vector of 
coefficients, �̃t is an N  by k2  matrix of endogenous regressors, �2 is a k2 vector 
of coefficients, and vector �t = � + �t is a N by 1 compound error term. Standard 
assumptions are that �N is a non-singular matrix and �N ,�

−1
N

  and the regressors 
are uniformly bounded in absolute value. The model satisfies stationarity conditions 
only if the maximum absolute characteristic root of �̃ = �N�

−1
N

 is less than one 
(Elhorst 2001, 2014), Parent and LeSage (2011, 2012) and Debarsy et al. (2012).

Consistent estimation of Eq.  (2) by maximum likelihood is challenged by the 
presence of the endogenous variables, and assumptions regarding initial conditions 
and on how  T  and  N  tend to infinity. Bond (2002) argues that the distribution of 
the dependent variable depends in a non-negligible way on what is assumed about 
the distribution of the initial conditions. For example, the initial condition could be 
stochastic or non-stochastic, correlated or uncorrelated with the individual effects, 
or have to satisfy stationarity properties. Different assumptions about the nature of 
the initial conditions will lead to different likelihood functions, and the resulting 

(1)

yit = 𝛾yit−1 + 𝜌

N
∑

j=1

wijyit + 𝜃

N
∑

j=1

wijyit−1 + 𝛽1xit + 𝛽2x̃it + 𝜀it; i = 1, ...,N, t = 1, ..., T

�it = �i + �it

(2)�t = �−1
N
�N�t−1 + �−1

N
�t𝛽1 + �−1

N
�̃t𝛽2 + �−1

N
�t
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ML estimators can be inconsistent when the assumptions on the initial conditions 
are misspecified. Hsiao (2003, pp. 80–135) has more details. GMM makes weaker 
assumptions about the initial conditions, indeed according to Baltagi (2013), p. 158, 
the ‘GMM estimator requires no knowledge concerning the initial conditions’, and 
naturally accommodates the presence of endogenous regressors. The paper therefore 
focusses on GMM which is very well documented in the literature so only a brief 
summary is provided here.

Following Arellano and Bond (1991), estimation of linear GMM panel data 
regressions involves first differences3 to avoid dynamic panel bias (Nickell 1981), 
eliminating the individual effects �i which would otherwise be correlated with the 
spatial lag and time lag of the dependent variable. First differencing Eq. (2) gives

Because of the presence of endogenous variables, instrumental variables are 
required for consistent estimation. Typically, instruments that are correlated with 
endogenous variables and yet independent of the errors are difficult to find. One 
solution is to use lags of regressors already present in the model, but typically, for 
IV estimation generally, more lags means less data. However, the usual instrument 
set for difference GMM, namely HENR instruments (after Holtz-Eakin, Newey and 
Rosin 1988), avoid this by zeroing out missing observations while including sepa-
rate instruments for each time period. So with HENR one has one instrument per 
variable, time period and lag distance. This amounts to (T − 2)(T − 1)∕2  instru-
ments for each endogenous variable, since endogenous variables are contemporane-
ously correlated with the errors, provided the �it are not serially autocorrelated of 
order one, regressors lagged by two periods are appropriate in order to satisfy the 
orthogonality conditions relating to instruments and differenced errors. Arellano and 
Bond (1991) provide a test for serial correlation, the m2 test statistic, which tests 
for second order serial correlation in the first differenced residuals, and which is 
assumed to be asymptotically normal under the null of zero correlation. Addition-
ally, following the approach adopted by Baltagi et al. (2019), given data with identi-
fiable spatial locations, spatially weighted earlier time-lagged levels of the depend-
ent and explanatory variables are also potentially viable instruments. Accordingly, 
Baltagi et al. (2019) set out moments equations thus

where �i =
(

wi1, ...,wiN

)

 is a 1 by N vector which corresponds to the i′th row of 
�N . Similar expressions giving additional moments equations involve the lagged 
endogenous regressors, for regressor j , x̃j,il and �̃j,l replaces yil and �l in Eqs.  (4) 

(3)Δ�t = 𝛾Δ�t−1 + 𝜌�NΔ�t + 𝜃�NΔ�t−1 + Δ�t𝛽1 + Δ�̃t𝛽2 + Δ�t

(4)E
�

yilΔ�it
�

= 0 hence
∑

i

yilΔ�it = 0 , ∀i, l = 0, 1, ..., t − 2, t = 2, 3, ..., T

(5)
E
�

�i�lΔ�it
�

= 0 hence
∑

i

∑

i≠j

wijyilΔ�it = 0
∀i, l = 0, 1, ..., t − 2, t = 2, 3, ..., T

3 System GMM estimation is not considered in this paper.
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and (5). With regard to strictly exogenous regressors, there is no feedback from the 
dependent variable. In this case, the moments conditions are

Baltagi et al. (2019) also introduce a spatial moving average (SMA) error depend-
ence process, but for simplicity the Monte Carlo simulations assume that the errors 
are spatially independent.4

HENR instruments lead to quadratic growth in the number of instruments with 
respect to T  , so there is the possibility of an overabundance of instruments. One can 
limit the number of lags applying to endogenous variables in the moments equa-
tions. A second solution is to collapse the instrument matrix so that there is one 
instrument for each variable and lag distance, rather than one for each time period, 
variable, and lag distance, which amounts to adding together columns of the instru-
ment matrix. Also, both solutions can be combined. Collapsing means that one 
replaces the set of instruments, one for each period, into one column. Therefore, the 
set of moments equations given by Eqs. (4) and (5) are replaced by

with similar expressions for the other endogenous regressors.
However, these approaches have limitations, limiting lags alone may not solve the 

instrument proliferation problem, depending on the context. Collapsing, by omitting 
time variation, will tend to give less precise estimates. Alternatively, strictly exog-
enous variables can be introduced as a single column in the matrix of instruments 
for each exogenous variable, thus producing far fewer instruments than by using 
the moments conditions of Eqs. (6) and (7). These are referred to these as IV-style 
instruments rather than HENR-type instruments.

3  Consequences of instruments proliferation

3.1  Parameter standard errors

With numerous instruments, the estimated asymptotic standard errors of the effi-
cient, two-step, GMM estimator are downward biased in small samples. Windmeijer 
(2005) corrects for the bias which results from estimating the optimal weight matrix 

(6)E
(

xj,imΔ�it
)

= 0, ∀i, j, m = 1, ..., T; t = 2, ..., T

(7)E
(

�i�j,mΔ�it
)

= 0, ∀i, j, m = 1, ..., T; t = 2, ..., T

(8)
∑

i,t

yit−2Δ�it = 0

(9)
∑

i,t

∑

i≠j

wijyit−2Δ�it = 0

4 SMA error dependence is included in the example using real data.
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used in the second step of linear two-step GMM. The optimal weight matrix is the 
inverse of the covariance of the sample moments leading to the smallest covariance 
matrix for the GMM estimator. The bias results from the weight matrix being evalu-
ated at estimated, rather than the true values of parameters. However, additional bias 
may also occur because of overidentification bias, which affects the finite sample 
bias in the GMM estimator itself. Hwang et al. (2022)5 also correct for overidentifi-
cation bias.

3.2  The Sargan–Hansen J test statistic

Theoretically, the moments conditions require that instruments should be orthogo-
nal to the error term. However, with more instruments than variables to be instru-
mented, one has overidentification and a problem of not being able to exactly satisfy 
all the moments equations simultaneously. The solution is to attempt to satisfy the 
moments as closely as possible, and the success of this is given by the outcome of 
Sargan–Hansen’s J test (Sargan 1958; Hansen 1982), as defined by Eq. (10), which 
tests the null hypothesis of joint validity of the moments conditions under overiden-
tification. Though it is robust to non-sphericity of the errors, it can be greatly weak-
ened by instrument proliferation (Anderson and Sørenson 1996; Bowsher 2002; 
Roodman 2009a,b).

The J test statistic is given by

In �1 and �2 , Δ�i2 are differenced second-step errors, � is the matrix of instru-
ments, comprised of N �i s, each of dimension (T − 2, p) where p is the number of 
instruments. Under the null hypothesis that the moments conditions are valid, J is 
distributed as �2

p−k
 , where k is the number of estimated parameters and p > k , so if J 

exceeds the relevant critical value of �2
p−k

 , some or all of the moments conditions are 
not supported by the data. The preliminary (one-step) consistent estimator giving 
the differenced first-step errors is based on

(10)J = �1��
�

2∕N

�1 =

N
∑

i=1

Δ��
i2
�i

�2 =

N
∑

i=1

��

i
Δ�i2

� =

(

1

N

N
∑

i=1

�iΔ�i1Δ�
�

i1
�i

)−1

5 Thanks to Jay Lee who provided software support.
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In the above, � is a (T − 2, T − 2) matrix of 2 s on the main diagonal and − 1 s on 
the adjacent upper and lower diagonals.

4  Synthetic instruments

Normally, it is difficult to find legitimate external exogenous instruments that corre-
late with the endogenous variables and which are yet unrelated to the error term. 
Typically, instruments that correlate closely with endogenous variables tend to also 
correlate with the errors, but trying to avoid correlation with the errors commonly 
leads to instruments that are weak and irrelevant with respect to the endogenous 
variable. A solution to the problem is based on the spatial filtering literature (notably 
Griffith 1988, 1996, 2000, 2003; Getis and Griffith 2002; Boots and Tiefelsdorf 
2000; Patuelli et al. 2006) which is the basis for the construction of synthetic instru-
ments, as advocated by Le Gallo and Páez (2013) for cross-sectional regression. 
Synthetic instruments have the properties of ideal instruments, because normally 
they are well correlated with the endogenous variables and yet independent of the 
errors. In fact, the synthetic instruments are the fitted values resulting from regress-
ing the endogenous regressors and their spatial lags on weighted linear combina-
tions of subsets of orthogonal eigenvectors deriving from a symmetrical N by N 
contiguity matrix6 �N , in which the m

ij
, i = 1, ...,N, j = 1, ...N , take the values

�N simply reflects the spatial connectivity of N regions and this is normally 
unaffected by the data under analysis. Likewise, the eigenvectors are exogenous, 
in other words not determined by �t , and so are an appropriate basis for synthetic 
instruments.

The effectiveness of the eigenvectors as instruments derives from the fact that 
each one represents a different orthogonal latent map pattern and so it is likely that 
one or more will correlate strongly with a non-randomly spatially distributed endog-
enous variable. Following Griffith (2000) and much related literature, we first con-
sider the Moran Coefficient spatial autocorrelation index MCt which measures the 
spatial autocorrelation in � at time t as given by

(11)�� =

(

1

N

N
∑

i=1

��

i
��i

)−1

m
ij
= 1 if i and j are neighbours

m
ij
= 0 otherwise

6 However, the starting point could be other connectivity matrices, as illustrated by Patuelli et al. (2006). 
With the contiguity matrix, regions sharing a common boundary will be classed as neighbours, but other 
criteria could be applied such as being within a certain distance of each other, or having some other form 
of common attribute.
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where

in which �N is an N by N identity matrix, and  �N denotes an N by 1 vector of ones. 
The N by N matrix �N yields N ‘orthogonal’ eigenvectors7 �i, i = 1, ...,N , each of 
which is of dimension N by 1. Replacing �t in Eq. (12) by �i measures the spatial 
autocorrelation for eigenvector �i . So, each of the eigenvectors of �N can be under-
stood as a distinctive map pattern, with a separate MC , ranging from strongly posi-
tive to strongly negative autocorrelation, given by the different �i values distributed 
across the regions implied by the connectivity matrix �N.

The synthetic instruments actually employed are weighted linear combinations of 
subsets of the �i which are referred to in the literature as spatial filters (see Griffith 
2003; Boots and Tiefelsdorf 2000). In the empirical analysis below, we use iterative 
regression to identify which subset of the �i are appropriate for a given endogenous 
regressor, with the regression coefficient estimates giving the weights to apply in the 
weighted linear combination.

Applying such a spatial filter to even a completely spatially random variable will 
tend to find a significant relationship and a moderately strong correlation between 
the random variable and the synthetic instrument because it is the outcome of 
a search through many candidate �i s, but with a spatially organised variable, for 
example, a quadratic trend surface defined by its geographic coordinates, the out-
come will typically be a much more significant correlation.8 Because spatio-tempo-
ral panel data are unlikely to be randomly distributed and almost invariably spatially 
organised in some way, the spatial filter can be used to obtain a synthetic instru-
ment which is highly correlated with an endogenous variable, and thus, one has a 
way to generate a relevant instrumental variables that are unrelated to the error term 
in the data, and yet which are highly correlated with endogenous variables which 
are related to the error term. This is very helpful, because relevant and exogenous 
instrumental variables are difficult to find. As noted by Le Gallo and Páez (2013), 
working in the context of cross-sectional data, ‘Synthetic variables, being artificial 
map patterns derived from the spatial configuration of the system, provide a near 
ideal solution—as long as spatial partitioning is not codetermined with other vari-
ables, which is typically the case’.

The aim is to obtain spatial filters for endogenous regressors 
x̃itk;i = 1, ...,N, t = 1, ..., T , k = 1, ..., k2 . The approach adopted involves iteratively 

(12)MCt =
N

��N�N�N

��t�N�t

��t
(

�N − �N�
�

N
∕N

)

�t

�N =
(

�N − �N�
�

N
∕N

)

�N

(

�N − �N�
�

N
∕N

)

8 A simple experiment supports this. Generating 1000 different uniformly distributed random variables 
on a 20 by 20 lattice produces correlations between random variable and synthetic instruments in the 
range 0 to 0.5, with a mean correlation equal to 0.2883. Generating 1000 different quadratic surfaces, 
with parameters chosen on each replication from N(0,1) distributions, gives correlations ranging from 
0.875 to 0.95 with a mean equal to 0.9282.

7 One of which is constant and correlated with the others.
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fitting regressions in which the dependent variable is the k′th endogenous vari-
able �̃tk and the independent variables are the eigenvectors �i . The outcome is the 
isolation of the relevant subset of �i and their relative weights as given by esti-
mated regression coefficients. So then for each endogenous variable we can form 
a weighted linear combination of the subset so as to give an appropriate synthetic 
instrument. This can be summarised thus

 (1) Set up empty vectors �k; k = 1, ..., k2 to ultimately contain synthetic instru-
ment for variable k

 (2) Use data for panel at time t = 1

 (3) k = 1

 (4) Set N by 1 vector � = 1

 (5) j = 1

 (6) For variable k and eigenvector j , regress �̃tk on �j

 (7) If the regression coefficient � is significantly different from 0,� = [� + ��j]

 (8) j = j + 1 , if  j ≤ N go to 6)
 (9) Regress �̃tk on � to obtain ̂̃𝐱tk
 (10) Append ̂̃𝐱tk to the column matrix so that 𝐳k =

[

𝐳k;
̂̃𝐱tk

]

 (11) k = k + 1 , if  k ≤ k2 go to 4)
 (12) t = t + 1, if t ≤ T  go to 3)

The NT  by 1 vectors �k, k = 1, ..., k2 are then used as external synthetic instru-
ments in GMM estimation.

5  The Monte Carlo simulations

5.1  The basic DGP

Our simulations assume that there are four regressors, though these are subsequently 
extended to give a spatial Durbin type of specification. At its simplest, our data gen-
erating process (DGP) is based on a version of Eqs. (2) and (3) thus

The aim is to devise a design that captures all sources of endogeneity, the ulti-
mate outcome of which is x̃3it and x̃4it being correlated with �it . The approach 
adopted is similar to Liu and Saraiva (2015), but in the context of compound errors, 
so that endogeneity occurs because of correlation between the regressors and � and 
hence � . In this simple initial case, the DGP draws from the Gaussian multivariate 
distribution,

(13)

yit = 𝛾yit−1 + 𝜌

N
∑

j=1

wijyit + 𝜃

N
∑

j=1

wijyit−1 + 𝛽1x1it + 𝛽2x2it + ...

𝛽3x̃3it + 𝛽4x̃4it + 𝜀it; i = 1, ...,N, t = 1, ..., T

𝜀it = 𝜇i + 𝜈it
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in which the leading diagonal of the covariance matrix contains the variances and 
the off-diagonals,  p1, p2, p3  and p4 , are the covariances between the random vari-
ables. The set-up in Eq. (14) indicates that the exogenous variables are unrelated to 
other variables, except that they are correlated with each other via p4 . The endog-
enous regressors �̃3 and �̃4 are correlated with �̃� which is a separate equation system, 
but �̃� is correlated with the remainder error component �  (with �̃� separate from � , 
there is the option of different �̃� s for different endogenous regressors, as applied 
subsequently). The outcome is a set of NT  by 1 random vectors. The individual error 
component �i is generated via a univariate normal distribution with zero mean and 
variance �2

�
 . Combining the error components �i and �it gives �it , so that x̃3it and x̃4it 

are correlated with �it . Note that we apply a similar approach in the context of non-
spatial data and the spatial Durbin specification subsequently.

Given true values of the various parameters, and drawing in each replica-
tion from the multivariate normal distribution provides numerous realisations of 
yit, i = 1, ...,N;t = 1, ..., T  . Note that the draws leading to a maximum absolute char-
acteristic root of �̃ equal to or greater than 1 are rejected, so the simulation data sets 
are all dynamically stable and stationary. These data are the basis of estimates of the 
model parameters. The aim is to compare the resulting estimates with the true values 
of the parameters of Eq. (13).

In practice, for the purposes of simulation, various alternative true parameter 
values have been considered, but the results presented subsequently for the DGP 
are based on  �2

�
= 0.2, 0.8 and �2

�
= 0.8, 0.2 . The simulations thus encompass low 

and high individual heterogeneity, and low and high levels of remainder variance. 
Also, p1 = 0.5, p2 = 0.75 , p3 = 0.25 and p4 = 0.3 , so x̃3it is strongly endogenous, 
and x̃4it is weakly endogenous. Also, it is assumed that � = 0.75, � = 0.3, � = −0.2 
and �1 = 4, �2 = 3, �3 = 2,�4 = 1.

The reported outcomes for this simple specification are based on a ‘r ahead 
and r behind’ connectivity matrix of Kelejian and Prucha (1999), which is subse-
quently row-standardised. Assuming r = 5 means that each row of spatial matrix 
�N (i.e.wij, with i = 1, ...,N, j = 1, ...,N)  has up to 10 connections (five ahead and 
five behind each with equal weights), with zeros elsewhere and on the main diago-
nal. Additionally, we subsequently consider results based on a dense �N matrix in 
the context of the spatial Durbin specification.

Results are reported for 100 replications, which nullifies aberrant outcomes and 
is sufficient to highlight the main traits in the simulation. In each replication, ini-
tial 51 simulation outcomes of x1it, x2it, x̃3it and x̃4it are ignored in order to minimise 
any potential effect of initial values at t = −50 of zero (i.e. simulation outcomes for  
t = −50,−49, ..., 0 are discarded). Also, T = 10 and there are N = 100 regions.

(14)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�
�̃
�1
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5.2  Results for simple spatial DGP

The results obtained depend of various set-ups regarding instruments. The idea is 
that we wish to show the impact of having fewer instruments on estimation as well 
as the effect of different error distribution assumptions. The largest number of instru-
ments is given by applying the standard solution to the existence of endogenous 
variables, namely HENR instrumentation. Temporally lagged values of the endog-
enous variables yit and Wyit together with temporally lagged values of Wyit−1,x̃3it, x̃4it 
and their spatial lags W2yit−1,Wx̃3it,Wx̃4it , with full HENR instrumentation amount 
to  8(T − 1)(T − 2)∕2 = 288 instruments. In addition, there are four exogenous IV-
style instruments equal to the exogenous variables and their spatial lags, namely 
x1it, x2it,Wx1it,Wx2it . The result is 288 + 4 = 292 instruments overall.

One side-issue relating to the existence of many instruments is the possibility that 
some are almost collinear. One could drop them from the instrument set, but this 
would change the number of degrees of freedom available for the Sargan–Hansen J 
statistics. Moreover, the definition of collinearity is somewhat subjective9 and elimi-
nating collinear instruments has minimal impact on outcomes.

Synthetic instruments are usually strongly correlated. For example, on the basis 
of 100 replications the mean correlation between x̃4it and its spatial lag Wx̃4it and 
their respective synthetic instruments is 0.6687 and 0.7205. Applying them to the 
endogenous regressors and their spatial lags, x̃3it,Wx̃3it and x̃4it,Wx̃4it , together with 
the exogenous regressors and their spatial lags gives eight IV-style instruments. Full 
HENR instrumentation for yit,Wyit,Wyit−1,W

2yit−1 , adds  4(T − 1)(T − 2)∕2 = 144 
instruments, giving a total of 152 instruments overall. There is considerable reduc-
tion in the number of instruments resulting from both collapsing and using synthetic 
instruments. Collapsing the standard HENR instrumentation for yit,Wyit,Wyit−1 

Table 1  Mean parameter 
estimates: �2

�
= 0.8�2

�
= 0.2

Number of instruments

True value 292 152 40 19

� = 0.75 0.7496 0.7497 0.7506 0.7507
� = 0.3 0.3051 0.3039 0.301 0.3011
�1 = 4 3.9976 3.9965 3.9958 4.0006
�2 = 3 2.9922 2.9945 2.9972 2.9963
�3 = 2 2.0408 2.0528 2.051 2.055
�4 = 1 1.0119 1.0117 1.0097 1.0084
� =− 0.6 − 0.6036 − 0.6033 − 0.6025 − 0.6067

9 Belsley collinearity diagnostics (Belsley et al. 1980) suggest a condition index with a default tolerance 
greater than 30, combined with variance decomposition proportions exceeding a default tolerance of 0.5, 
but other (arbitrary) tolerances could be applied. Applying the default tolerances to the instrument matrix 
resulting from a single Monte Carlo simulation identifies a handful of collinear instruments (note that 
these do not have a correlation coefficient equal to 1.0, for example, a correlation of 0.8555 is deemed 
sufficient for collinearity).
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and W2yit−1  gives 4(T − 2) = 32 instruments. Adding the aforementioned eight IV-
style instruments gives an overall total of 4(T − 2) + 8 = 40 instruments. Collapsing 
standard HENR instrumentation for yit alone gives  (T − 2) = 8 instruments. Using 
synthetic instruments for Wyit,Wyit−1 and W2yit−1 , together with  x̃3it,Wx̃3it, x̃4it,Wx̃4it 
creates seven IV-style instruments, and there are four more from the exogenous vari-
ables and their spatial lags x1it, x2it,Wx1it,Wx2it . Combined, there are 19 instruments 
in total.

The results obtained show remarkably little negative consequence as a result 
of reducing the number of instruments, plus the significant benefit of an unbi-
ased Sargan–Hansen J statistic and less biased standard errors. Tables 1 and 2 
show the mean parameter estimates resulting from 100 Monte Carlo simulations 
according to the number of instruments, true parameter values, and error distri-
bution assumptions.10 It is clear that the estimates closely approximate the true 
values. Table 3 summarises the outcomes, showing the mean absolute parameter 
bias, obtained by averaging across the mean absolute bias for each parameter, 
and the average of the mean RMSE’s, again averaging across the mean RMSE 
of each parameter. Bias tends to be smaller with larger �2

�
 , but the opposite is 

true for RMSE. There is little variation in either as the number of instruments 

Table 2  Mean parameter 
estimates: �2

�
= 0.2�2

�
= 0.8

Number of instruments

True value 292 152 40 19

� = 0.75 0.747 0.7485 0.7494 0.7486
� = 0.3 0.312 0.3108 0.3038 0.3015
�1 = 4 3.9994 4.002 4.0063 4.0072
�2 = 3 2.9941 2.995 2.9963 3.0004
�3 = 2 1.9895 1.9907 1.9894 1.9976
�4 = 1 1.0011 1.0109 1.0143 1.022
� =− 0.6 − 0.6043 − 0.6057 − 0.6051 − 0.6083

Table 3  Mean parameter bias and root mean squared error (RMSE) for selected data generated processes 
(DGP)

DGP Number of instruments

292 152 40 19

Mean abs param. bias �2

�
= 0.8 �2

�
= 0.2 0.0103 0.0116 0.0103 0.0109

�2

�
= 0.2 �2

�
= 0.8 0.0053 0.0065 0.0063 0.0062

Mean RMSE �2

�
= 0.8 �2

�
= 0.2 0.0285 0.0271 0.0302 0.0307

�2

�
= 0.2 �2

�
= 0.8 0.0438 0.0391 0.0429 0.0442

10 To save space, we do not consider direct, indirect and total short- and long-run effects that take 
account of spillovers.
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varies. In Tables 4 and 5, for each table cell relating to each parameter, we give 
the average of the mean simulation outcomes averaging across classic two-step, 
Windmeijer and HKL standard errors. Also, the mean classic two-step, Wind-
meijer and HKL standard errors are obtained by taking the average of the mean 
standard errors, averaging across parameter standard errors. The tables indicate 
that standard errors tend to rise as the number of instruments falls, though this 
is confounded by the fact that with 152 and 292 instruments the weight matrix 
is not symmetric positive definite and a generalised inverse is applied, so the 
standard errors cannot be guaranteed to be accurate. Compared with the uncor-
rected classic two-step standard errors, the corrections due to Windmeijer and 
the HKL correction are associated with larger standard errors. Tables  4 and 5 

Table 4  Mean standard errors: 
�2
�
= 0.8 �2

�
= 0.2

Param. Number of instruments

292 152 40 19

� 0.0047 0.0042 0.0057 0.0061
� 0.0115 0.0086 0.0104 0.0111
�1 0.0299 0.0243 0.0277 0.0286
�2 0.0300 0.0238 0.0271 0.0284
�3 0.0563 0.0322 0.0391 0.0414
�4 0.0560 0.0324 0.0392 0.0416
� 0.0106 0.0087 0.0115 0.0157
Classic two-step 0.0170 0.0082 0.0188 0.0230
Windmeijer 0.0362 0.0249 0.0261 0.0261
HKL 0.0321 0.0244 0.0239 0.0250

Table 5  Mean standard errors: 
�2
�
= 0.2  �2

�
= 0.8

Param. Number of instruments

292 152 40 19

� 0.0074 0.0065 0.0089 0.0094
� 0.0187 0.0141 0.0167 0.0185
�1 0.0495 0.0395 0.0457 0.0475
�2 0.0499 0.0400 0.0457 0.0473
�3 0.0915 0.0523 0.0637 0.0683
�4 0.0937 0.0537 0.0653 0.0694
� 0.0175 0.0140 0.0182 0.0258
Classic two-step 0.0278 0.0135 0.0309 0.0378
Windmeijer 0.0596 0.0408 0.0431 0.0435
HKL 0.0532 0.0400 0.0393 0.0413
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also indicate that standard errors are higher when remainder variance is high and 
individual variance is low.

Tables  6 and 7 summarise diagnostic indicators in terms of means taken 
across the 100 Monte Carlo simulations, again broken down by the number 
of instruments and error distribution assumptions. A prominent feature is the 
downward bias in the Sargan–Hansen J statistic for overidentifying restrictions 
with a large number of instruments. The J test statistics reflect the problem 
of low power associated with too many moments conditions. This leads to an 
implausibly high mean p-value of 1.000 (Anderson and Sørenson 1996, Bowsher 
2002, Roodman 2009b). Reducing from 292 to 152 instruments is insufficient 
to reduce the mean J test statistic much below 1.0. While this is an unreliable 
indicator of instrument validity, the z-ratios for error serial correlation point to 
significant negative first order correlation ( m1 ) and effectively zero second-order 
serial correlation ( m2 ) in the first differenced residuals (see Arellano and Bond 
1991) when referred to the N(0,1) distribution. This points clearly to consistent 
estimates. The tables of diagnostics also show that the estimates obtained are 
dynamically stable, as measured by the maximum absolute eigenvalue of  �̃.

Table 6  Mean value of diagnostics:�2
�
= 0.8�2

�
= 0.2

Statistic Number of instruments

292 152 40 19

First order m1 (z ratio) − 7.2713 − 7.2372 − 7.2344 − 7.2327
Second order m2 (z ratio) − 0.0845 − 0.1206 − 0.1629 − 0.1501
Dynamic stability, stationarity Max abs e’value of �̃ 0.8665 0.9151 0.8682 0.8696
Instrument validity Sargan–Hansen J statistic 94.3761 93.3202 31.8091 11.4474

p-value 1 0.9996 0.5352 0.5330
d. of freedom 285 145 33 12

Table 7  Mean value of diagnostics:�2
�
= 0.2�2

�
= 0.8

Statistic Number of instruments

292 152 40 19

First order m1(z ratio) − 7.2012 − 7.1616 − 7.1501 − 7.1285
Second order m2(z ratio) − 0.0150 − 0.0088 − 0.0327 − 0.0297
Dynamic stability, stationarity Max abs e’value of �̃ 0.8626 0.8646 0.8672 0.8681
Instrument validity Sargan–Hansen J statistic 94.0651 93.4647 32.0978 12.3537

p-value 1 0.9996 0.5245 0.4618
d. of freedom 285 145 33 12
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5.3  Results with non‑spatial data

Thus far, we have reduced instrument proliferation using collapsing combined with 
synthetic instruments derived from the N by N contiguity matrix �N . In this section, 
we explore the efficacy of this approach in the absence of spatial effects. Consider 
therefore the DGP as in Eq.  (13) but with � = 0, � = 0. There are four estimators 
under consideration. First, full HENR instruments based on endogenous varia-
bles yit , x̃3it and x̃4it , with IV-style instruments for the exogenous x1it and x2it gives 
3(T − 2)(T − 1)/2 + 2 = 110 instruments. Secondly, full HENR instruments based on 
yit , with synthetic instruments for x̃3it and x̃4it which become IV-style instruments 
alongside x1it and x2it gives (T − 2)(T − 1)/2 + 4 = 40 instruments. Thirdly, collapsing 
the HENR instruments based on yit plus the 4 above-mentioned IV-style instruments 

Table 8  Mean parameter 
estimates: �2

�
= 0.8�2

�
= 0.2

True value Number of instruments

110 40 26 12

� = 0.2 0.1967 0.1981 0.2 0.1999
�1 = 1 0.8703 0.8669 0.8766 0.8683
�2 = 0.5 0.5449 0.5452 0.5419 0.5439
�3 = 0.75 0.848 0.8499 0.8322 0.8529
�4 = 1 1.0891 1.0866 1.0915 1.0898

Table 9  Mean parameter 
estimates: �2

�
= 0.2�2

�
= 0.8

True value Number of instruments

110 40 26 12

� = 0.2 0.1962 0.2001 0.2009 0.2025
�1 = 1 0.9585 0.9462 0.9656 0.9616
�2 = 0.5 0.5069 0.5118 0.5058 0.5071
�3 = 0.75 0.7854 0.7827 0.7693 0.7753
�4 = 1 1.0338 1.0357 1.0404 1.0322

Table 10  Mean parameter bias and root mean squared error (RMSE) for selected data generated pro-
cesses (DGP)

DGP number of instruments

110 40 26 12

Mean abs param. bias �2

�
= 0.8 �2

�
= 0.2 0.0593 0.0733 0.0551 0.0737

�2

�
= 0.2 �2

�
= 0.8 0.0103 0.0268 0.0202 0.0211

Mean RMSE �2

�
= 0.8 �2

�
= 0.2 0.0873 0.0856 0.1229 0.0859

�2

�
= 0.2 �2

�
= 0.8 0.0285 0.0728 0.1672 0.0721
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gives (T − 2) + 4 = 12 instruments. Fourthly, collapsing the HENR instruments based 
on yit x̃3it and x̃4it gives 3(T − 2) + 2 = 26 instruments.

Data are generated by again randomly sampling from a multivari-
ate normal distribution as in Eq.  (15). In this case correlation between �1 and 

Table 11  Mean standard errors: 
�2
�
= 0.8�2

�
= 0.2

Parm. Number of instruments

110 40 26 12

� 0.0086 0.0102 0.0122 0.0113
�1 0.0470 0.0439 0.1237 0.0480
�2 0.0251 0.0278 0.0467 0.0296
�3 0.0531 0.0442 0.1490 0.0481
�4 0.0585 0.0489 0.1705 0.0541
Classic two-step 0.0127 0.0277 0.0750 0.0364
Windmeijer 0.0462 0.0400 0.0972 0.0395
HKL 0.0565 0.0372 0.1290 0.0387

Table 12  Mean standard errors: 
�2
�
= 0.2  �2

�
= 0.8

Parm. Number of instruments

110 40 26 12

� 0.0047 0.0157 0.0192 0.0176
�1 0.0115 0.0758 0.2059 0.0839
�2 0.0299 0.0478 0.0777 0.0507
�3 0.0300 0.0745 0.2595 0.0831
�4 0.0563 0.0817 0.2774 0.0922
Classic two-step 0.0170 0.0470 0.1295 0.0626
Windmeijer 0.0362 0.0674 0.1607 0.0677
HKL 0.0321 0.0628 0.2136 0.0662

Table 13  Mean value of diagnostics:�2
�
= 0.8�2

�
= 0.2

Statistic Number of instruments

110 40 26 12

First order m1

(z ratio)
− 7.1597 − 7.1555 − 6.6186 − 7.1350

Second order m2 (z ratio) − 0.0872 − 0.1406 − 0.0521 − 0.1160
Instrument validity Sargan–Hansen J statistic 95.2712 36.0049 20.0380 6.7002

p-value 0.7372 0.4456 0.5337 0.5024
d. of freedom 105 35 21 7
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endogenous regressors �̃3 and �̃4 is introduced via p5 = 0.4 and p6 = 0.5 . Also 
p1 = 0.5, p2 = 0.75, p3 = 0.25 and p4 = 0.3.

Tables 8, 9, 10, 11, 12, 13 and 14 summarise the outcomes over a range of simu-
lation set-ups. Broadly stated, there is minimal impact resulting from reducing the 
number of instruments, apart from the usual effects of eliminating bias in the Sargan 
Hansen J test static and in the parameter standard errors. However, the fact that esti-
mates of �1 are persistently downwardly biased, and �2 , �3 and �4 upwardly biased is 
worthy of mention. Also, Table 10 indicates that bias tends to be larger with greater 
individual heterogeneity, but no obvious change in bias and RMSE occurs with vary-
ing numbers of instruments. In contrast, as shown in Tables 11 and 12, there is a clear 
increase in parameter standard errors as the number of instruments diminishes. Also, 
comparing Tables 11 and 12, standard errors tend to be larger as remainder error vari-
ance increases and individual heterogeneity reduces. Again, the corrected standard 
errors are invariably larger than the classic two-step standard errors. Tables 13 and 14 
highlight the usual downward bias in the Sargan–Hansen J statistic, reflecting the rule-
of-thumb that the J statistic should be more reliable when the number of instruments is 
less than the number of individuals ( N = 100).

5.4  Results for Spatial Durbin specification with dense connectivity matrix

The data generating process for spatial data implemented a row-normalised ‘five ahead 
and five behind’ matrix �N for the spatial lag of the dependent variable and for instru-
ments. In this section, we replace this with a Lehmer matrix, which is a symmetric and 
positive definite matrix �∗

N
(i.e.w∗

ij
, with i = 1, ...,N, j = 1, ...,N) in which
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Table 14  Mean value of diagnostics:�2
�
= 0.2�2

�
= 0.8

Statistic Number of instruments

110 40 26 12

First order m1 (z ratio) − 7.1827 − 7.1956 − 6.5890 − 7.1738
Second order m2 (z ratio) − 0.0720 − 0.0700 − 0.0339 − 0.0558
Instrument validity Sargan–Hansen J statistic 95.6816 34.8609 19.8630 6.8066

p-value 0.7280 0.4923 0.5440 0.5071
d. of freedom 105 35 21 7
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�∗

N
 is a dense matrix with cell values diminishing away from the main diagonal.�N 

is �∗

N
 with a main diagonal by zeros, then row normalised, as illustrated in Fig. 1. As 

with the other �N the row and column sums are uniformly bounded.
To create added diversity, an attempt is made to approximate the reality of many 

analytical situations in which all variables, denoted by x̃1it, x̃2it, x̃3it and x̃4it , are endog-
enous. Also, we include spatial lags of explanatory variables to give a spatial Durbin 
specification (see Halleck Vega and Elhorst 2015, for discussion). Inclusion of spatial 
lags Wx̃1it,Wx̃2it,Wx̃3it,Wx̃4it with corresponding parameters  �5, �6, �7 and �8 , gives

Again the variables are generated from a multivariate Gaussian distribution, in this 
case allowing each endogenous variable to depend on a separate error process, as might 
occur in reality with diverse sources of endogeneity. Thus, �̃1 correlates with �̃�1 via p7 
in Eq. (18), p8 is the �̃2 , �̃�2 correlation, p2 is the �̃3 , �̃�3 correlation and p3 is the correla-
tion between �̃4 and �̃�4 . The correlation between the �̃� s and � is p1 , and the correlations 
between the regressors are p4, p5 and p6.

(16)
w∗

ij
= i∕j, j ≥ i

w∗

ij
= j∕i, j < i

(17)

yit = 𝛾yit−1 + 𝜌

N
∑

j=1

wijyit + 𝜃

N
∑

j=1

wijyit−1 + 𝛽1x̃1it + 𝛽2x̃2it + 𝛽3x̃3it + 𝛽4x̃4it...

+𝛽5

N
∑

j=1

wijx̃1it + 𝛽6

N
∑

j=1

wijx̃2it + 𝛽7

N
∑

j=1

wijx̃3it + 𝛽8

N
∑

j=1

wijx̃4it + 𝜀it;i = 1, ...,N, t = 1, ..., T

𝜀it = 𝜇i + 𝜈it

Fig. 1  Based on Lehmer matrix
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Variables entering Eq.  (17) are generated on the basis of 
p1 = 0.5, p2 = 0.75, p3 = 0.25 , p4 = 0.3 , p5 = 0.4 , p6 = 0.5,p7 = 0.8 and p8 = 0.2 . 
Additionally, data are generated on the basis of p1 = 0.75, p2 = 0.75, p3 = 0.25 , 
p4 = −0.5 , p5 = −0.2 , p6 = 0.75 , p7 = 0.8 and p8 = 0.3. In this case, the closer cor-
relation between � and the �̃� s suggests increased endogeneity.

The true parameter values utilised in Eq. (17) are � = 0.3, � = 0.2, � = −0.4 and 
�1 = 4, �2 = 3, �3 = 2 , �4 = 1, �5 = 1, �6 = 2 , �7 = 3 and �8 = 4 . Consider first an 
estimator which applies synthetic instruments, based on �N , to the endogenous 
variables x̃1it, x̃2it, x̃3it, x̃4it their spatial lags Wx̃1it,Wx̃2it,Wx̃3it,Wx̃4it . Combining 
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Table 15  Mean parameter estimates: spatial Durbin and simple specifications

n.b. italics denote estimates from simple specification

True value �2

�
= 0.8, �2

�
= 0.2, p1 = 0.5 etc �2

�
= 0.8, �2

�
= 0.2, p1 = 0.75 etc

�2
�
= 0.2, p1 = 0.5 etc

Number of instruments Number of instruments

152(148) 82 (78) 26(22) 152(148) 82(78) (78) (78) (78) 26(22)

� = 0.3 0.2999 0.3004 0.3016 0.2987 0.2992 0.2994
0.29900 0.2990 0.2993 0.2996 0.2998 0.3011

� = 0.2 0.2518 0.2649 0.2584 0.2859 0.2917 0.266
0.2073 0.2078 0.2064 0.2258 0.2223 0.2257

�1 = 4 4.064 4.0643 4.0602 4.3972 4.3816 4.3991
4.059 4.0668 4.048 4.3896 4.3931 4.3994

�2 = 3 2.9766 2.971 2.9662 3.2347 3.2279 3.241
2.9789 2.9767 2.9856 3.2246 3.2212 3.2337

�3 = 2 2.0186 2.0211 2.0167 2.1543 2.1505 2.157
2.035 2.035 2.0409 2.1637 2.1639 2.1688

�4 = 1 0.9682 0.9729 0.9754 0.7222 0.7361 0.7161
0.9746 0.9689 0.9829 0.7309 0.727 0.7352

�5 = 1 0.6264 0.5917 0.6783 0.44 0.3782 0.6678

�6 = 2 1.749 1.6404 1.6552 1.463 1.3879 1.6064

�7 = 3 2.7628 2.6768 2.7227 2.5413 2.4926 2.6283

�8 = 4 3.7552 3.6327 3.6477 3.6171 3.5805 3.611

� =− 0.4 − 0.3992 − 0.3982 − 0.3974 − 0.3871 − 0.387 − 0.3898
− 0.4018 − 0.4033 − 0.4043 − 0.4000 − 0.4006 − 0.3959
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these eight IV-style instruments with HENR instruments from yit,Wyit,Wyit−1 and 
W2yit−1 , gives s 4(T − 1)(T − 2)/2 + 8 = 152 instrumental variables. Secondly, apply-
ing synthetic instruments to all variables except yit and its spatial lag Wyit , results 
in (T − 1)(T − 2) + 10 = 82 instruments. Collapsing these latter two HENR sets of 
instruments gives 2(T − 2) + 10 = 26 instruments. A simple comparator assumes 
�5 = 0, �6 = 0, �7 = 0 and �8 = 0 , so that the spatial lags and their respective instru-
ments are eliminated, leaving 148, 78 and 22 instruments, respectively.

Tables 15, 16, 17, 18, 19, 20, 21, 22 and 23 give the mean outcomes, broken 
down by number of instruments, the values assigned to �2

�
 and �2

�
 and the values 

of p1, ..., p8 denoted either by p1 = 0.5 etc or p1 = 0.75 etc . The italicised num-
bers are the outcomes for a simple comparator. The salient aspects are the usual 
bias with many instruments in the Sargan–Hansen J statistic and parameter stand-
ard errors. For the spatial Durbin specification, some parameter estimation bias 
is apparent in Tables  15 and 16; notably, the � and � estimates are persistently 
upwardly biased regardless of the number of instruments or error assumptions, 
and likewise the spatial lag parameters �5, �6, �7 and �8 are negatively biased.11 

Table 16  Mean parameter estimates: spatial Durbin and simple specifications

n.b. italics denote estimates from simple specification

True value �2
�
= 0.2, �2

�
= 0.8, p1 = 0.5 etc �2

�
= 0.2, �2

�
= 0.8, p1 = 0.75 etc

�2
�
= 0.2, p1 = 0.5 etc

Number of instruments Number of instruments

152(148) 82 (78) 26(22) 152(148) 82 (78) 26(22)

� = 0.3 0.2999 0.3011 0.3019 0.2977 0.298 0.2986
0.2987 0.2988 0.2995 0.2989 0.2993 0.3004

� = 0.2 0.2875 0.2959 0.2839 0.3337 0.3533 0.3209
0.2094 0.2113 0.2096 0.234 0.2349 0.2351

�1 = 4 4.0391 4.0464 4.0506 4.3781 4.3828 4.3874
4.0566 4.0636 4.0629 4.3664 4.3845 4.3898

�2 = 3 2.9811 2.9867 2.983 3.2161 3.219 3.2151
2.9735 2.9647 2.9657 3.2036 3.2147 3.2115

�3 = 2 1.9893 1.9955 1.993 2.1294 2.1344 2.137
2.0006 1.9974 2.0034 2.1282 2.133 2.14

�4 = 1 0.9736 0.9682 0.9666 0.713 0.7152 0.7015
0.9646 0.9636 0.9577 0.7341 0.7225 0.7173

�5 = 1 0.4515 0.3572 0.4135 0.2404 0.104 0.3
�6 = 2 1.5375 1.5065 1.5926 1.2748 1.1367 1.2407
�7 = 3 2.5685 2.5061 2.5962 2.2725 2.1484 2.3076
�8 = 4 3.6557 3.489 3.4948 3.3835 3.2878 3.4922
� =− 0.4 − 0.3914 − 0.3958 − 0.3962 − 0.3844 − 0.3819 − 0.3878

− 0.3965 − 0.3973 − 0.397 − 0.4032 − 0.401 − 0.3984

11 Again, we do not consider direct, indirect and total short- and long-run effects.
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Table 17  Mean parameter bias and root mean squared error (RMSE) for selected data generated pro-
cesses (DGP): spatial Durbin and simple specifications

n.b. italics denote estimates from simple specification

DGP p1 = 0.5 etc Number of instruments

152 (148) 82 (78) 26 (22)

Mean abs param. bias �2

�
= 0.8�2

�
= 0.2 0.1179

0.0215
0.1515
0.0240

0.1358
0.0188

�2

�
= 0.2�2

�
= 0.8 0.1798

0.0190
0.2126
0.0219

0.1910
0.0223

Mean RMSE �2

�
= 0.8�2

�
= 0.2 0.2726

0.0491
0.3170
0.05573

0.3553
0.0620

�2

�
= 0.2 �2

�
= 0.8 0.3404

0.0577
0.4152
0.0635

0.4691
0.0744

DGP p1 = 0.75 etc 152 (148) 82 (78) 26 (22)

Mean abs param. bias �2

�
= 0.8�2

�
= 0.2 0.2821

0.1533
0.2991
0.1535

0.2404
0.1568

�2

�
= 0.2�2

�
= 0.8 0.3628

0.1432
0.4107
0.1495

0.3484
0.1516

Mean RMSE �2

�
= 0.8�2

�
= 0.2 0.4312

0.1721
0.4608
0.1755

0.5154
0.1834

�2

�
= 0.2 �2

�
= 0.8 0.5291

0.1694
0.1694

0.5745
0.1814

0.6179
0.1905

Table 18  Mean standard errors: spatial Durbin specification

True value �2
�
= 0.8,�2

�
= 0.2, p1 = 0.5 etc �2

�
= 0.8, �2

�
= 0.2, p1 = 0.75 etc

�2
�
= 0.2, p1 = 0.5 etc

�2
�
= 0.2, p1 = 0.5 etc

Number of instruments Number of instruments

152 82 26 152 82 26

� 0.0036 0.0038 0.0049 0.0057 0.0062 0.0079
� 0.0568 0.0658 0.0967 0.0745 0.0851 0.1322
�1 0.0577 0.0706 0.0976 0.0825 0.1004 0.1473
�2 0.0424 0.0549 0.0724 0.0586 0.0699 0.0981
�3 0.0453 0.0521 0.0699 0.0462 0.0540 0.0712
�4 0.0505 0.0584 0.0794 0.0743 0.0897 0.1278
�5 0.4349 0.5095 0.7755 0.6180 0.7042 1.0777
�6 0.3883 0.4597 0.6835 0.5288 0.6138 0.9384
�7 0.3946 0.4513 0.6777 0.4845 0.5565 0.8609
�8 0.3865 0.4559 0.6915 0.5161 0.5871 0.9099
� 0.0170 0.0184 0.0251 0.0234 0.0260 0.0350
Classic two-step 0.0463 0.0915 0.2644 0.0603 0.1193 0.3535
Windmeijer 0.2322 0.2592 0.3227 0.3090 0.3393 0.4360
HKL 0.2336 0.2494 0.3058 0.3160 0.3304 0.4122
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In contrast, the bias for the comparator is negligible, and since everything else 
is the same, it appears that the primary cause of the larger bias is the presence 
of spatial lags. For the spatial Durbin specification, Table 17 shows that on the 
whole bias tends to increase as the number of instruments decreases. It is also 
larger as endogeneity increases, with p1 going from 0.5 to 0.75. Additionally, it 
increases as error variance goes from �2

�
= 0.2 to �2

�
= 0.8 . Mean RMSE follows 

a similar pattern. For the simple comparator, there are similar traits, but the bias 

Table 19  Mean standard errors: spatial Durbin specification

True value �2
�
= 0.2,�2

�
= 0.8, p1 = 0.5 etc �2

�
= 0.2, �2

�
= 0.8, p1 = 0.75etc

�2
�
= 0.2, p1 = 0.5 etc

�2
�
= 0.2, p1 = 0.5 etc

Number of instruments Number of instruments

152 82 26 152 82 26

� 0.0045 0.0049 0.0062 0.0068 0.0075 0.0094
� 0.0737 0.0828 0.1273 0.0878 0.1033 0.1556
�1 0.0737 0.0923 0.1247 0.1019 0.1301 0.1806
�2 0.0555 0.0708 0.0910 0.0719 0.0882 0.1208
�3 0.0587 0.0706 0.0915 0.0563 0.0665 0.0838
�4 0.0654 0.0750 0.0992 0.0910 0.1150 0.1585
�5 0.5729 0.6397 0.9592 0.7442 0.8803 1.3031
�6 0.4935 0.5926 0.9088 0.6301 0.7446 1.0907
�7 0.5116 0.5787 0.8672 0.5728 0.6733 1.0469
�8 0.5039 0.5607 0.8676 0.6055 0.7115 1.0681
� 0.0212 0.0241 0.0328 0.0292 0.0331 0.0445
Classic two-step 0.0585 0.1145 0.3354 0.0720 0.1441 0.4236
Windmeijer 0.3011 0.3286 0.4137 0.3704 0.4176 0.5180
HKL 0.3044 0.3184 0.3896 0.3751 0.4074 0.4935

Table 20  Spatial Durbin specification mean value of diagnostics �2
�
= 0.8�2

�
= 0.2, p1 = 0.5etc

Statistic Number of instruments

152 82 26

Error serial correlation m1(z ratio) − 7.1784 − 7.2143 − 7.1769
cor m2(z ratio) − 0.0692 − 0.0903 − 0.0677
Dynamic stability, stationarity Max abs e’value of �̃ 0.3290 0.3290 0.3303
Instrument validity Sargan–Hansen J statistic 88.5696 69.1083 15.0208

p-value 0.9997 0.5368 0.4904
d. of freedom 141 71 15
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and RMSE are always much smaller. Tables 18 and 19 show that for the spatial 
Durbin specification we again see that more instruments are associated with extra 
downward bias in standard errors and therefore upward bias in t-ratios. Down-
ward bias is also evident from comparing the classic two-step standard errors and 
the corrected standard errors due to Windmeijer and HKL. The spatial Durbin 
diagnostics in Tables 20, 21, 22, 23 all point to the viability of the instruments, 

Table 21  Spatial Durbin specification mean value of diagnostics �2
�
= 0.2�2

�
= 0.8, p1 = 0.5 etc

Statistic Number of instruments

152 82 26

Error serial correlation m1 (z ratio) − 7.2127 − 7.1755 − 7.1484
cor. m2 (z ratio) − 0.0072 − 0.2095 − 0.2270
Dynamic stability, stationarity Max abs e’value of �̃ 0.3273 0.3286 0.3298
Instrument validity Sargan–Hansen J statistic 88.0099 71.3155 15.8747

p-value 0.9997 0.4739 0.4430
d. of freedom 141 71 15

Table 22  Spatial Durbin specification mean value of diagnostics �2
�
= 0.8�2

�
= 0.2, p1 = 0.75 etc

Statistic Number of instruments

152 82 26

Error serial correlation m1 (z ratio) − 7.2585 − 7.2755 − 7.2315
cor. m2 (z ratio) − 0.0953 − 0.1064 − 0.1200
Dynamic stability, stationarity Max abs e’value of �̃ 0.3258 0.3261 0.3273
Instrument validity Sargan–Hansen J statistic 88.7034 69.5378 15.4282

p-value 0.9997 0.5271 0.4563
d. of freedom 141 71 15

Table 23  Spatial Durbin specification mean value of diagnostics �2
�
= 0.2�2

�
= 0.8, p1 = 0.75 etc

Statistic Number of instruments

152 82 26

Error serial correlation m1 (z ratio) − 7.1955 − 7.1984 − 7.1533
cor. m2 (z ratio) − 0.2064 − 0.2103 − 0.2385
Dynamic stability, stationarity Max abs e’value of �̃ 0.3232 0.3235 0.3279
Instrument validity Sargan–Hansen J statistic 88.9886 71.8841 14.2590

p-value 0.9996 0.4554 0.5326
d. of freedom 141 71 15
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according to the evidence provided by the m2 statistic, although again the J test 
statistic is severely undersized when there are a large number of instruments.

6  Example with real data

Fingleton et al. (2020) provides a good example where the application of synthetic 
instruments produces valuable information regarding the reality of causal effects. 
The data analysed are taken from successive UK censuses carried out in 1971, 1981, 
1991, 2001 and 2011 and relate to employment across each of 760 small areas of 
Greater London known as wards. For each ward and each census, data are avail-
able on the level of employment, and the number of people born in Ireland, India, 
Pakistan, mainland Europe, the UK, and the rest of the world (i.e. elsewhere), so-
called country-of-birth cohorts. Thus, for each ward and each census year there are 
six country-of-birth cohorts. Additionally, data are available on the location quo-
tient12 of the unemployment rate. Therefore, there are seven possibly endogenous 
right hand side explanatory variables. These data, in logarithmic form, are analysed 
via a dynamic spatial panel data model in the spirit of Eqs. (1) and (2), in which log 
employment is the dependent variable and the other variables are explanatory vari-
ables, and employment depends on the level of employment in the previous census, 
the level of employment in nearby (contiguous wards), and the level of employment 
in contiguous wards in the previous census. Additionally, unlike Fingleton et  al. 
(2020), year dummies are introduced, since they are statistically significant. The 
data only allow two, because of the effect of lagging and differencing which leaves 
only three years, and one year dummy has to be dropped to avoid perfect collinear-
ity. The choice of dummy years has no effect on the estimates obtained, apart from 
the dummy variable parameter estimates. Also, time-invariant heterogeneity across 
wards is eliminated by differencing. The analysis employs a row-standardised conti-
guity matrix �N in order to capture spatial spillover effects. Additionally, following 
Baltagi et  al. (2019), spatial error dependence is represented by a spatial moving 
average (SMA) error process. As they explain, this should control for omitted spatial 

Table 24  Model diagnostics statistic

Error serial correlation m1 (z ratio) − 2.8477
cor. m2 (z ratio) *******
Dynamic stability, stationarity Max abs e’value of �̃ 0.6148
Instrument validity Sargan–Hansen J statistic 9.5946

p-value 0.4768
d. of freedom 10

12 The location quotient is defined as the share of the economically active that are unemployed in ward i 
at time t divided by the share at time t in Greater London as a whole.
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lags of regressors typical of the spatial Durbin specification. With SMA errors, the 
negative coefficient for the spatial error parameter  � indicates positive spatial error 
dependence.

Fingleton et al. (2020) consider two scenarios: one is that the explanatory vari-
ables are exogenous, and the other assumes that the regressors are endogenous, with 
instruments controlling for endogeneity inducing effects, for example, due to reverse 
causation where an increase in the level of employment, the dependent variable, 
causes country-of-birth numbers to increase, maybe resulting from inward migration 
attracted by employment opportunities. Eliminating this kind of feedback effect is 
likely to provide evidence of causal impacts, isolating the effect of an increase in a 
country-of-birth cohort on the level of employment. However, their conclusions are 
cautionary because of the short time period considered. Given that the data allow 
only T = 4 effective census years, with 1971 providing the lagged data, this means 
that one is unable to calculate the Arellano and Bond (1991)  m2 test statistic for 
zero second order serial correlation in the first differenced residuals, which is only 
defined for T >= 5.

Applying synthetic instruments involves just 22 instruments and leads to a Sar-
gan–Hansen J test that does support an assumption of consistent estimation. The 
instrument set includes 14 IV-style synthetic instruments derived from the seven 
presumably endogenous explanatory variables and their spatial lags, plus eight col-
lapsed HENR instruments based on lagged values of yit,Wyit,Wyit−1 and W2yit−1 , 
giving 22 instruments in total. The synthetic instruments are based on the eigen-
vectors �i, i = 1, ...,N deriving from the matrix �N and the symmetric contiguity 
matrix �N . Given the large number of eigenvectors (N = 760) , a quite stringent rule 

Table 25  Parameter estimates using synthetic instruments

SMA error parameter � null reference distribution obtained from 100 Bootstrap reps.
sea = classic two-step;  seb = Windmeijer corrected;  sec = doubly corrected (HKL)

Variable Param Estimate sea t-ratio seb t- ratio sec t- ratio

y(− 1) γ 0.42 0.235 1.78 0.293 1.43 0.382 1.1
w*y ρ 0.413 0.173 2.39 0.199 2.07 0.263 1.57
Irish �1 − 0.354 0.094 − 3.79 0.101 − 3.52 0.136 − 2.62
Indian �2 0.158 0.072 2.19 0.080 1.97 0.113 1.4
Pakistani �3 − 0.085 0.030 − 2.86 0.033 − 2.56 0.040 − 2.1
European �4 − 0.027 0.063 − 0.43 0.063 − 0.43 0.079 − 0.34
RoW �5 0.22 0.052 4.22 0.055 3.96 0.070 3.12
UK_born �6 0.588 0.206 2.86 0.237 2.48 0.324 1.81
ln_unemp_LQ �7 − 0.204 0.091 − 2.24 0.099 − 2.07 0.136 − 1.51
Year dummy �8 0.176 0.0444 3.96 0.0443 3.96 0.0511 3.44
Year dummy �9 0.049 0.0236 2.1 0.0224 2.21 0.0252 1.96
w*y(− 1) θ − 0.059 0.2982 − 0.2 0.3578 − 0.16 0.4607 − 0.13
SMA error � − 0.3266 0.0480 − 6.791

�2

�
0.0317

�2

�
0.0060
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is applied to rule out spurious correlation between eigenvectors and each endoge-
nous variable, with a t-ratio of 2.58 applied, which is equivalent to a two-sided p 
value = 1%. The estimates are given in Tables 24 and 25.

The diagnostics in Table  24 indicate acceptable model estimates. The maxi-
mum characteristic root of �̃ points to a dynamically stable and stationary model. 
Moreover, there is evidence from Sargan–Hansen’s J that the 10 overidentifying 
restrictions are valid, indicating that endogeneity bias has been purged, estimates 
are consistent, and the effects are interpreted as causal.

The interpretation of Table 25 reflects to some extent the analysis of Fingleton 
et  al. (2020). The signs of the parameter estimates are not dissimilar, although 
the presence of the year dummies in the current specification has an impact; for 
example, the estimate of the spatial lag parameter � is smaller though still sig-
nificantly different from zero (see Lee and Yu 2010). Some estimates are larger 
and although we have larger classic standard errors, t-ratios are larger and pick 
out some significant effects. On the basis of the uncorrected standard errors, the 
significant variables are Irish, Indian, UK, Pakistani and rest of the world coun-
tries-of-birth, plus a significant negative effect due to the unemployment location 
quotient and significant positive spatial spillovers from log employment ( � ) and 
residuals ( � ) in contiguous districts. A 1% increase in Indian-born residents evi-
dently causes an approximately 0.16% increase in employment. For UK-born resi-
dents, the estimate is a 0.6% increase, and for migrants from the rest of the world, 
we estimate a 0.22% increase. In contrast, a 1% increase in the Irish-born popula-
tion evidently causes a 0.35% reduction in employment, and for Pakistani-born 
residents there is a 0.085% reduction. While we might infer causality due to the 
avoidance of endogeneity-bias in our estimation, but caution is required, partly 
because these conclusions are based on uncorrected standard errors. As shown in 
Table 25, correction due to Windmeijer and HKL does increase standard errors, 
but the significant effects persist.

An additional consideration is the fact that the parameter point estimates are 
not the true elasticities as a result of the significant spatial spillover effect ( � ) 
which magnifies the initial parameter point estimates. Accordingly, the true elas-
ticity for Indian-born residents (variable x2 ) is derived from

which is an N by N matrix of partial derivatives. From this, a simplified aver-
age measure of the total effect of a 1% increase in the Indian-born population 
at time t is given by the mean column sum of 𝛽2�−1

N
 , which is equal to 0.269%. 

For migrants born in the rest of the world, the elasticity is 0.374%. By compari-
son, the true elasticity for the UK-born cohort is 1.01%. On the negative side, 
the elasticity for Pakistani-born residents is − 0.144% and for the Irish-born it is 
− 0.603%.

Extending beyond time t  , assuming dynamic stability and stationarity, elastici-
ties converge in the long-run to steady-state levels given by

(19)
[

dy

dx12
...

dy

dxN2

]

t

= 𝛽2�
−1
N
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The total long-run effect of a 1% increase in the Indian-born population is 
given by the mean column sum of Eq. (20) with k = 2 , which is equal to 0.699%. 
For migrants born in the rest of the world, the elasticity is 0.971%. By compari-
son, the true elasticity for the UK-born cohort is 2.599%. On the negative side, 
the elasticity for Pakistani-born residents is − 0.374% and for the Irish-born it is 
− 1.567%.

7  Conclusion

One of the main problems in analysing dynamic (spatial) panel data estimated by 
GMM with endogenous explanatory variables is the difficulty in finding appropri-
ate instruments. A standard approach is to use instruments that are internal to the 
model, lagging the regressors appropriately in order to satisfy the moments condi-
tions which require instruments to be orthogonal to differenced errors. The default 
approach using HENR instrumentation typically generates a large number of internal 
instruments, as could using multiple spatial lags as suggested in the spatial econo-
metrics literature. But instrument proliferation makes the Hansen–Sargan J test sta-
tistic severely undersized and possessing low power and therefore unreliable as an 
indicator of estimation consistency. There are several options available to reduce the 
problem, and this paper proposes a new one, which is to extend the use of synthetic 
instruments as advocated by Le Gallo and Páez (2013) for cross-sectional data to 
dynamic spatial panel data modelling. The key to the approach is a set of exogenous 
instruments derived from a connectivity matrix which is not causally related to the 
data. Nevertheless, the synthetic instruments thus created tend to be strongly corre-
lated with endogenous regressors and thus can remedy the problem of weak instru-
ments. Using Monte Carlo simulation, the paper provides evidence that collapsing 
and also applying synthetic instruments, and as a result significantly reducing the 
number of instruments, reduces problems associated with instrument overabundance 
while producing, on the whole, plausible parameter estimates, although there is evi-
dence of some parameter estimation bias. An important additional problem is the 
downward bias in parameter standard error estimates, which can result in serious 
upward bias in t-ratios, although collapsing and the use of synthetic instruments 
causes this problem to greatly diminish. The results of Monte Carlo simulation are 
of course conditional on assumptions made, so one cannot be too dogmatic regard-
ing the generality of the conclusions reached. However, application to real data 
given in Fingleton et al. (2020) produces plausible outcomes and new insights which 
put the analysis provided in that paper on a stronger inferential footing.

(20)
[

dy

dx1k
...

dy

dxNk

]

=
[

−�N + �N

]−1(

𝛽k�N
)
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Appendix

Computing

 (i) Data
   The full data set for each simulation comprises 100 regions and 10 time 

periods. Table 26 gives a sample of data for 10 periods.
   In Table 26, yr denotes time period and regee denotes region. The depend-

ent variable is y_it, with regressors x_1it, x_2it, x_3it, x_4it and their spatial 
lags are W_x_1,W_x_2,W_x_3 and W_x_4. The temporal lag of y is lag_y, 
the spatial lag of y is Wy, the spatial lag of the temporal lag is Wy_ and the 
spatial lag of the spatial lag of the temporal lag is WWy_.

   zz_1 is the synthetic instrument for endogenous variable x_it1, and W_zz_1 
is the spatial lag of zz_1. The synthetic instruments for x_it2, x_it3 and x_it4 
and their spatial lags zz_2, zz_3, zz_4, W_zz_2, W_zz_3,and W_zz_4 are 
omitted to save space. zz_ev1, zz_ev2 and zz_ev3 are the synthetic instruments 
for Wy, Wy_ and WWy_.

 (ii) Stata code

Table 26  Sample of data used in Monte Carlo simulations

Year regee y_it x_1it x_2it x_3it x_4it W_x_1 W_x_2 W_x_3 W_x_4

1 1 − 0.75 2.01 − 0.03 − 2.60 1.54 0.14 0.17 − 0.38 0.08
2 1 − 1.36 1.58 − 0.12 − 2.45 1.31 0.27 − 0.09 − 0.06 0.02
3 1 − 0.41 1.29 − 0.82 − 1.17 1.06 0.16 − 0.25 0.12 − 0.03
4 1 − 0.29 3.01 − 2.01 − 0.45 0.48 0.02 0.14 0.09 − 0.21
5 1 0.75 3.49 − 1.23 − 1.04 0.94 0.01 − 0.05 − 0.14 0.12
6 1 0.02 1.61 − 0.19 − 0.88 0.62 − 0.02 − 0.35 − 0.20 0.39
7 1 1.04 1.86 − 1.26 0.50 0.28 − 0.07 − 0.34 − 0.02 0.22
8 1 0.81 1.62 − 2.10 0.75 0.27 − 0.04 − 0.17 0.08 0.01
9 1 1.14 2.01 − 1.92 0.96 − 0.21 − 0.15 − 0.20 0.43 − 0.28
10 1 − 0.04 0.47 − 0.25 0.05 − 0.24 − 0.32 0.08 0.23 − 0.24
1 2 − 1.11 − 0.39 0.78 − 1.46 0.64 0.32 0.08 − 0.38 0.10

Year regee Wy_ Wy WWy_ zz_1 W_zz_1 zz_ev1 zz_ev2 zz_ev3 lag_y

1 1 0.86 0.01 0.99 0.19 0.13 0.26 0.95 0.98 0.47
2 1 0.01 0.26 0.35 0.24 0.13 0.37 0.26 0.42 − 0.75
3 1 0.26 0.33 0.26 0.10 0.12 0.37 0.37 0.24 − 1.36
4 1 0.33 0.08 0.27 0.00 0.06 0.07 0.37 0.24 − 0.41
5 1 0.08 − 0.33 0.08 − 0.02 0.04 − 0.24 0.07 0.13 − 0.29
6 1 − 0.33 − 0.53 − 0.19 − 0.01 0.06 − 0.45 − 0.24 − 0.14 0.75
7 1 − 0.53 − 0.33 − 0.38 − 0.02 0.03 − 0.23 − 0.45 − 0.32 0.02
8 1 − 0.33 − 0.07 − 0.19 − 0.06 − 0.10 − 0.02 − 0.23 − 0.19 1.04
9 1 − 0.07 0.24 − 0.11 − 0.07 0.01 0.24 − 0.02 − 0.15 0.81
10 1 0.24 0.21 0.17 − 0.19 − 0.09 0.19 0.24 0.14 1.14
1 2 1.01 0.11 0.98 0.19 0.12 0.24 0.95 0.98 − 0.55
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   The code runs on Stata/BE 17.0 for Windows (64 bitx86-64).

Using data such as in Table  26, the following code applies the estimator xta-
bond2, developed by David Roodman.

Roodman D (2009) ‘How to Do xtabond2: An Introduction to “Difference” and 
“System” GMM in Stata’, The Stata Journal (2009) Vol. 9, Number 1, pp. 86–136.

xtabond2,version 03.07.00.

Spatial specification

* 292 instruments.
xtabond2 y_it l.y_it Wy x_1it x_2it x_3it x_4it Wy_, gmmstyle(y_it Wy Wy_ 

WWy_ x_3it W_x_3 x_4it W_x_4, laglimits( 2.)) iv( x_1it x_2it W_x_1 W_x_2, 
passthru) noconstant noleveleq twostep robust nomata.

* 152 instruments.
xtabond2 y_it l.y_it Wy x_1it x_2it x_3it x_4it Wy_, gmmstyle(y_it Wy Wy_ 

WWy_, laglimits( 2.)) iv( x_1it x_2it zz_3 zz_4 W_x_1 W_x_2 W_zz_3 W_zz_4, 
passthru) noconstant noleveleq twostep robust nomata.

* 40 instruments.
xtabond2 y_it l.y_it Wy x_1it x_2it x_3it x_4it Wy_, gmmstyle(y_it Wy Wy_ 

WWy_, collapse laglimits( 2.)) iv( x_1it x_2it zz_3 zz_4 W_x_1 W_x_2 W_zz_3 
W_zz_4, passthru) noconstant noleveleq twostep robust nomata.

* 19 instruments.
xtabond2 y_it l.y_it Wy x_1it x_2it x_3it x_4it Wy_, gmmstyle(y_it, collapse 

laglimits( 2.)) iv( x_1it x_2it zz_3 zz_4 W_x_1 W_x_2 W_zz_3 W_zz_4 zz_ev1 
zz_ev2 zz_ev3, passthru) noconstant noleveleq twostep robust nomata.

Non‑spatial specification

* 110 instruments.
xtabond2 y_it l.y_it x_1it x_2it x_3it x_4it, gmmstyle(y_it x_3it x_4it, laglimits( 

2.)) iv( x_1it x_2it, passthru) twostep robust artests(2) noconstant noleveleq nomata.
* 40 instruments.
xtabond2 y_it l.y_it x_1it x_2it x_3it x_4it, gmmstyle(y_it, laglimits( 2.)) iv( 

x_1it x_2it zz_3 zz_4, passthru) twostep robust artests(2) noconstant noleveleq 
nomata.

*26 instruments.
xtabond2 y_it l.y_it x_1it x_2it x_3it x_4it, gmmstyle(y_it x_3it x_4it, collapse 

laglimits( 2.)) iv( x_1it x_2it, passthru) twostep robust artests(2) noconstant nolev-
eleq nomata.

*12 instruments.
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xtabond2 y_it l.y_it x_1it x_2it x_3it x_4it, gmmstyle(y_it, collapse laglimits( 
2.)) iv( x_1it x_2it zz_3 zz_4, passthru) twostep robust artests(2) noconstant nolev-
eleq nomata.

Spatial Durbin

* 152 instruments.
xtabond2 y_it l.y_it Wy x_1it x_2it x_3it x_4it W_x_1 W_x_2 W_x_3 W_x_4 

Wy_, gmmstyle(y_it Wy Wy_ WWy_, laglimits( 2.)) iv( zz_1 zz_2 zz_3 zz_4 W_
zz_1 W_zz_2 W_zz_3 W_zz_4, passthru) noconstant noleveleq twostep robust 
nomata.

* 82 instruments.
xtabond2 y_it l.y_it Wy x_1it x_2it x_3it x_4it W_x_1 W_x_2 W_x_3 W_x_4 

Wy_, gmmstyle(y_it Wy, laglimits( 2.)) iv( zz_1 zz_2 zz_3 zz_4 W_zz_1 W_zz_2 
W_zz_3 W_zz_4 zz_ev2 zz_ev3, passthru) noconstant noleveleq twostep robust 
nomata.

* 26 instruments.
xtabond2 y_it l.y_it Wy x_1it x_2it x_3it x_4it W_x_1 W_x_2 W_x_3 W_x_4 

Wy_, gmmstyle(y_it Wy, collapse laglimits( 2.)) iv( zz_1 zz_2 zz_3 zz_4 W_zz_1 
W_zz_2 W_zz_3 W_zz_4 zz_ev2 zz_ev3, passthru) noconstant noleveleq twostep 
robust nomata.
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