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Abstract
The COVID-19 epidemic has raised major issues with regard to modelling and fore-
casting outcomes such as cases, deaths and hospitalisations. In particular, the fore-
casting of area-specific counts of infectious disease poses problems when counts are 
changing rapidly and there are infection hotspots, as in epidemic situations. Such 
forecasts are of central importance for prioritizing interventions or making sever-
ity designations for different areas. In this paper, we consider different specifica-
tions of autoregressive dependence in incidence counts as these may considerably 
impact on adaptivity in epidemic situations. In particular, we introduce parameters 
to allow temporal adaptivity in autoregressive dependence. A case study considers 
COVID-19 data for 144 English local authorities during the UK epidemic second 
wave in late 2020 and early 2021, which demonstrate geographical clustering in new 
cases—linked to the then emergent alpha variant. The model allows for both spatial 
and time variation in autoregressive effects. We assess sensitivity in short-term pre-
dictions and fit to specification (spatial vs space-time autoregression, linear vs log-
linear, and form of space decay), and show improved one-step ahead and in-sample 
prediction using space-time autoregression including temporal adaptivity.

Keywords Autoregressive · Epidemic · Clustering · Forecasting · Spatio-temporal · 
Bayesian · COVID-19

Mathematics Subject Classification C23 · C11 · C32

1 Introduction

Forecasts of future infectious disease incidence have had major policy importance, 
for example in the COVID-19 epidemic of 2020-2021. However, even short-term 
forecasts may face difficulties in practice. These include limited data, quantifying 
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forecast uncertainty, and specification issues (Petropoulos and Makridakis 2020; 
Roda et  al. 2020; Stehlík et  al. 2020). Where separate infection time series for a 
number of areas are available, this may assist forecasts through a borrowing strength 
mechanism (Haining et al. 2021), with Shand et al. (2018) noting the gain from tak-
ing “advantage of the spatial and temporal dependence structures so that the statisti-
cal inference at one location can borrow strength from neighbouring regions in both 
space and time”. However, modelling and predicting area trajectories in infectious 
disease poses particular problems when counts are changing rapidly in epidemic sit-
uations, and there may well be geographic infection hotspots.

Notions of borrowing strength through spatial random effects are a major fea-
ture of the Bayesian disease mapping approach for area disease counts (Kang et al. 
2016), and adaptations of disease mapping to modelling longitudinal infectious dis-
ease data have been discussed in a number of papers (e.g. Clements et  al. 2006; 
Coly et  al. 2021). Consider, in particular, applications to epidemic time series for 
sets of administrative areas, which are available in several countries for the COVID-
19 epidemic. A widely adopted strategy for such data, aiming at short term predic-
tion, involves low order autoregression in infectious disease counts or rates, in both 
an area itself (the focus area), and in areas surrounding the focus area (Shand et al. 
2018; Paul and Held 2011). Existing approaches have focussed on spatial variation 
in autoregressive dependence, so allowing for geographic heterogeneity (Dowdy 
et al. 2012).

The contribution and novelty of this paper is to show how different specifica-
tions of autoregressive dependence in incidence counts may considerably impact 
on adaptivity in epidemic situations. In particular, we introduce temporal as well as 
spatial variation in autoregressive dependence and show that this feature provides 
much improved predictive performance in situations where infection counts are rap-
idly changing.

Such rapid fluctuations in cases, associated with multiple epidemic waves, have 
been a feature of the COVID-19 epidemic. Sharp upward trends in cases have ini-
tially tended to be geographically concentrated, with subsequent diffusion away 
from initial hotspots (Dowdy et al. 2012). Effective policy responses in such situ-
ations depend on forecasting approaches that provide a perspective on short-term 
future implications of current trends (Shinde et al. 2020). In particular, geographi-
cally disaggregated forecasts are important for prioritizing interventions or severity 
designations, such as the “local tiers” in the UK COVID-19 policy response (Hunter 
et al. 2021).

The approach used here can potentially be generalized to model longitudinal 
count data in non-disease applications involving areas, or for longitudinal count data 
for units other than areas. An example of the former might be applications involving 
spatial forecasting and spatial diffusion of count data (e.g. Glaser 2017; Glaser et al. 
2021). Examples of such diffusion include behavioural copycat effects (Schweikert 
et al. 2021).

In this paper, we assess predictive performance of an autoregressive model for 
infectious disease counts, applied to COVID-19 data for 144 English local authori-
ties during the UK epidemic second wave—at the end of 2020 and into early 
2021. These local authorities are in the South East of England, where a sharp (and 



585

1 3

A spatio‑temporal autoregressive model for monitoring and…

geographically concentrated) upturn in cases in late 2020 was attributed to the emer-
gence of a new COVID variant, the “Kent variant” or alpha variant (World Health 
Organization 2021). The model proposed here allows for both spatial and time vari-
ation in autoregression coefficients. We show clear gains in prediction over a less 
general specification. Impacts of alternative model features are considered, namely 
the choice between a linear (identity link) or log-linear model form, and the assumed 
form of weighting infections in neighbouring areas. We use Bayesian inference and 
estimation, via the BUGS (Bayesian inference Using Gibbs Sampling) package 
(Lunn et al. 2009).

2  Related Research

The typical form of data encountered in analysis of spatio-temporal infections data 
involves incidence counts yit for areas i = 1, ...,N and times t = 1, ..., T  . However, 
some spatio-temporal models for such data have used normalizing transformations 
of originally count data. Thus, Shand et al. (2018) consider a logarithmic transfor-
mation of yearly HIV diagnosis rates (per 100,000 population) for US counties.

Alternatively for models applied specifically to counts, Poisson and negative 
binomial time series regression methods may be used. Other count distributions 
may be used (Jalilian and Mateu 2021; Yu 2020). Spatio-temporal adaptations of 
disease mapping have been applied to analysis of infections, including across and 
within area random walks (e.g. Zhang et al. 2019; Jalilian and Mateu 2021; Lowe 
et  al. 2021). Both Shand et  al. (2018) and Paul and Held (2011), use spatially 
varying auto-regression applied either to lagged infection counts in an area itself 
(the focus area), or to areas surrounding the focus area (the neighbourhood), or 
both. A geographically adaptive scheme is also used by Lawson and Song (2010) 
in analysis of foot and mouth disease data. Lawson and Song (2010) use a focus 
area and neighbourhood lag in flu infection counts as an offset (with known coef-
ficient) in Poisson regression, with an application to COVID forecasts by area in 
Sartorius et al. (2021). Applications to COVID-19 forecasting, based on Paul and 
Held (2011), are provided by Giuliani et al. (2020) and  Rui et al. (2021). Detec-
tion of space-time clusters in COVID-19 is exemplified by Martines et al. (2021).

For applications without spatial disaggregation, a wide range of methods have 
been used for COVID-19, and infectious diseases generally. These include autore-
gressive integrated moving average (ARIMA) models (e.g. Maleki et  al. 2020; 
Chintalapudi et  al. 2020; Petukhova et  al. 2018), integer-valued autoregressive 
(INAR) models (Chattopadhyay et al. 2021), exponential smoothing (Petropoulos 
and Makridakis (2020); Gecili et al. (2021)), or bivariate forecasts. For example, 
the study by Johndrow et al. (2020) models COVID deaths as a lagged function 
of earlier new cases. For infectious diseases with an established seasonal pattern, 
SARIMA (seasonal ARIMA) forecasting has been used (Qiu et al. 2021). Appli-
cations of phenomenological models to COVID-19 incidence forecasts—based 
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on mathematical representations of epidemic curves, such as the Richards model 
(Richards 1959)—include Roosa et al. (2020).

3  Methods

We focus here on infectious disease models using count data regression. We con-
sider first models for count time series, without area disaggregation, as these can 
provide a basis for generalisation to area-time data. Relevant specifications may 
specify AR dependence on previous counts, or on previous latent means; models 
with autoregressive (AR) dependent errors (Hay and Pettitt 2001) may also be 
considered (Jalilian and Mateu 2021).

3.1  Time dependent autoregressive count data models

Consider Poisson distributed counts at times t = 1, ..., T , namely yt ∼ Poi(�t), 
(with Poi for Poisson density, with means �t), or negative binomial (NB) counts, 
yt ∼ Negbin(�t,Ω) (with Negbin for negative binomial density, with means �t and 
dispersion parameter Ω) . The parameterisation of the negative binomial is as in 
Zhou et al. (2012), namely

In a simple autoregressive representation (Fokianos 2011), one may adopt an iden-
tity link, and, subject to suitable parameter constraints, specify AR1 (AR with first-
order lag) dependence in lagged counts yt−1 and in latent means �t−1. The general 
form of this representation is termed the autoregressive conditional Poisson (ACP) 
model by Heinen (2003), or the linear model by Fokianos (2011). Thus

where � , �, and � are all positive. An alternative log-linear model (Fokianos and 
Tjøstheim 2011) has a log-link with

where �t and �t−1 are the logarithms of �t and �t−1 respectively,  f is an intercept, and 
a and c are autoregressive coefficients.

In both Eqs. (1) and (2), the autoregressive coefficients could be taken as time 
varying, namely {�t, �t} and {at, ct}. Varying intercepts to represent time depend-
ent effects other than autoregressive, could also be added. For example in Eq. (1), 
one may take

p(y|�,Ω) = (y + Ω − 1)!

y!(Ω − 1)!

(
�

� + Ω

)y(
Ω

� + Ω

)Ω

.

(1)�t = � + �yt−1 + ��t−1,

(2)log(�t) = �t = f + a log(yt−1 + 1) + c�t−1,

�t = exp(�0 + �t),
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where �t ∼ N(�t−1, �
2
�
) is a random walk with variance �2

�
 . However, random coef-

ficients research so far have concentrated on random coefficient AR models, without 
lags in latent means (e.g. Sáfadi and Morettin 2003).

3.2  Random coefficient autoregressive area‑time models

To generalize these representations to area-time infection count data (areas 
i = 1, ...,N ), one may add lags to infection counts in spatially close areas (Mar-
tines et al. 2021). These reflect geographic infection spillover—due, for example, 
to social interactions between residents in different areas, or to cross boundary 
commuting (Mitze and Kosfeld 2021). To allow for spatial lag effects, let wij be 
row standardised spatial weights expressing spatial interaction between areas i 
and j, with 

∑
j

wij = 1 . They may be based on adjacency of areas, or distances 

between them. For example, let hij = 1 for adjacent areas (with hii = 0 ), and 
hij = 0 otherwise. Then, wij = hij∕

∑
j

hij. Consider Poisson distributed counts yit 

∼ Poi(�it), or NB counts, yit ∼ Negbin(�it,Ψ).

As in panel data analysis (Greene 2011), randomly varying autoregressive 
parameters can be used to allow for different epidemic trajectories in different 
areas. The most general representation would allow interactive autoregressive 
coefficients varying simultaneously by time and area. We also allow for area spe-
cific permanent effects �i (and ei ) and space-time varying intercepts �it (and fit).

The linear and log-linear representations, generalizing Eqs. (1) and (2) to area-
time, become

and

In Eq. (3), the {�i,�it, �it, �it, �it, �it} are assumed positive under the identity link. 
Covariate effects can be included in the specifications for �i and or �it, and for ei and 
fit, though arguably are more straightforwardly obtained under Eq. (4); see Fokianos 
and Tjøstheim (2011, page 564) regarding the time series case.

Assuming positive dependence on infection count lags is a reasonable prior 
assumption anyway, on subject grounds, as higher existing numbers of infected 
subjects typically generate more future infections. It is implausible that more 
infections in period t in area i generate less infections in period t + 1 . In Eq. (4), 
assuming positivity of the autoregressive coefficients (ait, bit, cit, dit) is also a rea-
sonable assumption, for the same reason. In practice, one may use log, or logit, 

(3)�it = �i + �it + �ityi,t−1 + �it
∑

j

wijyj,t−1 + �it�i,t−1 + �it
∑

j

wij�j,t−1,

(4)

log(�it) = �it = ei + fit + ait log(yi,t−1 + 1) + bit

∑

j

wij log(yj,t−1 + 1) + cit�i,t−1

+ dit

∑

j

wij�j,t−1.
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links to space or space-time random effects. For example, a log-link involving 
fully interactive space-time structured random effects, �it (e.g. Lagazio et  al. 
2001, Eq. 4) on the lagged focus area infection counts is

with an intercept �0 , and assuming the �it are constrained for identifiability (e.g. 
zero centred or corner constrained). Similar schemes can be applied to the other 
autoregressive coefficients.

However, including lags in latent means in Eqs. (3) and (4) will typically increase 
computational intensivity, and a more tractable model is based only on lags in 
observed infection counts or log transformed infection counts. Hence, the linear and 
log-linear specifications become

and

Also area-time fully interactive specifications for autoregressive coefficients may be 
subject to overparameterisation (Regis et  al. 2021,  page 6), and one may propose 
reduced coefficient schemes. For example, for the lag term on yi,t−1 in Eq. (6), one 
may take

The option (8.1) is used in Paul and Held (2011), who assume �i are spatially struc-
tured random effects.

Here we investigate the gains—in the context of predicting future COVID-19 
counts—of an autoregressive specification with separate area and time effects, for 
example in the linear model,

where �1i is a spatially structured conditional autoregressive or CAR effect (Besag 
et al. 1991), and �2t is a random walk in time. Both �1i and �2t are zero centred; 
for instance, such centering is automatically implemented in the BUGS car.nor-
mal function. This specification may provide greater adaptivity to rapidly changing 
infection counts in epidemic exponential and downturn phases, and avoids the heavy 
parameterisation of a fully interactive scheme.

(5)log(�it) = �0 + �it,

(6)�it = �i + �it + �ityi,t−1 + �it
∑

j

wijyj,t−1,

(7)log(�it) = ei + fit + ait log(yi,t−1 + 1) + bit

∑

j

wij log(yj,t−1 + 1).

(8.1)log(�it) = �0 + �i

(8.2)log(�it) = �0 + �t.

(9)log(�it) = �0 + �1i + �2t,
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3.3  Remaining effects

For the permanent terms �i and ei , one might use iid or spatially correlated ran-
dom effects �i to represent enduring risk variations for infectious disease, in both 
endemic and epidemic phases. For example, taking iid effects, and with a positivity 
constraint,

where �i ∼ N(�0, �
2
�
) are permanent effects across times. These terms might also 

include constant effects of covariates Xi . Thus for a single covariate

where � = (�0, �1) are regression parameters.
For the general time terms �it and fit , various specifications are possible. These 

might include Fourier series representations for an infectious disease with clear 
seasonal fluctuations (Paul and Held 2011), or a second degree polynomial (in 
days) in a COVID-19 application (Giuliani et al. 2020). The latter scheme is pro-
posed as adapting to the exponential growth in the upturn phase of the epidemic. 
There is no conclusive evidence so far that COVID-19 is seasonal. For example, 
the UK first COVID-19 wave peaked in the spring and early summer of 2020. 
Some studies argue that COVID will eventually become seasonal (e.g. Greene 
2011). However, there will likely still be considerable variation between areas in 
timing of COVID infections.

Here, we use area-specific first-order random walks to (a) represent trends not 
fully captured by the autoregressive effects on infection lags and (b) be geograph-
ically adaptive. Thus in Eq (6), we have

where �it ∼ N(�i,t−1, �
2
�
). A corner constraint—setting selected parameter(s) to 

known values—is used for identifiability (Stegmueller 2014) and was less compu-
tationally intensive than centering samples at each iteration in the BUGS software. 
Thus, �it = exp(��

it
), where ��

it
= �it − �i1, which is equivalent to setting �i1 = 0 (Lag-

azio et al. 2001, page 29).
The area specific effects �it will increase adaptivity. However, we also expect 

autoregressive coefficients including time effects, as in Eq. (9), to be adaptive to 
epidemic growth (and decay) phases. For example, in the growth phase with yi,t+1 
typically much exceeding yit , the �2t in Eq. (9) will tend to be higher in order to 
better predict increasing counts yi,t+1 in the next period.

The time varying terms �it and fit might also include time varying regression 
effects �t , or impacts of time varying covariates, including lagged covariates (e.g. 
Lowe et al. 2021).

(10)�i = exp(�i)

�i = exp(�i)

�i ∼ N(�0 + �1X1i, �
2
�
),

(11)�it = exp(�it)
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3.4  Full model

In the case study analysis described below, we assume negative binomial sam-
pling, with the linear model as in Eq (1) namely

and the log-linear, as in Eq (7), namely

Initially, we take wij to be first-order adjacency indicators: hij = 1 for areas i and j adjacent, 
and hij = 0 otherwise, with wij = hij∕

∑
jhij. The autoregressive coefficients are taken as

under the linear model, and

under the log-linear model. The parameters {�1i,�3i,�5i,�7i} are spatial CAR 
effects (Besag et  al. 1991), and {�2t,�4t,�6t,�8t} are first-order random walks in 
time. The remaining effects are specified as

in the linear model, and

in the log-linear model. The parameters {�0, �0, a0, b0,��1,��2} are fixed effects.

�it = �i + �it + �ityi,t−1 + �it
∑

j

wijyj,t−1,

log(�it) = ei + fit + ait log(yi,t−1 + 1) + bit

∑

j

wij log(yj,t−1 + 1).

(12)log(�it) = �0 + �1i + �2t

log(�it) = �0 + �3i + �4t,

(13)log(ait) = a0 + �5i + �6t,

log(bit) = b0 + �7i + �8t,

(14)log(�i) = �1i,

log(�it) = �1it

�1it ∼ N(�1i,t−1, �
2
�1
),

�1i ∼ N(��1, �
2
�1
),

(15)ei = �2i

fit = �2it,

�2it ∼ N(�2i,t−1, �
2
�2
),

�2i ∼ N(��2, �
2
�2
),
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Out-of-sample forecasts ỹi,T+s for periods T + 1, T + 2, ..., etc. , are based on 
extrapolating �2t,�4t, and �1it (or analogous log-linear effects) to provide means 
�̃i,T+s (Sáfadi and Morettin 2003). Thus, one-step ahead predictions to T + 1 in the 
linear model are

and these are incorporated in Eq. (6) to provide �i,T+1 from which forecast cases at 
T + 1 can be sampled.

3.5  Spatial weighting

There has been discussion on how to weight the contribution of neighbouring areas 
in the spatial lags, with proposals including a power law that has declining weights 
for second, third, etc., nearest neighbours (Cheng et al. 2016; Meyer and Held 2014). 
Here, we allow for an infection overspill effect from both first- and second-order 
neighbours in a sensitivity analysis.

Thus, first-order neighbours are assigned weights hij1 = 1 for adjacent areas, and 
hij1 = 0 otherwise; while second-order neighbours are assigned weights 0 < 𝜆 < 1, 
so that hij2 = � for areas i and j which are second-order neighbours, and hij2 = 0 
otherwise. Then,

3.6  Space‑time clusters

A range of methods have been proposed to assess space-time clustering (e.g. Chen 
et al. 2016; Mclafferty 2015). Here, we consider the LISA (Local Indicators of Spa-
tial Association) indicator of spatial clustering in infection risk at one time point 
(Anselin 1995) and extend it to assess extended spatial clustering over various tem-
poral windows—multiple successive time units (here these are successive weeks). A 
particular aim is to detect spatial clustering during the exponential ascent phase of 
the epidemic wave. Hence, one can assess where the epidemic phase, and its associ-
ated health care burden, is geographically concentrated.

�2,T+1 ∼ N(�2T , �
2
�2
),

�4,T+1 ∼ N(�4T , �
2
�4
),

�1i,T+1 ∼ N(�1i,T , �
2
�1
),

(16)wij =
(hij1 + hij2)∑
j

(hij1 + hij2)
.
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Define predicted COVID case rates rit = �it∕Pi , where Pi are area populations. 
Predicted rates could also be defined for out-of-sample periods, with r̃it = �̃it∕Pi, 
t = T + 1, T + 2, ...etc., to predict future space-time risk patterns.

For a particular week define cluster indicators Jit = 1 if own area rates rit , and 
average rates in the locality rL

it
=
∑

j≠iwijrjt∕
∑

j≠iwij, are both elevated. This is known 
as a high-high cluster in LISA terminology. If either or both of these conditions do 
not hold, then Jit = 0.

Here, we define elevated rates as those more than 50% above the region wide or 
national rate—here the rate for the Greater South East, namely Rt =

∑
i�it∕

∑
i

Pi. So 

Jit = 1 if J1it = J2it = 1 where

J2it = I(rL
it
> 1.5Rt),

and where I(C) = 1 if the comparison C is true, 0 otherwise.
Elevated rates through D successive weeks define a space-time cluster. So if D = 5 , a 
space-time cluster of length D would require Jit = Ji,t+1 = Ji,t+2 = Ji,t+3 = Ji,t+4 = 1 . 
Using MCMC sampling one can obtain the probability that area i at week t defines a 
space-time cluster of length D.

3.7  Estimation

Bayesian estimation uses the BUGS (Bayesian inference Using Gibbs Sampling) 
program (Lunn et al. 2009). Two chains of 20,000 iterations are taken, with infer-
ences from the last 10,000, and convergence checks as in Brooks and Gelman 
(1998).

Gamma priors with shape one, and rate 0.001,  are adopted on inverse variance 
parameters and on the negative binomial overdispersion parameter Ω , while normal 
N(0, 100) priors are assumed on fixed effects {�0, �0, a0, b0,��1,��2}. A beta(1,1) 
prior is assigned to � in the analysis including second-order neighbours.

4  Case study

4.1  Dataset and geographical setting

The data for the study consist of weekly totals of new COVID cases in a subregion 
of the UK. The time span considered starts at the week 19-26 July 2020 (constitut-
ing week 1), with one analysis considering the subsequent 24 weeks, and another 
considering 29 weeks through to the week 31 January-6 February, 2021. In July 
2020, new COVID cases across the entire UK averaged under 700 daily, whereas 
towards the end of 2020, there was a pronounced increase, with some days reach-
ing over 75 thousand; however, in early 2021, there was a tailing off in new cases. 
See Fig. 1 for daily UK data, which includes a loess smooth. The epidemic ascent 
phase is irregular, with an early lesser peak in October and early November 2020, a 

(17)J1it = I(rit > 1.5Rt),



593

1 3

A spatio‑temporal autoregressive model for monitoring and…

slight tailing off in new cases in early December 2020, then a major increase in late 
December and January 2021.

The analysis here considers part of England, namely three standard regions (Lon-
don, South East, East) combined to give a broad region, here termed the Greater 
South East (GrSE for short), with a population of 24.4 million. Figure  2 shows 
weekly totals of new cases in this region. Starting at under 1,500 weekly, they rose 
to over 200,000 at the epidemic peak (on week 24) but then fell back sharply. As for 
the entire UK, there is a minor peak at week 17, preceding the main epidemic wave. 
There are N = 144 areas in the region, administrative areas called local authorities.

This part of England contains the epicentre of a localized cluster associated with a 
new variant (the Kent variant, or B.1.1.7 variant) (Challen et al. 2021). The surge in 
new cases associated with this cluster was the precursor to the larger national UK-wide 
escalation of cases. The outbreak of the new variant was concentrated in areas to the 
east of London (in Kent and Essex counties) and in the North East of London itself.

Fig. 1  Daily New Cases across the UK. July 2020 to February 2021
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4.2  Model evaluations

As a first evaluation of alternative model forms, we make out-of-sample predictions 
for cases at weeks 24 and 29 across the Greater South East. The forecasts are based 
on training data for weeks 1-23, and weeks 1-28, respectively (so T = 23 and T = 28 
respectively). Week 24 followed the ascent phase, when new cases of infection were 
sharply increasing, and in fact infections peaked in week 24. Week 29 was in a phase of 
sharp decline in new cases.

In a first analysis, a comparison between two different autoregressive formulations 
(M1 and M2) is made. Both specifications condition on the first week ( t = 1 ). Both 
specifications also assume a linear model, as in Eqs (6) and (12), namely

(18)�it = �i + �it + �ityi,t−1 + �it
∑

j

wijyj,t−1, t = 2, ..., T ,

Fig. 2  Weekly Totals of New COVID-19 Cases, Greater South East, July 2020 to February 2021



595

1 3

A spatio‑temporal autoregressive model for monitoring and…

log(�i) = �1i,

log(�it) = �1it,

In the first specification (M1), the autoregressive coefficients �it and �it are taken as 
spatially, but not temporally, varying:

log(�it) = �0 + �3i,

In the second (M2), the autoregressive coefficients are taken as both space and 
time varying

log(�it) = �0 + �3i + �4t.

The parameters {�1i,�3i} are CAR effects (Besag et al. 1991), with hij = 1 for adja-
cent areas ( hij = 0 otherwise), while {�2t,�4t} are first-order random walks in time.

One-step ahead out-of-sample forecasts ỹi,T+1 for week T + 1 (either week 24 or 
week 29) are based on extrapolating �2t,�4t, and �1it to week T + 1.

Two subsequent analyses are made. In the first, we compare the best perform-
ing from M1 and M2 with its log-linear equivalent (M3). In the second analysis, 
we allow the spatial interaction weights wij to include both first- and second-order 
neighbours—this defines model M4. Both these analyses are for the case when 
T = 23, and out-of-sample predictions are to week 24.

4.3  Assessing performance

Out-of-sample predictive performance is based on whether the 95% credible interval 
for predicted new cases ỹ∙,T+1 (summing across 144 areas in the GrSE) in week T + 1 
contains the actual number of new cases y∙,T+1 . An indicator of this is the posterior 
probability

that one-step ahead predicted cases exceed actual new cases. Tail probabilities (e.g. 
under 0.1 or over 0.9) represent under or over-prediction of actual cases. These prob-
abilities can be obtained for individual areas, namely

Also considered is the ranked probability score, with abbreviation RPST+1 Czado 
et  al. (2009), which measures the accuracy of forecasts (in matching actual out-
comes) when expressed as probability distributions. In a Bayesian context, the latter 

�1it ∼ N(�1i,t−1, �
2
�1
),

�1i ∼ N(��1, �
2
�1
).

(19)log(�it) = �0 + �1i,

(20)log(�it) = �0 + �1i + �2t,

(21)𝜁 = Pr(�y∙,T+1 > y∙,T+1|y)

(22)𝜁i = Pr(�yi,T+1 > yi,T+1|y).
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will be sampled values from posterior predictive densities for the outcome, p(̃y|y). 
For area i, the ranked probability score is obtained by monitoring

where 
≈

yi,T+1 is an independent draw for the posterior predictive density. The second 
term is a penalty for uncertainty, which increases as does predictive variance. Lower 
RPST+1 values represent better fit.

To assess fit for the observed (training) data, we obtain the widely applicable 
information criterion (WAIC) (Watanabe 2010), and also RPS scores for one-step 
ahead predictions, based on infections in the previous week. The RPS scores can be 
aggregated over areas for separate weeks, RPSt (t = 2, ..., T), to show where particu-
lar models are better or worse fitting.

5  Results

5.1  Predictive performance of space‑time autoregression model

Table 1 compares the out-of-sample performance of models M1 and M2 for weeks 
24 and 29, based, respectively, on training data for weeks 1-23 and 1-28. Table 2 
compares model fit for the training data analysis, as well as predictive performance 
for one-step ahead predictions within the sample.

||̃yi,T+1 − yi,T+1
|| +

||||
ỹi,T+1 −

≈

yi,T+1
||||

Table 1  Out-of-Sample Predictions, Models M1 and M2 Compared

Notes: � is posterior probability that predicted cases (first out of sample period) exceed actual cases; �
i
 

are area-specific posterior probabilities that predicted cases (first out of sample period) exceed actual 
cases

M1 M2

Spatially Varying Autoregres-
sion, Linear Model (M1)

Space-Time Varying 
Autoregression, Linear 
Model (M2)

Week 24 Week 29 Week 24 Week 29
Actual Cases 210,099 42,987 210,099 42,987
Mean Predicted Cases 195,533 72,960 228,498 49,080
Median Predicted Cases 195,338 72,870 209,027 44,930
Predicted Cases (2.5%) 181,775 77,340 105,328 15,860
Predicted Cases (97.5%) 210,807 99,590 449,227 78,560
Prob(Prediction Exceeds Actual), � 0.03 1 0.49 0.55
Number of Areas with �

i
 > 0.9 or < 0.1 25 61 8 1

Ranked Probability Score (Mean) 131,700 59,610 133,559 27,850
Ranked Probability Score (Median) 131,300 59,410 104,038 21,380
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It can be seen from Table  1 that a model including time effects in the autore-
gressions on previous cases leads to improved out-of-sample predictions. The cred-
ible intervals under M2 for predicted new cases in weeks 24 and 29 comfortably 
include the actual total GrSE cases; though the M2 estimates of total cases are less 
precise and show some skew (posterior means exceeding medians). The mean RPS 
score under M2 also shows the effects of skewness, especially for the forecast to 
T + 1 = 24 ; the median values favour M2.

Table 2  In-Sample (Training Data) Fit, and One-Step Ahead In-Sample Predictions, Models M1 and M2 

Notes: WAIC, widely applicable information criterion; RPS, Ranked Probability Score

M1 M2

Space Varying Autoregression, Linear 
Model

Space-Time Varying Autore-
gression, Linear Model

Training Data Period Weeks 1-23 Weeks 1-28 Weeks 1-23 Weeks 1-28
WAIC 29,905 40,231 28,169 37,762
RPS, Total 475,698 1,123,105 311,565 559,265
RPS, week 2 1605 1548 1092 1076
RPS, week 3 1625 1587 1147 1122
RPS, week 4 1697 1693 1346 1311
RPS, week 5 2056 2053 1562 1514
RPS, week 6 2469 2459 1803 1734
RPS, week 7 2993 3052 2411 2315
RPS, week 8 3884 3837 2621 2504
RPS, week 9 4672 4539 2503 2362
RPS, week 10 4734 4926 3733 3576
RPS, week 11 7353 7621 6093 5764
RPS, week 12 10,660 11,050 8192 7676
RPS, week 13 14,200 14,320 9345 8721
RPS, week 14 17,920 18,570 13,483 12,450
RPS, week 15 24,560 23,770 14,035 12,980
RPS, week 16 24,300 24,170 15,938 14,810
RPS, week 17 28,050 28,510 19,510 18,120
RPS, week 18 39,220 36,690 17,098 15,880
RPS, week 19 33,150 31,440 14,996 13,990
RPS, week 20 28,200 28,420 17,962 16,690
RPS, week 21 39,920 42,100 29,046 26,940
RPS, week 22 77,630 81,870 54,341 50,580
RPS, week 23 104,800 100,900 73,309 64,270
RPS, week 24 128,400 84,890
RPS, week 25 156,100 73,630
RPS, week 26 161,600 52,250
RPS, week 27 114,000 37,370
RPS, week 28 87,880 24,740



598 P. Congdon 

1 3

The probabilities � in Eq. (21) indicate that model M1 underpredicts new cases 
at week 24; this week was in fact the peak of the epidemic, following weeks when 
actual cases were rapidly increasing. By contrast, in the downturn phase, at week 29, 
model M1 overpredicts new cases. Area specific probabilities �i , as in Eq. (22), show 
higher totals of local authority areas with cases under or overpredicted under M1, 
especially in the downturn phase.

Table 2 shows that model M2 has a lower in-sample WAIC than model M1 in 
both training data analyses. One-step ahead predictions within the observed data 
periods also favour M2. For example, the total RPS for M1, accumulated over weeks 
1-28, is around twice that for M2 (1.12 million vs 559 thousand). Some weeks show 
greater discrepancies between the models.

Table  3 compares the two models against information on changing infection 
totals (weekly totals across GrSE) for the analysis of weeks 1-28. Comparing RPSt 
between models M1 and M2 (first three columns of Table 3) shows that model M1 
has problematic fit in the irregular ascent phase (weeks 16-19 when cases rise then 
fall back again), and also, more markedly, in the epidemic descent phase (weeks 26 
onwards), when the RPSt under M1 is more than three times that of M2.

The last two columns of Table 3 and Fig. 3 show how the �2t in model M2 adapt 
to the minor early peak at week 17, and then to sharply increasing cases in the expo-
nential epidemic phase. They then decrease in line with the epidemic downturn.

5.2  Evaluating other model options

Table  4 compares linear and log-linear specifications (denoted M2 and M3) with 
space-time autoregressive effects, where the log-linear model M3 is defined by Eqs. 
(7), (13) and (15). This comparison is for weeks 1-23 as training data, and prediction 
ahead to week 24. For M3, we find a slight deterioration in fit to the training data 
and also a slight deterioration in out-of-sample prediction—though the latter is still 
satisfactory. However, skewness in the posterior density of ỹ∙,T+1 is increased in M3 
as against M2.

Another version of the linear model is also considered (as M4), with spatial 
weights wij including second-order as well as first-order neighbours—as per Eq. 
(16). For model M4, we find no gain in fit over model M2 using first-order neigh-
bours only. The out-of-sample prediction is satisfactory though, with no evidence 
of under or overprediction of cases in week T + 1 . The posterior median estimate 
of ỹ.,T+1, namely new cases in week T + 1 across the greater South East, is 211,272 
compared to the actual total of 210,099. The � parameter has mean 0.76 with 95% 
credible interval (0.40, 0.99).

5.3  Detecting significant space‑time clusters

Space-time clustering in infectious disease outbreaks is important in identifying 
the epicentre(s) of an outbreak. Space-time cluster prediction, for example to assess 
continued excess spatial clustering in future periods, is important in prioritizing 
interventions.
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The “Kent variant” of COVID-19 (code B117), also known as the “English vari-
ant”, emerged in late 2020 in specific parts of England, namely areas to the East and 
South East of London. The observed data suggest a localized surge of COVID-19 
cases in November 2020 in these locations, which preceded the generalized national 
second wave epidemic peaking in late December of 2020 and early January of 2021. 
In terms of the weeks considered in the present study, we would expect significant 
space-time clustering in weeks 17-22, namely November 2020 and early December 
2020.

We obtain—under model M2—area specific probabilities of D successive 
periods with excess incidence in both focus areas and their localities. Excess 

Table 3  Comparative Fit by Week, Models M1 and M2, Weeks 1-28

RPS Ranked Probability Score; �
2t

 are Time Dependence Effects in Space-Time Autoregression Param-
eters

M1 M2 RPS Ratio, M1 
vs M2

Total Cases, Greater 
South East

�
2t

 in M2 
(Posterior 
Means)

RPS, Week 2 1548 1076 1.44 1312 – 0.96
RPS, Week 3 1587 1122 1.41 1407 – 1.40
RPS, Week 4 1693 1312 1.29 1755 – 1.55
RPS, Week 5 2053 1515 1.36 2161 – 1.69
RPS, Week 6 2459 1734 1.42 2641 – 1.33
RPS, Week 7 3052 2315 1.32 3972 – 0.90
RPS, Week 8 3837 2506 1.53 4458 – 0.79
RPS, Week 9 4539 2362 1.92 4030 – 0.99
RPS, Week 10 4926 3578 1.38 6846 – 0.34
RPS, Week 11 7621 5767 1.32 11,365 0.60
RPS, Week 12 11,050 7679 1.44 17,034 0.70
RPS, Week 13 14,320 8727 1.64 20,523 0.56
RPS, Week 14 18,570 12,460 1.49 29,633 0.84
RPS, Week 15 23,770 12,990 1.83 30,263 0.52
RPS, Week 16 24,170 14,820 1.63 34,546 0.53
RPS, Week 17 28,510 18,120 1.57 45,007 0.68
RPS, Week 18 36,690 15,890 2.31 38,227 0.09
RPS, Week 19 31,440 14,000 2.25 34,345 0.16
RPS, Week 20 28,420 16,710 1.70 41,090 0.50
RPS, Week 21 42,100 26,950 1.56 67,090 0.82
RPS, Week 22 81,870 50,620 1.62 127,905 1.09
RPS, Week 23 100,900 64,310 1.57 154,518 0.93
RPS, Week 24 128,400 84,950 1.51 210,099 1.11
RPS, Week 25 156,100 73,660 2.12 195,055 0.61
RPS, Week 26 161,600 52,290 3.09 138,553 0.37
RPS, Week 27 114,000 37,390 3.05 99,205 0.33
RPS, Week 28 87,880 24,750 3.55 64,354 0.24
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incidence is taken as more than 50% above the average (modelled) rate for the 
entire region, namely the Greater South East. Assuming D = 5 , then for a single 
MCMC iteration ( s = 1, ..., S ), one requires for area i to be a space-time cluster 
of length 5 that J(s)

it
= J

(s)

i,t+1
= J

(s)

i,t+2
= J

(s)

i,t+3
= J

(s)

i,t+4
= 1. One then obtains esti-

mated posterior probabilities of such a sequence occurring, by accumulating over 
MCMC iterations.

Focussing on weeks 17-22, we find only one area with a posterior probability 
exceeding 0.9 of being centre of a persistent space-time cluster of length 5 weeks. 
However, considering persistent clusters of length D = 4 weeks, there are seven 
areas with probabilities over 0.9, and eight areas with probabilities over 0.8. Fig-
ure 4 shows the estimated probabilities for D = 4 across the Greater South East of 
England, with a sharp delineation apparent between the “Kent variant” epicentre, 
and other areas. Figure  5 shows in closer detail the areas in the epicentre. The 
Swale local authority, with a posterior probability of one, was among the Kent 
local authorities first affected by the new variant (Reuters 2021).

Of interest also are forecasts of clustering status. We consider training data for 
the first T = 23 weeks to make one-step ahead predictions of clustering in week 
24. So cluster indicators Ji,T+1 = 1 if own area rates r̃i,T+1 = �̃i,T+1∕Pi , and average 

Fig. 3  Autoregressive Time Parameters and Total Infections (in units of 100,000)
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Fig. 4  Posterior Probabilities of Space-Time Cluster of Length Four Weeks During Epidemic Ascent 
Phase, Local Authorities, Greater South East of England

Fig. 5  Posterior Probabilities of Space-Time Cluster of Length Four Weeks. Detailed Focus
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rates in the locality r̃L
i,T+1

=
∑

j≠iwijr̃j,T+1∕
∑

j≠iwij, are both elevated as compared 
to the region wide rates, r̃T+1 =

∑
i�̃i,T+1∕

∑
iPi. Rates more than 50% above the 

region wide rate are considered elevated.
In such short-term forecasting, one may compare predicted future clustering with 

“actual” clustering defined by observed disease counts. Thus, actual rates for area 
i are yi,T+1∕Pi , with corresponding locality averages and region-wide rates; these 
are reliable point estimators for large disease counts. In fact, seven of the 144 areas 
are identified as actual cluster centres at week 24, the epidemic peak. Predicted and 
actual cluster status are compared using a 2 × 2 table accumulating correct classifi-
cations along the diagonal (areas where both actual and predicted cluster status are 
the same). We can then assess sensitivity, the proportion of actual high-high cluster 
centres correctly identified, and specificity, the proportion of non-cluster areas cor-
rectly identified.

Under model M2, we obtain posterior mean sensitivity (with 95% credible inter-
val) of 0.93 (0.43,1.0), and posterior mean specificity of 0.965 (0.95,0.985). The 
model prediction is for slightly higher numbers of cluster centres than is actually 
the case (false positives, with posterior mean 4.8), and this reduces specificity. False 
negatives are infrequent, with posterior mean 0.5. Using the relationship accuracy 
= (sensitivity)(prevalence) + (specificity)(1 - prevalence), where the prevalence of 
high-high clustering is 7/144, one obtains an accuracy of around 0.964.

5.4  Covariate effects

There have been many studies on socio-demographic and environmental risk fac-
tors for COVID outcomes. Both incidence and mortality have been linked to area 
deprivation, urbanicity, poor air quality, and nursing home location (as area risk fac-
tors), and non-white ethnicity, and existing medical conditions (as individual risk 
factors). Impacts of such risk factors were clearly observable in the UK first wave of 
the COVID pandemic, concentrated in March to May of 2020 (Public Health Eng-
land 2020; O’Dowd 2020; Quinio 2021; Dutton 2020).

The second UK wave is distinct from the first, in being strongly linked to the 
emergence of a new virus strain, and by the form of geographic clustering associated 
with the new strain (see section 5.3), namely a concentration in non-metropolitan 
areas in the south east of England, areas with relatively low concentrations of ethnic 
groups and area deprivation. This may tend to attenuate or distort the effect of area 
predictors Xi , so that although their inclusion may improve fit and predictions, the 
substantive rationale for including them—as disease risk factors per se—is in doubt.

To illustrate this potential for distortion, we estimate a time-varying effect of 
rurality on COVID infection rates. Rurality in each local authority (LA) is meas-
ured by the proportion of micro-areas (lower super output areas) within each LA 
that are classified as rural towns or villages (Office of National Statistics 2013, 
Table 1b). One would expect rural areas, with lower population densities, to have 
lower infection and mortality rates (Lai et al. 2020). Matheson et al. (2020) attrib-
ute excess urban mortality (in the UK first COVID wave) to higher population 
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density and association, more people-facing occupations in cities, and greater home 
overcrowding.

To establish its role for the second wave data, a regression analysis (with T = 28 
weeks) is carried out with a time varying effect of rurality ( Xi ), using the log-linear 
model. Thus, Eq (6) is extended to include an additive term �tXi, where �t is a first-
order random walk, with prior �t ∼ N(�t−1, �

2
�
). We find an irregular effect on infec-

tion rates, with �t significantly negative in the early weeks of the study period, sig-
nificantly positive in some later weeks, and often non-significant, with 95% intervals 
including zero—see Figure 6.

6  Discussion and future research

Forecasts of future infectious disease incidence, especially with spatial disaggrega-
tion, are important for policy purposes in epidemic situations. There are benefits in 
a longitudinal model form which borrows strength over areas since incidence levels 
tend to be spatially clustered—an example being the geographically concentrated 
COVID-19 outbreak associated with the “Kent variant” in the UK. Subsequent epi-
demic diffusion will also be influenced by spatial proximity. Hence, several models 
in the literature allow spatially varying autoregressive effects, and spatially varying 
dependence on infection levels in nearby areas.

However, temporal adaptivity and forecasting performance may be improved 
by allowing for time variation in the epidemic path, for example through space-
time autoregressive dependencies. An econometric perspective on autoregressive 
dependence allowing for both heterogeneity over units and over time is provided 

Fig. 6  Time Varying Effect of Rurality, �
t



606 P. Congdon 

1 3

by Regis et al. (2021), though they suggest (Regis et al. 2021, p. 6)—from a clas-
sical estimation perspective—that a full unit-time random effect structure may be 
overparameterized.

A full spatio-temporal structure may be applied when longitudinal data cover 
a relatively short period and made identifiable subject to appropriate constraints. 
Thus, (Watson et al. 2017)—using a Bayesian perspective—consider area data on 
Lyme disease over T = 5 years. They use the first four years to predict the last, 
using a full spatio-temporal autoregressive scheme allowing both spatial and tem-
poral correlation.

However, over a longer set of time points, there would be a heavy parameteri-
sation in a fully interactive scheme. In the present application, fully interactive 
autoregressive effects as in Eq. (5), and other space-time parameters as in Eq. 
(11), would involve 3NT unknown random effects (i.e. three times the number 
of data points). By contrast, the newly proposed space-time model—for exam-
ple, in Eq. (9)—involves considerably fewer, NT + 2(N + T) , random effects. A 
fully interactive specification would also limit the form of the time dependence 
in autoregression that can be considered; for example, a low order polynomial in 
time might be used for {�2t,�4t} in Eq. (12), instead of a random walk in time. 
Finally, with the separate space and time effects, as in Eq. (9), their distinct con-
tribution to improved fit and forecasts can be assessed, and interpretability is 
straightforward.

In the present study, over a longitudinal series of nearly 30 time points, the par-
simonious space-time autoregressive representation provides improved one-step 
ahead forecasts as compared to a model allowing spatially varying autoregressive 
dependence only. The latter model is shown to underpredict new cases at in the 
ascent phase of the epidemic (in November and early December 2020 for the UK 
second COVID-19 wave), when actual cases were rapidly increasing. By contrast, in 
the downturn phase, the model with only spatial variation in autoregressive effects 
provides an overprediction of new cases.

Other substantive features of infectious epidemics have been be investigated, such 
as the location of prolonged space-time clusters. In the Greater South East of Eng-
land, there is a clearly demarcated epicentre for the outbreak in the epidemic ascent 
phase (see Fig. 4).

Drawing on the time series literature on random coefficient autoregression, we 
have set out alternative linear and log-linear specifications applicable to the area-
time situation. For the particular infectious disease data concerned, the linear model 
had a better fit, but further research on similar forms of data (including longitudinal 
area data on chronic as well as infectious disease, and indeed any form of longitudi-
nal area count data) is indicated to establish the comparative strengths of the linear 
and log-linear forms. The above analysis has not considered the full scope of pos-
sible autoregressive dependence—including lags on latent means for both the focus 
area and its locality—as in Eqs. (3) and (4). Such a model was not tractable in the 
software used here. Extensions may also be envisaged to higher order lags, such as 
spatio-temporal AR1 (lag 1) and AR2 (lag 2) dependence for both the focus area and 
its surrounding locality in Eqs. (6) and (7).
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Given that the COVID pandemic has typically involved multiple waves, one 
might also be interested in longitudinal modelling over two or more waves, for 
instance to compare area-specific infection rates at epidemic peaks. The method 
used here is more easily applied to multiwave data than one involving area specific 
phenomenological models (e.g. logistic, Richards) which would necessitate using 
latent switching parameters between waves.

Another generalisation is to related outcomes such as mortality and hospitalisa-
tions. This could involve generalisations of the linear and log-linear count regression 
specifications—such as Eqs. (6) and (7)—to include borrowing strength over space, 
time and outcomes. This would be combined with multiple outcome count regres-
sion (Poisson or negative binomial). Alternatively, conditioning on modelled infec-
tions, one could model case fatality and hospitalisation as binomial responses .
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