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Abstract
Potential-based flows provide a simple yet realistic mathematical model of transport
in many real-world infrastructure networks such as, e.g., gas or water networks, where
the flow along each edge depends on the difference of the potentials at its end nodes.
We call a network topology robust if the maximal node potential needed to satisfy a set
of demands never increases when demands are decreased. This notion of robustness
is motivated by infrastructure networks where users first make reservations for certain
demands that may be larger than the actual flows sent later on. In these networks, node
potentials correspond to physical quantities such as pressures or hydraulic heads and
must be guaranteed to lie within a fixed range, even if the actual amounts are smaller
than the previously reserved demands. Our main results are a precise characterization
of robust network topologies for the case of point-to-point demands via forbidden
node-labeled graph minors, as well as an efficient algorithm for testing robustness.
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1 Introduction

A common feature of many infrastructure networks such as water, gas, electricity,
telecommunication, and road networks is that their load heavily fluctuates due to
changes in the demands of the transported commodities. As a consequence, the robust-
ness of these networks with respect to changes in the demands is a major issue for
network operators. Informally, a network is robust if it is feasible for a prescribed
range of demand scenarios rather than a single situation only.

In the robust optimization literature, the robustness of networks has been mainly
examined for the classical flow model of Ford and Fulkerson [15]. In this model, we
are given a (directed) graph G = (V , E) with vertex set V and edge set E . Every
edge has a capacity. A flow assigns a value xe to each edge e such that the usual
flow conservation constraints are satisfied and the capacity constraint of no edge is
violated. The robustness of such a network is examined with respect to a set of demand
scenarios. Each demand scenario specifies a balance vector (henceforth b-vector) that
specifies a certain balance for each vertex of the graph. A network is robust for a given
scenario set if for every b-vector from the set there exists a corresponding feasible
flow in the network. Characterizations of robust networks and algorithms for their
construction have been developed for the so-called network synthesis problem where
the scenario set contains one b-vector for each pair of nodes and this vector is zero
except for these two nodes; see, e.g., Chien [8], Gomory and Hu [17,18], Gusfield
[24], and Talluri [36]. Further models consider the case where the scenario set is a
full-dimensional polyhedron, see Àlvarez-Miranda et al. [1], Buchheim et al. [6] and
Cacchiani et al. [7]. Here, cutting plane methods are used for the design of robust
networks.

The works and results above are mainly motivated by robustness requirements of
telecommunication networks where edges correspond to server connections for which
a hard capacity constraint is a reasonable assumption. In addition, the model of Ford
and Fulkerson implicitly allows flow to be routed arbitrarily at intermediate vertices
which is realistic in telecommunication networks. As discussed by Cacchiani et al.
[7], these models are less suitable for the flow in physical networks such as gas, water,
or power networks. Such networks are more difficult to handle, since the flow on an
edge depends on physical properties of the network such as pressures in gas or water
networks networks, or voltages in power networks. The flow then evolves based on
these potentials and cannot be rerouted arbitrarily at intermediate vertices. Another
issue is that, e.g., natural gas networks are controlled by network operators who sell
the right to ship up to a fixed maximal amount of flow between a prescribed set of
network nodes (cf. Grimm et al. [21] and Koch et al. [27]). Even in the simplest such
model where network users acquire the transmission rights between pairs of distinct
nodes, the set of actual demands below these maximal transmissions gives rise to a
lower-dimensional set of demand scenarios that, to the best of our knowledge, has not
been studied in the literature yet.

In this paper, we close both gaps, i.e., we study the robustness of infrastructure
networks with respect to a natural model for physical flows under a natural robustness
concept that requires robustness against all flows satisfying given maximal flow con-
straints. We adopt the classical potential-based flowmodel introduced by Birkhoff and
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Diaz [5]; see also Rockafellar [31] for a general treatment. This model is based on an
undirected graph G = (V , E) where each edge e = {u, v} is endowed with potential
loss functions ψu,v , ψv,u , and a resistance βe that govern the flow xu,v on edge e as a
function of the difference of the potentials πu and πv at its endpoints via the equation
βeψu,v(xu,v) = πu −πv . Here positive flow values xu,v model flow from u to v while
negative flow values model flow from v to u. Typical potential loss functions are of the
form ψu,v(x) = xu,v|xu,v| for gas networks and ψu,v(xu,v) = sgn(xu,v)|xu,v|1.852 for
water networks; see also Hendrickson and Janson [25] and Gross et al. [22] and the
references therein. The potentials correspond to physical quantities like the pressures
or the hydraulic heads at the nodes. Due to safety reasons, real-world networks have a
bound π̄ on the maximum potential that the network allows, i.e., only potential vectors
π ∈ [0, π̄ ]V are feasible.

Suppose a network operator has issued a set of licenses I where each license i ∈ I
specifies a source-sink pair (si , ti ) ∈ V × V and a demand di ∈ R≥0. The license
allows that up to di units of flow can be injected into the network at si and the same
amount of flow is then discharged at ti . We stress that these are single-commodity
networks and hence the flow units injected in si do not actually have to be transported
to ti if there are other injections and discharges in the network. Assuming that all
licenses use their full volume, this leads to a b-vector defined as

bv =
∑

i∈I :si=v

di −
∑

i∈I :ti=v

di for all v ∈ V . (1)

For a network operator, it is straightforward to check whether this b-vector can be
realized by a feasible potential vector in the following way. As shown by Birkhoff
and Diaz [5] and Collins et al. [10] for every b-vector, there is a unique potential
vector π ∈ RV with minv∈V πv = 0 that yields a flow satisfying b and these flows
can be computed with standard convex optimization techniques. If maxv∈V πv does
not exceed the bound π̄ , the b-vector can be realized in the network, otherwise the
b-vector is infeasible.

However, each license i allows its holder to inject and discharge less than the
maximal amount of di . Thus, network operators actually need to ensure that the whole
set

B =
{
b ∈ RV : b =

∑

i∈I :si=v

d ′
i −

∑

i∈I :ti=v

d ′
i with d ′

i ∈ [0, di ] for all i ∈ I

}
(2)

of b-vectors that may arise from partial usage of the licenses can be realized by a
feasible potential vector.

In this paper,we are interested in identifyingnetworks forwhich the feasibility of the
b-vector in (1) implies the feasibility of the whole set of possible b-vectors in (2). This
is desirable for network operators since it reduces the potentially challenging task of
checking the feasibility of the whole set B to the easier task of checking the feasibility
of a single b-vector. Since the upper bounds on the demands di are subject to changes
when new licenses are negotiated and also the coefficients βe are subject to changes as
the physical properties of the edges change due to wear, impurities, dirt, or technical
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Fig. 1 Non-robust potential flow
network topologies

(a) (b)

perturbations, we study this question in the most conservative way. Specifically, we
consider network topologies that only specify a graph G = (V , E), source-sink pairs
si , ti , i ∈ I , for some finite index set I , and the potential loss functions ψu,v , u,
v ∈ V . We call such a network topology robust if for all demand vectors d ∈ RI≥0,
all resistances βe > 0, e ∈ E , and all potential bounds π̄ ≥ 0, the feasibility of the b-
vector in (1) that arises from the complete fulfilment of licenses implies the feasibility
of the whole set of b-vectors (2) that arises from partial fullfilment of lincenses. It is
straightforward to verify that our notion of robustness is equivalent to the requirement
that the maximal potential is monotonic in the demand, i.e., for two demand vectors
d, d ′ ∈ RI≥0 with d ′

i ≤ di for all i ∈ I and two corresponding potential vectors π ,
π ′ ∈ RV with minv∈V πv = minv∈V π ′

v = 0, we have that maxv∈V π ′
v ≤ maxv∈V πv .

1.1 Results, techniques, and paper outline

In this paper, we give a full characterization of robust network topologies. The
remainder of this paper is organized as follows.We fix notation and formally introduce
the problem in Sect. 2. Section 3 contains the main results of our paper. Before we
explain the results obtained in this section, we give some intuition. Consider the two
network topologies depicted in Fig. 1. The network in Fig. 1a consists of a single edge
and two routing requests in opposite directions. It is easy to see that this network is not
robust. Suppose there is a demand of one unit between s1 and t1 as well as another unit
demand between s2 and t2. Using (1), this leads to an all-zero b-vector which can be
realized with amaximal potential of π̄ = 0. On the other hand, decreasing either of the
demands leads to a non-zero b-vector that requires an actual flow and, thus, a maximal
potential π̄ > 0; see Lemma 4 for a formal proof of this result. Next, consider the
network in Fig. 1b. A straightforward argument shows that also this network topology
is not robust. For ease of exposition assume that all three edges have the same potential
loss function and resistance. By symmetry, to send one unit of flow from si to ti for
all i ∈ {1, 2, 3}, we can choose a potential vector π such that πs1 = πs2 and πt1 = πt3 .
On the other hand, if there is no demand between s2 and t2, we need πs2 = πt2 to
prevent flow on the edge {s2, t2}. One can show that this inevitably leads to an increase
of the maximal potential in the network; see Lemma 5 for a formal proof of this result.

As our main result, we show that these type-1 and type-2 network topologies in
Fig. 1 are essentially the only two networks that are non-robust for potential flow
networks. For a formal statement of this result, we use the notion of node-labeled
graph minors introduced by Friedman et al. [16] that extends the usual notion of a
graph minor. To this end, we label each node with a subset of source labels si and
sink labels ti with i ∈ I . A graph is a minor of another graph if the former can be
constructed from the latter by a sequence of edge contractions, edge deletions, and

123



On the robustness of potential-based flow networks 341

label deletions, where an edge contraction is defined such that the new node receives
the union of the labels of its endpoints. With this definition, we show that a network
topology is robust if and only if it neither contains a type-1 nor a type-2 network as a
(node-labeled) minor; see Theorem 1 for a formal proof of this result. As an immediate
corollary of our result, we obtain that networks with a single source or a single sink
are robust; see Corollary 2.

To exhibit the explanatory power of our characterization, we demonstrate its conse-
quences for tree and cycle networks in Sect. 4. Tree networks are particularly relevant
since in the non-robust setting all minimal network designs are cycle-free. We show
that a tree network is robust if and only if after contracting all edges that do not lie on
an si -ti -path, the remaining edges can be oriented such that all paths from a source si
to a sink ti follow the orientation, and along every path in the tree the orientation of the
edges flips at most once; see Theorem 2. We further give a characterization of robust
networks consisting of a single cycle in terms of the ordering of the node labels along
the cycle; see Theorem 3.

In Sect. 5, we study a variant of the model where each routing demand is spec-
ified by a b-vector itself rather than by demands between given source-sink pairs.
This is motivated by the process of capacity nomination in the European gas market
(cf. Grimm et al. [21] and Koch et al. [27]). Specifically, we assume that the network
nodes are partitioned into potential sources S and potential sinks T , and that every
routing demand is a balanced b-vector with the additional property that demands are
non-positive for sources and non-negative for sinks. We show that in this model, a
network topology is robust if and only if it contains a node that separates the sources
from the sinks, i.e., every path between a source and a sink passes this node; see
Theorem 4.

In Sect. 6, we give a polynomial time algorithm that determines whether a network
topology is robust; see Theorem 5.

In Sect. 7, we present a case study that shows the consequences of our charac-
terizations for the gas networks of Greece and Belgium. Specifically, we give a full
characterization of the configurations of these networks that are robust in our sense.

1.2 Related work

The first mathematical treatment of potential-based flows is due to Birkhoff and Diaz
[5]. They show the existence of a unique solution for various boundary value problems.
Collins et al. [10] show that for each b-vector, there is a unique flow satisfying these
node balances, and that this flow can be computed by solving a classical minimum cost
network flow problem with convex cost functions. Maugis [28] considers the special
case of homogenous networks where the potential loss function of each edge is of the
form ψ(x) = α sgn(x)|x |r for some α, r ∈ R>0. For more results, we refer to the
textbook by Rockafellar [31]. For a discussion how potential flow networks are used
to model gas networks, water networks, and DC power networks, see Gross et al. [22]
and the references therein. Szabó [35] analyzes how the maximum potential changes
when inserting an additional edge, in particular, while maintaining the demands at
every node, inserting an edge may increase the maximum potential.
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Robust network flows have been studied mainly in the classical flow model of
Ford and Fulkerson [15] where edges have a fixed capacity. The first investigation
of robust network flows is for the network synthesis problem defined by Chien [8].
Given an undirected network with demands between pairs of nodes, the problem asks
for minimal edge capacities such that for each pair of nodes there is a feasible flow
satisfying the demand. The problem can be reformulated as a robust flow problem in
the sense of Ben-Tal and Nemirowski [3] with a discrete scenario set by introducing a
scenario for each pair of vertices; see also the textbook ofBen-Tal et al. [2] for a general
introduction into robust optimization. Gomory and Hu [18] prove that the problem
admits a linear programming formulation of polynomial size. The same authors also
propose a strongly polynomial combinatorial algorithm for this problem (Gomory and
Hu [17]). Gusfield [24] gives easier algorithms for the problem that produce solutions
with better structure. Talluri [36] proposes further algorithms that yield networks with
fewer edges than the algorithms by Gomory and Hu, and Gusfield. When the flow
demands are integer the original algorithm of Gomory and Hu [17] produces a half-
integral solution. Chou and Frank [9] and Sridhar and Chandrasekaran [34] propose
combinatorial algorithms that produce integer solution when the input is integer. An
algorithm that matches the flow requirements exactly is given by Kabadi et al. [26].

Gomory and Hu [19] discuss a generalization of the problem where different
demands between nodes have to be satisfied for different time steps. Buchheim et
al. [6] consider a further generalization where scenarios are arbitrary b-vectors and
flows need to be integral. They show that minimizing the cost of a network satisfying
all scenarios is NP-hard even for three scenarios and linear capacity cost; they also
propose a branch-and-cut-algorithm. Àlvarez-Miranda et al. [1] propose a heuristic
for the problem based on linear programming techniques. Cacchiani et al. [7] propose
an integer programming formulation that does not depend on the size of the scenario
set. Without the integrality constraint, the problem is solvable by linear programming
techniques as shown by Schmidt [32].

Minoux [29] studies a variant of the problem where in each scenario a multi-
commodity flow needs to be sent and the set of scenarios is finite. Bienstock and
Günlük [4] investigate a generalization where capacities are already given and need
to be augmented. Duffield et al. [13] and Fingerhut et al. [14] study a infinite scenario
set for multi-commodity flows, the so-called Hose polytope. Given upper bounds on
the incoming and outgoing demands for each node, the Hose polytope contains all
demand matrices (specifying a routing demand for each pair of vertices) obeying
these bounds. When the routing has to be fixed before the scenario is released and
the scenario set is a Hose polytope, the network design problem is known as virtual
private network design. The optimal solution for such a problem is always a tree as
shown by Goyal et al. [20] and Gupta et al. [23]. While the Hose polytope shares with
the set of b-vectors defined in (2) the fact that it is a low-dimensional polytope whose
inequalities are upper bounds on the demand, our set is fundamentally different from
the Hose polytope in two important ways. First, we consider only single-commodity
flows while the Hose polytope contains traffic matrices. Second, our upper bounds are
upper bounds on demands between pairs of nodes and not upper bounds on the traffic
of single vertices as in the Hose polytope.
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2 Preliminaries

Let G = (V , E) be an undirected graph. We assume that G is simple and connected.
For a finite index set I , let D ∈ (Di )i∈I with Di = (si , ti ) ∈ V × V be a set of
source-sink pairs. We call the tuple (G, D) a network topology. A flow in G is a vector
x ∈ RV×V with xu,v = −xv,u for all u, v ∈ V and xu,v = 0 for all u, v ∈ V
with {u, v} /∈ E . A positive value xu,v indicates a movement of flow particles along
edge {u, v} from u to v, while a negative value models flow along this edge in the
opposite direction from v to u. Let

F := {
x ∈ RV×V : xu,v = −xv,u for all u, v ∈ V ,

xu,v = 0 for all u, v ∈ V with {u, v} /∈ E
}

denote the set of all flows in G. The balance vector bal(x) ∈ RV of a flow x ∈ F is
defined by bal(x)u := ∑

v∈V xu,v for all u ∈ V . Similarly, for a vector of demands
d ∈ RI≥0, the balance vector bal(d) ∈ RV is defined as

bal(d)u :=
∑

i∈I : u=si

di −
∑

i∈I : u=ti

di for all u ∈ V .

We say that a flow x satisfies a vector of demands d if bal(x) = bal(d).
The flows considered in this paper are based on potential vectors π ∈ RV . For each

edge e = {u, v} ∈ E , we are given potential loss functions ψu,v and ψv,u : R → R

and a resistance βe ∈ R>0. The potential loss functionsψu,v andψv,u model opposite
orientations of the same physical principles. Thus, we have ψu,v(z) = −ψv,u(−z)
for all {u, v} ∈ E and z ∈ R. Intuitively, the potential loss functions and resistances
describe the physics of the underlying network. Throughout this paper, we impose the
following assumptions on the potential loss functions.

Assumption 1 For each {u, v} ∈ E , the potential loss functionψu,v : R → R satisfies
the following properties:

1. ψu,v is continuous,
2. ψu,v is strictly increasing,
3. ψu,v(0) = 0.

The first two assumptions are standard and are required by Birkhoff and Diaz [5]. The
third assumption is not required by them, but satisfied by all practical applications,
including gas, DC power, and water networks; see Birkhoff and Diaz [5], Maugis [28],
and Gross et al. [22]. Note that without this assumption, realizing a flow of zero on an
edge may require a potential difference between its end points.

We denote the family of all functions satisfying Assumption 1 by Ψ . We say that a
flow x is induced by π if, for each edge e = {u, v}, the difference of the node potentials
of the end nodes equals the potential loss induced by the flow along e, i.e.,

βeψu,v

(
xu,v

) = πu − πv. (3)
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Since the potential loss functions ψu,v are one-to-one, for a given potential vector
π ∈ RV with (πu − πv)/βe ∈ ψu,v(R) for all e = {u, v} ∈ E , there is a unique
flow x ∈ F satisfying (3), which we denote by x(π). For such a flow x(π), the
corresponding balance vector bal(x(π)) can be computed as

bal
(
x(π)

)
u =

∑

v∈V
x(π)u,v =

∑

v∈V :{u,v}∈E
ψ−1
u,v

(
πu−πv

β{u,v}

)
(4)

for all u ∈ V .
Since the right-hand side of (3) is a difference of node potentials, uniformly shifting

the entries of a potential vector π ∈ RV has no effect in terms of (3). Although in all
applications potentials are non-negative, we find it mathematically more convenient
to allow also for negative potentials and instead fix the potential of an arbitrary node
v0 ∈ V to 0. Let

Πv0 := {
π ∈ RV : (πu − πv)/β{u,v} ∈ ψu,v(R) for all {u, v} ∈ E, πv0 = 0

}

be the set of such potential vectors and let B := {
b ∈ RV : ∑

v∈V bv = 0
}
be

the set of node balances that sum to 0. Under the above conditions on G and the
potential loss functions ψu,v , for all v0 ∈ V , the function f : Πv0 → B defined as
f (π) := (

fu(π)
)
u∈V with

fu(π) :=
∑

v∈V :{u,v}∈E
ψ−1
u,v

(
πu−πv

β{u,v}

)
(5)

is bijective and continuous. In particular, the inverse function f −1 : B → Πv0 exists
and is also continuous; see, e.g., Birkhoff and Diaz [5]. This implies that there is a
one-to-one correspondence between node balances b ∈ B and potentials π ∈ Πv0 .

For a potential vector π ∈ RV , we write

strG(π) := max
v∈V πv − min

v∈V πv.

Intuitively, the stress of a potential vector is equal to the maximal potential after
the potential vector is re-normalized such that minv∈V πv = 0. Since in practical
applications, the potentials need to be non-negative, the normalized potential vector
with minv∈V πv = 0 is the unique non-negative potential vector that minimizes the
maximal potential.

Using a slight overload of notation, we define for a balance vector b ∈ B the
stress strG(b) of the corresponding potential vector π = f −1(b) as

strG(b) := max
v∈V

(
f −1(b)

)
v

− min
v∈V

(
f −1(b)

)
v
.

Further overloading the notation, we write for a demand vector d ∈ RI≥0

strG(d) := strG(bal(d)).
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It is straightforward to see that the stress of a balance vector b ∈ B is invariant under
the choice of v0. If the network G is clear from the context, we omit the subscript and
simply write str(π), str(b), and str(d).

3 Robust network topologies

In this section we introduce the concept of robustness of a network topology and give a
full characterization of robust network topologies. We call a network topology robust
if for all resistances a component-wise decrease of a demand vector d never leads to
an increase of the stress.

Definition 1 Anetwork topology (G, D) together with potential loss functionsψu,v ∈
Ψ , for {u, v} ∈ E , is called robust if, for all resistances β ∈ RE

>0, the function
str : RI≥0 → R≥0 is non-decreasing, i.e., for all demand vectors d ′, d ∈ RI≥0 with
d ′ ≤ d (component-wise), we have str(d ′) ≤ str(d).

Remark 1 One may also want to consider a stronger form of robustness, where the
monotonicity of the stress even holds for all potential loss functions ψu,v , {u, v} ∈ E .
We call a network topology strongly robust if, for all β ∈ RE

>0 and for all ψu,v ∈ Ψ ,
{u, v} ∈ E , the function str : RI≥0 → R≥0 is non-decreasing. As a byproduct of our
analysis below, we prove that a network topology is robust if and only if it is strongly
robust.

For our characterization of robust network topologies, we need the concept of a
minor of a network topology which is obtained by a sequence of edge deletions, edge
contractions, and deletions of source-sink pairs. To keep track of the location of the
source-sink pairs, for every source si ∈ V and every sink ti ∈ V we introduce labels
si and ti , which can be inherited or deleted when constructing the minor; see Fig. 2
for an illustration. More formally, we use the concept of node-labeled graph minors
in which the labels form a quasi-order (a reflexive and transitive binary operation) as
introduced by Friedman et al. [16]. To this end, consider a node-labeled graph GL

with label set L := {si : i ∈ I } ∪ {ti : i ∈ I }, and define �(v) ⊆ L to be the subset of
labels attached to node v ∈ V . We choose as quasi-order on L the natural order given
by the ⊆-relation. The graph is well-labeled if, for all i ∈ I ,

∣∣∣{v ∈ V : si ∈ �(v)}
∣∣∣ =

∣∣∣{v ∈ V : ti ∈ �(v)}
∣∣∣ ∈ {0, 1},

i.e., labels si and ti are used pairwise or not at all.
There is a bijection between network topologies and well-labeled graphs: For a

given network topology (G, D), each node v obtains the label set �(v) = {si : i ∈
I with si = v} ∪ {ti : i ∈ I with ti = v}. Conversely, each well-labeled graph defines
a network topology using those node pairs (si , ti ) with si ∈ �(si ) and ti ∈ �(ti ).

For a well-labeled graph, the contraction of an edge e = {u, w} ∈ E is the operation
that deletes e, merges u and w into a single node, and gives this node the label set
�(u) ∪ �(w). We can delete a label pair si , ti by deleting the labels si and ti from
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(a) (b)

Fig. 2 Original network topology (G, D) and one of its minors (Ḡ, D̄). A possible sequence of contractions
and deletions is as follows: contraction of edge e7, deletion of edge e4, deletion of edge e2, contraction of
edge e1 and deletion of labels s1, t1

both L and the label sets they are contained in, and deleting i from I . We denote the
resulting label and index sets by L̄ and Ī , respectively. Deletion of edges is defined
analogously to the unlabeled case. A node-labeled graph Ḡ L̄ is a minor of a labeled
graph GL , if the former can be constructed from the latter by a finite sequence of edge
contractions, edge deletions, and label deletions.

Definition 2 Let (G, D) be a network topology andGL the correspondingwell-labeled
graph. Then a network topology (Ḡ, D̄) is a minor of (G, D) if its corresponding well-
labeled graph Ḡ L̄ is a minor of GL .

Due to their one-to-one correspondence, throughout this paper we use the notions
of network topologies and well-labeled graphs interchangeably.

If (Ḡ, D̄) is a minor of (G, D), then, in particular, Ḡ is an (ordinary unlabeled)
minor of G; see, e.g., Diestel [12]. In particular, any node in a minor is obtained
through a series of contractions and, thus, corresponds to a connected subgraph in the
original graph. In addition, any two such connected subgraphs are disjoint.

Lemma 1 ([12, Section 1.7]) Let (G, D) be a network topology and (Ḡ, D̄) a minor,
where G = (V , E) and Ḡ = (V̄ , Ē). For v̄ ∈ V̄ , let V (v̄) ⊆ V be the subset of nodes
in V contracted into v̄ when creating the minor. Then, for every v̄ ∈ V̄ , the induced
subgraph G[V (v̄)] is connected, and for any two v̄1, v̄2 ∈ V̄ with v̄1 	= v̄2, we have
V (v̄1) ∩ V (v̄2) = ∅.

We proceed to show that a network topology is robust if and only if it contains
neither of two special minors, called type-1 and type-2 networks depicted in Fig. 1.
Since both of these networks are simple and connected, in the following, we can
restrict our attention to simple and connected minors, which simplifies the analysis.
The sequence of operations to obtain a simple and connected minor (Ḡ, D̄) of a
network topology (G, D) can always be chosen such that all intermediate graphs are
also simple and connnected. This follows from the observation that, whenever an edge
contraction results in two parallel edges (which happens whenever we contract an edge
on a cycle of length three), one can instead delete one of the two parallel edges before
the contraction. Moreover, no intermediate graph can be disconnected as otherwise
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also Ḡ would be disconnected. As a consequence, when constructing a simple and
connected minor, we only need to consider the following basic operations.

Definition 3 For a network topology (G, D) the following are basic operations:

(a) deletion of an edge which lies on a cycle;
(b) contraction of an edge which does not lie on a triangle (cycle of length three);
(c) deletion of a pair of labels si , ti .

We show that every simple and connected minor of a robust network topology
(G, D) is robust. In order to prove this result, we need the following lemma. It states
that, for each of the three operations above, we can adapt the vector of edge resis-
tances β such that the stress on the original network and the stress on the minor
network are arbitrarily close to each other. The intuition behind the proof is that dele-
tion or contraction of an edge can be approximated by giving the edge a very high
or very low resistance, respectively. For given node potentials, this approximation
distorts the node balances only by a very small amount. Then, by the continuity of
the function f −1 mapping node balances to potentials, one only needs to change the
potentials (and thus, in particular, the stress on the network) by a very small amount
to restore the original node balances.

Lemma 2 Let (G, D) be a network topology and (Ḡ, D̄) with Ḡ = (V̄ , Ē) and D̄ =
(D̄i )i∈ Ī a minor obtained by one basic operation. Then, for every d̄ ∈ R Ī , β̄ ∈ RĒ

>0,
and ε > 0, there exists β ∈ RE

>0 with βe = β̄e for all e ∈ Ē ⊆ E such that

|strG(d) − strḠ(d̄)| < ε,

where d ∈ RV≥0 is defined as di := d̄i for all i ∈ Ī and di := 0 for all i ∈ I \ Ī .

Proof The proof is trivial for the case that the basic operation deletes a pair of labels, so
we only discuss the remaining two cases. Let d̄ ∈ R Ī , β̄ ∈ RĒ

>0, and ε > 0. Let e∗ ∈
E \ Ē be the edge which is deleted or contracted by the basic operation. Let β ∈ RE

with βe = β̄e for all e ∈ Ē and βe∗ arbitrary. The value of βe∗ will be determined later,
depending on the basic operation performed to produce the minor. Let v0 ∈ V ∩ V̄ ,
and let f : Πv0 → B and f̄ : Π̄v0 → B̄ be the functions mapping potentials to
balances as defined in (5) for the original graph G and its minor Ḡ, respectively. Let
π := f −1

(
bal(d)

)
and π̄ := f̄ −1

(
bal(d̄)

)
be the potentials corresponding to d and d̄,

respectively. We show that one can choose βe∗ such that

|strG(d) − strḠ(d̄)| = |strG(π) − strḠ(π̄)| < ε.

We distinguish two cases depending on the conducted basic operation on e∗.
First case: e∗ is deleted (and thus lies on a cycle). Then, Ē = E \ {e∗} and V̄ = V
and, by construction of d, bal(d) = bal(d̄). For the potential vector π̄ = f̄ −1

(
bal(d̄)

)
,

inserting edge e∗ = {u, w} into graph Ḡ only changes the balances of nodes u and w,
namely by the amount of flow along edge e∗. For b := f (π̄) we get

‖b − bal(d)‖∞ = ‖b − bal(d̄)‖∞ = ‖ f (π̄) − f̄ (π̄)‖∞ =
∣∣∣∣ψ

−1
u,w

(
π̄u − π̄w

βe∗

)∣∣∣∣ .
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Since ψu,w is continuous with continuous inverse and ψu,w(0) = 0, we obtain that
‖b − bal(d)‖∞ → 0 for βe∗ → ∞. Since f −1 is continuous as well, one can choose
βe∗ large enough such that

‖π − π̄‖∞ = ‖ f −1(bal(d)
) − f −1(b)‖∞ < 1

2ε,

and hence |strG(π) − strḠ(π̄)| < ε.
Second case: e∗ is contracted (and thus does not lie on a triangle). For e∗ = {u, w},
nodes u and w are contracted into a single node denoted by v∗. We have bal(d)v =
bal(d̄)v for all v ∈ V \{u, w} and bal(d̄)v∗ = bal(d)u+bal(d)w. Consider the potential
vector π1 ∈ RV defined as

π(1)
v :=

{
π̄v∗ if v ∈ {u, w},
π̄v otherwise,

and note that
strG(π(1)) = strḠ(π̄). (6)

Let b(1) := f (π(1)). Then b(1)
v = bal(d)v for all v ∈ V \ {u, w} and b(1)

u + b(1)
w =

bal(d̄)v∗ = bal(d)u + bal(d)w. It is without loss of generality to assume that b(1)
w ≤

bal(d)w and, thus, b(1)
u ≥ bal(d)u . In order to restore the balances at u and w, we send

a flow of value bal(d)w − b(1)
w from w to u along edge e∗ = {u, w}, by decreasing the

potential at u. To this end, let π(2) ∈ RV be defined as

π(2)
v :=

{
π

(1)
u − βe∗ψw,u

(
bal(d)w − b(1)

w

)
if v = u,

π
(1)
v otherwise.

Note that
π(2) → π(1) for βe∗ → 0. (7)

Let b(2) := f (π(2)). By construction, we have

b(2)
w = bal(d)w and b(2)

v = bal(d)v for all v ∈ V \ (N (u) ∪ {u}), (8)

where N (u) := {v ∈ V : {u, v} ∈ E} is the set of neighbors of node u. However, by
having decreased the potential at u, the balance of all neighbors of u has increased.
For v ∈ N (u) \ {w} we have

b(2)
v − bal(d)v = b(2)

v − b(1)
v

= ψ−1
v,u

(
π

(2)
v −π

(2)
u

β{v,u}

)
− ψ−1

v,u

(
π

(1)
v −π

(1)
u

β{v,u}

)
(7)−→ 0 for βe∗ → 0,

(9)

123



On the robustness of potential-based flow networks 349

by continuity of ψ−1
v,u . Furthermore, since

∑

v∈V

(
b(2)
v − bal(d)v

) =
∑

v∈V
b(2)
v −

∑

v∈V
bal(d)v = 0 − 0 = 0,

we have

b(2)
u − bal(d)u = −

∑

v∈V \{u}

(
b(2)
v − bal(d)v

)

(8)= −
∑

v∈N (u)\{w}

(
b(2)
v − bal(d)v

) (9)−→ 0 for βe∗ → 0. (10)

Equations (8), (9), and (10) imply b(2) − bal(d) → 0 as βe∗ → 0 and, hence,

π − π(2) = f −1(bal(d)
) − f −1(b(2)) → 0 for βe∗ → 0, (11)

by continuity of f −1. Altogether, by (6), (7), and (11), we get for βe∗ small enough

|strG(π) − strḠ(π̄)|
= |strG(π)−strG(π(2))+strG(π(2))−strG(π(1))+strG(π(1))−strḠ(π̄)| < ε,

which completes the proof. ��
We are now in the position to show that robustness of a network topology is closed

under taking simple and connected minors.

Lemma 3 Every simple and connected minor of a robust network topology is robust.

Proof Let (G, D) be a robust network topology. By contradiction, assume there is
a non-robust minor (Ḡ, D̄) with Ḡ = (V̄ , Ē) and D̄ = (D̄i )i∈ Ī , where Ī ⊆ I is
the index set of the minor (Ḡ, D̄). Since (Ḡ, D̄) is obtained by a sequence of basic
operations, by considering the last minor in the sequence that is robust, wemay assume
that (Ḡ, D̄) is obtained from (G, D) by one basic operation.

As (Ḡ, D̄) is not robust, there are β̄ ∈ RĒ
>0 and d̄ ≤ d̄ ′ ∈ R Ī≥0 for which

strḠ(d̄) ≥ strḠ(d̄ ′) + ε (12)

for some ε > 0.
For the network topology (G, D) with G = (V , E) and D = (Di )i∈I consider

the demand vectors d, d ′ ∈ RI≥0 with di = d̄i , d ′
i = d̄ ′

i for all i ∈ Ī and di =
d ′
i = 0 for all i ∈ I \ Ī . By construction, d ≤ d ′. Lemma 2 implies the existence
of β ∈ RE with βe = β̄e for all e ∈ Ē ⊆ E such that |strG(d) − strḠ(d̄)| < ε/2
and |strG(d ′) − strḠ(d̄ ′)| < ε/2. Due to (12) it follows that strG(d) > strG(d ′),
contradicting the robustness of (G, D). ��
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(a) (b) (c)

Fig. 3 The type-2 network with node potentials satisfying demands d and d ′

Before we prove the full characterization of robustness, we show that type-1 and
type-2 network topologies are not robust.

Lemma 4 The type-1 network topology is not robust.

Proof Consider the network in Fig. 1a with a demand vector d such that d1 = d2 > 0.
Then there is no flow on the only edge e = {s1, t1}, and since ψs1,t1(0) = 0, it follows
that str(d) = 0.

Consider the demand vector d ′ with d ′
1 = d1 and d ′

2 = 0, such that d ′ ≤ d. Since
bal(d ′)s1 = − bal(d ′)t1 = d1 > 0, ψs1,t1(0) = 0, and ψs1,t1 is strictly increasing, a
positive potential difference between the two nodes is necessary in order to enforce a
flow, which implies str(d ′) > 0. ��
Lemma 5 The type-2 network topology is not robust.

Proof Consider the type-2 network in Fig. 3a. Let βe1 := 1/ψv1,v2(1), βe2 :=
1/ψv3,v2(1), βe3 := 1/ψv3,v4(1), and consider the demand vector d with di = 1
for i = 1, 2, 3. Let π := f −1

(
bal(d)

)
. Then str(π) = 1; see Fig. 3b. The flow x

induced by π satisfies xv1,v2 = xv3,v4 = 1 and xv2,v3 = −1.
Consider the demand vector d ′ with d ′

1 = d ′
3 = 1 and d ′

2 = 0. Let π ′ :=
f −1

(
bal(d ′)

)
. Then str(π ′) = 2; see Fig. 3c. (Note that the flow x ′ induced by π ′

satisfies xv1,v2 = xv3,v4 = 1 and xv2,v3 = 0.) Hence, the type-2 network is not
robust. ��

We proceed to characterize the network topologies that have a type-1 network as
a minor. To this end, we introduce the following notation. For an undirected graph
G = (V , E), a path P is a sequence of pairwise distinct nodes (v1, . . . , vk) such that
{vi , vi+1} ∈ E for all i ∈ {1, . . . , k − 1}. We denote by V (P) := {v1, . . . , vk} and
E(P) := {{vi , vi+1} : i ∈ {1, . . . , k − 1}} the node and edge set of P , respectively.
Two paths P and P ′ are called node-disjoint if V (P) ∩ V (P ′) = ∅. For two nodes u,
v ∈ V , we call a path (v1, . . . , vk) a u-v-path if v1 = u and vk = v. We denote the
set of all u-v-paths in G by PG

u,v .
Furthermore, for a network topology (G, D) and two labels u, v ∈ L (of the cor-

responding well-labeled graph GL ), a u-v-path is a u-v-path, where u and v are the
nodes labeled by u and v, respectively, i.e., u ∈ �(u) and v ∈ �(v). Correspondingly,
we set PG

u,v := PG
u,v . If the graph G is clear from the context, we sometimes omit the

superscript and simply write Pu,v and Pu,v .
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Fig. 4 Node-disjoint paths
P ∈ Psi ,t j and P ′ ∈ Ps j ,ti
imply the existence of a type-1
minor

(a) (b)

Lemma 6 Let (G, D) be a network topology, (Ḡ, D̄) aminor, and u1, v1, u2, v2 ∈ L̄ ⊆
L labels. If there exist two node-disjoint paths P̄1 ∈ P Ḡ

u1,v1
and P̄2 ∈ P Ḡ

u2,v2
in the

minor Ḡ, then there also exist two node-disjoint paths P1 ∈ PG
u1,v1

and P2 ∈ PG
u2,v2

in G.

Proof Let P̄1 ∈ P Ḡ
u1,v1

and P̄2 ∈ P Ḡ
u2,v2

be node-disjoint paths. Denote the node sets
of P̄1 and P̄2 by V̄1 and V̄2, respectively. By Lemma 1, V1 := ⋃

v̄∈V̄1 V (v̄) ⊂ V
and V2 := ⋃

v̄∈V̄2 V (v̄) ⊂ V are disjoint, and both G[V1] and G[V2] are connected.
Furthermore, u1, v1 ∈ ⋃

v∈V1 �(v) and u2, v2 ∈ ⋃
v∈V2 �(v). Hence, there exist node-

disjoint paths P1 ∈ PG
u1,v1

and P2 ∈ PG
u2,v2

in G. ��
Lemma 7 A network topology (G, D) contains a type-1 minor if and only if there exist
i , j ∈ I with i 	= j and two node-disjoint paths P ∈ PG

si ,t j
and P ′ ∈ PG

s j ,ti
.

Proof “⇐”: Suppose there are i , j ∈ I with i 	= j and two node-disjoint paths P ∈
PG
si t j

and P ′ ∈ PG
s j ,ti

. SinceG is connected, there exists a path Q connecting P and P ′

with
∣∣∣V (Q) ∩ V (P)

∣∣∣ =
∣∣∣V (Q) ∩ V (P ′)

∣∣∣ = 1; see Fig. 4a. Consider theminor (Ḡ, D̄)

which is obtained from (G, D) as follows: all edges in E \ (
E(P) ∪ E(P ′) ∪ E(Q)

)

are deleted and all edges in E(P) ∪ E(P ′) and all edges in E(Q) except for a single
one are contracted. Further, all labels except si , ti , s j , and t j are deleted. This yields
a type-1 network; see Fig. 4b.

“⇒”: Let (G, D) contain a type-1 minor (Ḡ, D̄). The type-1 network obviously
contains node-disjoint-paths P̄ ∈ P Ḡ

si ,t j
and P̄ ′ ∈ P Ḡ

s j ,ti
, namely paths consisting

only of a single edge. Therefore, by Lemma 6, also the original network contains
node-disjoint paths P ∈ PG

si ,t j
and P ′ ∈ PG

s j ,ti
. ��

In order to prove the general characterization of robust networks we need some
preparation. For a graph G = (V , E) and s, t ∈ V with s 	= t , we call a flow x ∈ F an
s-t-flow if bal(x)s = − bal(x)t ≥ 0 andbal(x)v = 0 for all v ∈ V \{s, t}. Furthermore,
for two disjoint subsets U , W ⊂ V , let [U ,W ] := {{u, w} ∈ E : u ∈ U , w ∈ W } be
the cut between U and W .

Lemma 8 Let G = (V , E) be a connected graph, x ∈ F an s-t-flow, and π ∈ RV

such that
sgn(xu,v) = sgn(πu − πv) for all {u, v} ∈ E . (13)

Then the following holds:

(a) πs ≥ πv ≥ πt for all v ∈ V .
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(b) The flow x can be decomposed into a sum of positive flows along a set of s-t-paths
P ⊆ Ps,t , such that for every path (v1, . . . , vk) ∈ P we have xvi ,vi+1 > 0 for all
i ∈ {1, . . . , k − 1}.

(c) For all c ∈ R, both the subgraph induced by V+
c := {v ∈ V : πv ≥ c} and the

subgraph induced by V−
c := {v ∈ V : πv < c} are connected.

Proof We first show (a). Let π̄ := maxv∈V πv and assume by contradiction that
πs < π̄ . Let V̄ := {v ∈ V : πv = π̄}. Since s /∈ V̄ and G is connected, there
is {u, v} ∈ E with u ∈ V̄ and v ∈ V \ V̄ . By the maximality of πu and (13), we have
xu,w ≥ 0 for all w ∈ V and xu,v > 0. Therefore,

bal(x)u =
∑

w∈V
xu,w ≥ xu,v > 0,

contradicting the fact that x is an s-t-flow. Similarly, one can conclude that πt =
minv∈V πv .

To show (b), note that by classical flow decomposition, the s-t-flow x decomposes
into a sum of positive flows along a set of s-t-pathsP and a set of cycles C, such that all
edges carry positive flow in the direction of the path or cycle. Assume by contradiction
that C 	= ∅ and (v1, . . . , vk, v1) ∈ C. Then (13) impliesπv1 > πv2 > · · · > πvk > πv1 ,
a contradiction.

To prove (c), we only need to consider values cwith minv∈V πv < c ≤ maxv∈V πv ,
since V+

c or V−
c is empty otherwise. Let C := [V+

c , V−
c ] ⊆ E be the cut between

V+
c and V−

c . Consider w1, w2 ∈ V+
c and a path P ∈ Pw1,w2 . We are done if all nodes

of P are contained in V+
c . Otherwise, P contains at least two edges of the cut C . Let

e1 = {u1, v1} and e2 = {u2, v2}with u1, u2 ∈ V+
c and v1, v2 ∈ V−

c be the first and the
last edge of P contained in C . By definition of V+

c and V−
c , we have πu1 > πv1 and

thus xu1,v1 > 0. By (b), this implies the existence of an s-t-path Q = (q1, . . . , qk) ∈ P
containing edge {u1, v1} such that xqi ,qi+1 > 0 for all i ∈ {1, . . . , k − 1}. The path Q
does not contain any other edge ofC , since all edges inC carry positive flow from V+

c
to V−

c . Therefore, Q contains a subpath from s to u1 whose nodes are all contained
in V+

c . By a similar argument, there exists a path from s to u2 whose nodes are all
contained in V+

c . It follows that there exists a path from w1 to u1, from u1 to s, from s
to u2, and from u2 tow2 only using nodes in V+

c . Thus, the subgraph induced by V+
c is

connected. Analogously, one can show that the subgraph induced by V−
c is connected.

��
The following lemma gives a necessary condition on the potential vectors of flows

in type-1-free networks. Recall that network topologies are, by definition, connected.

Lemma 9 Let (G, D) with D = ((si , ti ))i∈I be a network topology without a type-1
minor. Let j ∈ I , let x ∈ F be an s j -t j -flow, and let π ∈ RV be such that x and π

fulfill (13). Then, πsi ≥ πti for all i ∈ I .

Proof By Lemma 8a, we have πs j ≥ πv ≥ πt j for all v ∈ V . By contradiction,
suppose that πti > πsi for some i ∈ I \ { j}. Thus, we have πs j ≥ πti > πsi ≥ πt j .
Let V+ := {v ∈ V : πv ≥ πti } and V− := V \ V+. Then, s j , ti ∈ V+ and t j ,
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Fig. 5 Construction of a type-2
network in the proof of
Lemma 10. The dotted lines
indicate the existence of a path
from si to P−

r in G[V−] and a
path from tk to P+

r in G[V+]
for all r ∈ {1, . . . ,m}

si ∈ V−. By Lemma 8c, both G[V+] and G[V−] are connected. Therefore, there
exist node-disjoint paths P ∈ Psi ,t j and P ′ ∈ Ps j ,ti . By Lemma 7, (G, D) contains a
type-1 minor, a contradiction. ��

To complete our preparation for the main result, we prove a technical lemma whose
conditions are sufficient to explicitly construct a type-2 minor.

Lemma 10 Let (G, D) be a network topology without a type-1 minor. Assume the node
set V of G can be partitioned into V = V− ∪ V+ with V− ∩ V+ = ∅ such that all
of the following conditions are satisfied:

(a) Both G[V−] and G[V+] are connected.
(b) There exist i , j , k ∈ I with si , ti , t j ∈ V− and s j , sk , tk ∈ V+.
(c) There exists a ti -sk-path which neither contains si nor tk .

Then (G, D) contains a type-2 minor.

Proof Let P be an ti -sk-path which neither contains si nor tk and which uses a minimal
number of edges of the cut [V−, V+]. Let P− := P ∩G[V−] and P+ := P ∩G[V+]
be the parts of P which are contained inG[V−] andG[V+], respectively. Furthermore,
let P−

1 , . . . , P−
m and P+

1 , . . . , P+
m be the connected components of P− and P+, where

ti ∈ P−
1 and sk ∈ P+

m ; see Fig. 5.
Due to the connectedness of G[V−], for any r ∈ {1, . . . ,m}, there exists a path

from si and to P−
r contained in G[V−]. Note that any such path is node-disjoint from

P−
r ′ for all r ′ ∈ {1, . . . ,m} \ {r}, since otherwise there exists a path between P−

r and
P−
r ′ not containing si , and thus, there exists a ti -sk-path neither containing si nor tk

which uses fewer edges of the cut [V−, V+] than P , contradicting the minimality of
P .

Let Psi ⊂ G[V−] be a path from si to P−
1 , and let Pt j ⊂ G[V−] be a path from t j

to P− ∪ Psi . Then Pt j ends in P−
1 since otherwise there exist node-disjoint si -t j - and

ti -s j -paths, which would imply the existence of a type-1 minor due to Lemma 7. To
see this, assume for a contradiction that Pt j does not end in P−

1 . Then, either Pt j ends
in Psi , and thus, there exists an si -t j path in G[V−] which is node-disjoint from P−

1 ,
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or Pt j ends in P−
r for some r ∈ {2, . . . ,m}. By the argument above, there also exists

a path from si to P−
r in G[V−] which is node-disjoint from P−

1 . Hence, also in this
case there exists an si -t j -path inG[V−], which is node-disjoint from P−

1 . On the other
hand, from ti one can follow P−

1 to get to V+. From there, due to the connectedness
of G[V+], one can reach s j only using nodes in V+.

Let Ptk ⊂ G[V+] be a path from tk to P+
m , and let Ps j ⊂ G[V+] be a path from s j

to P+ ∪ Ptk . By a similar argument as before, it follows that Ps j ends in P+
m .

Finally, let ei ∈ E(Psi ), e j ∈ E(P) ∩ [V−, V+], and ek ∈ E(Ptk ). Then, deleting
all labels except for si , ti , s j , t j , sk , tk , deleting all edges in E except for the ones
in the tree T := P ∪ Psi ∪ Pt j ∪ Ps j ∪ Ptk , and afterwards contracting all edges in
E(T ) \ {ei , e j , ek} yields a type-2 minor. ��

We can now prove the main result of this section.

Theorem 1 A network topology (G, D) is robust if and only if it neither contains a
type-1 nor a type-2 minor.

Proof “⇒”: If (G, D) contains a type-1 or type-2 minor, then, by Lemmas 4 and 5,
(G, D) has a minor that it not robust. Lemma 3 implies that (G, D) is not robust.

“⇐”: For the reverse direction assume that (G, D) is not robust, i.e., there exist
β ∈ RE

>0 and d, d ′ ∈ RI≥0 with d ≤ d ′ such that str(d ′) < str(d). We can assume
without loss of generality that there is j ∈ I such that d j < d ′

j and di = d ′
i for all

i ∈ I \ { j}; otherwise, move from d ′ to d by successively decreasing the demands d ′
i

to di , one at a time, and identify a step which strictly increases the stress.
For the rest of the proof, assume that (G, D) does not contain a type-1 minor. Our

goal is to construct node sets V− and V+ fulfilling the requirements of Lemma 10 in
order to prove that (G, D) contains a type-2 minor. To that end, define the potentials
π := f −1

(
bal(d)

)
, π ′ := f −1

(
bal(d ′)

)
, and let x := x(π), x ′ := x(π ′) be the

corresponding flows.
First, we consider nodeswith highest or lowest potential. LetVmax ⊆ argmaxv∈V πv

be a maximal subset of nodes for which G[Vmax] is connected. Similarly, let Vmin ⊆
argminv∈V πv be a maximal subset of nodes for which G[Vmin] is connected.

Consider the flow and potential differences Δx := x ′ − x and Δπ := π ′ − π . We
define the sets V− and V+ based on the potential differencesΔπ with respect to Vmin.
Specifically, let c be the smallest potential difference among all nodes in Vmin, i.e.,
c := minv∈Vmin Δπv , and define

V+ := {v ∈ V : Δπv ≥ c} and V− := {v ∈ V : Δπv < c}.

Clearly, V− and V+ are disjoint and V = V− ∪ V+.

Claim The following holds.

(a) Vmin ⊆ V+ and Vmax ⊆ V−.
(b) Both G[V+] and G[V−] are connected.
(c) s j ∈ V+ and t j ∈ V−.

Proof (of the claim)We first show (a). The fact that Vmin ⊆ V+ follows directly from
the definition of V+. In order to show Vmax ⊆ V− we assume for a contradiction that
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Δπu ≥ c for some u ∈ Vmax. Thus, there exists a node v ∈ Vmin with Δπu ≥ Δπv .
But since str(π) = πu − πv , we get

str(d ′) = str(π ′) ≥ π ′
u − π ′

v = str(π) + Δπu − Δπv ≥ str(π) = str(d),

a contradiction.
To prove (b) and (c), we show thatΔx andΔπ satisfy the requirements of Lemma 8.

Indeed, Δx is an s j -t j -flow of value d ′
j − d j > 0, and due to Eq. (3), we have for all

{u, v} ∈ E :

sgn(Δxu,v) = sgn(x ′
u,v − xu,v)

= sgn
(
ψ−1
u,v(π

′
u − π ′

v) − ψ−1
u,v(πu − πv)

)

= sgn
(
(π ′

u − π ′
v) − (πu − πv)

)

= sgn(Δπu − Δπv),

where for the third equality we used that, by Assumption 1, ψ−1
u,v is strictly increasing.

This completes the proof of the claim. ��
By the last claim we have s j ∈ V+ and t j ∈ V−. In order to fulfill the requirements

of Lemma 10, we need to find source-sink pairs si , ti ∈ V− and sk , tk ∈ V+ and a
ti -sk-path which neither contains si nor tk . To that end, we define the following set
U− ⊆ V− via its complement: Let V \ U− be the set of nodes containing V+ and
all nodes that can be reached from V+ without visiting any node of Vmax (recall that
Vmax ⊆ V−). Then we have Vmax ⊆ U− ⊆ V−; see Fig. 6.

Claim G[U−] is connected.
Proof (of the claim) Let u, v ∈ U−, P ∈ Pu,v , and assume that P contains some node
in V \ U−. Let {α, ᾱ} and {ω, ω̄}, with α, ω ∈ U− and ᾱ, ω̄ ∈ V \ U−, be the first
and last edge of P in the cut [U−, V \ U−]. Then, α, ω ∈ Vmax since otherwise α or
ω could be reached from V \U− without passing any node of Vmax, contradicting α,
ω /∈ V \U− and the definition of V \U−. But since G[Vmax] is connected, there is a
path from u to v via α and ω by only using nodes within U−. ��

Similarly, let V \U+ be the set of nodes which contains V− and all nodes that can
be reached from V− without visiting any node of Vmin. Then, Vmin ⊆ U+ ⊆ V+. By
the same line of arguments as before, G[U+] is connected. ��
Claim There exist source-sink pairs si ∈ U−, ti ∈ V− \ U−, and tk ∈ U+, sk ∈
V+ \U+.

Proof (of the claim) Note that, by the definition of U−, for every {u, v} ∈ E with
u ∈ U− and v ∈ V \ U−, we have that u ∈ Vmax and v /∈ Vmax, and thus xu,v > 0.
Similarly, for every edge {u, v} ∈ E with u ∈ U+ and v ∈ V \U+, we have xu,v < 0.
Hence,

∑

v∈U−
bal(x)v > 0 and

∑

v∈U+
bal(x)v < 0. (14)
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Fig. 6 Illustration of the
different node sets in the proof
of Theorem 1

As a consequence, there exists a source si ∈ U− with ti /∈ U−. Likewise, there
exists a sink tk ∈ U+ with sk /∈ U+. Since si ∈ U− ⊆ V−, Lemma 9 implies that
Δπti ≤ Δπsi < c, and thus, ti ∈ V−. Similarly, we have Δπsk ≥ Δπtk ≥ c, and thus
sk ∈ V+. ��

It remains to show that there exists a ti -sk path which neither contains si nor tk .
Consider the node set W := V \ (U− ∪ U+). Then, by the last claim, it follows that
ti , sk ∈ W and si , tk /∈ W . The proof of the theorem is complete once we have shown
that G[W ] is connected.
Claim G[W ] is connected.
Proof (of the claim) Let W1, . . . ,Wq be the node sets of the connected components
of G[W ]. Assume for a contradiction that q ≥ 2. By the definition of V \ U−, the
subgraph G[V \ U−] is connected. Thus, [U+,Wr ] 	= ∅ for all r ∈ {1, . . . , q}; see
Fig. 6. Likewise, we have [U−,Wr ] 	= ∅ for all r ∈ {1, . . . , q}. Let R be set of all
indices r ∈ {1, . . . , q} for which there exists a source s� ∈ U− with t� ∈ Wr . We
claim that for every r ∈ R it holds that

∀ �′ ∈ I : s�′ ∈ Wr ⇒ t�′ ∈ Wr . (15)

Otherwise, there exists a source s�′ ∈ Wr with t�′ /∈ Wr . At the same time, by the
definition of R, there exists a source s� ∈ U− with t� ∈ Wr . But since q ≥ 2, the
subgraphG[V \Wr ] is connected, and hence there exist node-disjoint paths P ∈ Ps�,t�′
and P ′ ∈ Ps�′ ,t� . Thus, by Lemma 7, (G, D) contains a type-1 minor, a contradiction.

SetWR := ⋃
r∈R Wr . Note, that for every edge {u, v} ∈ E with u ∈ U− ∪WR and

v /∈ U− ∪ WR , we have u ∈ Vmax or v ∈ Vmin, and hence xu,v > 0. It follows that

∑

v∈U−∪WR

bal(x)v > 0.

Therefore, there exists a source s� ∈ U− ∪WR with t� /∈ U− ∪WR ; in particular, t� /∈
WR . Thus, (15) implies s� /∈ WR , and hence s� ∈ U−. By the definition of R, it follows
that t� /∈ Wr for all r ∈ {1, . . . , q}, and hence t� ∈ U+. Therefore, Δπt� > Δπs� , a
contradiction to Lemma 9. This completes the proof of the claim and the theorem. ��
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As mentioned in Remark 1, as a consequence of Theorem 1, robustness and strong
robustness are in fact equivalent.

Corollary 1 A network topology is robust if and only if it is strongly robust.

Proof By Theorem 1, a network topology is robust if and only if it neither contains a
type-1 nor a type-2 minor. This condition is independent of the choice of the functions
ψu,v , {u, v} ∈ E . ��

Furthermore, we can conclude that every network topology containing only a single
soure or a single sink is robust.

Corollary 2 Let (G, D) be a network topology with a single source or a single sink,

i.e.,
∣∣∣
⋃

i∈I {si }
∣∣∣ = 1 or

∣∣∣
⋃

i∈I {ti }
∣∣∣ = 1. Then (G, D) is robust.

Proof Every type-1 and every type-2 network contains at least two distinct sources
and two distinct sinks. Thus, (G, D) does not contain a type-1 or type-2 network as a
minor. By Theorem 1, (G, D) is robust. ��

To conclude this section, we prove two lemmas which turn out to be useful later.
The first one states that in a network topology, edges which are not contained in any
si -ti -path never carry any flow. Based on this fact, the second lemma concludes that
contracting these edges has no influence on the robustness of the network topology.

Lemma 11 Let (G, D) be a network topology, d ∈ RI≥0, π = f −1
(
bal(d)

)
, and

x = x(π) the flow satisfying demands d. If xu,v 	= 0 for some e = {u, v} ∈ E, then e
is contained in an si -ti -path for some i ∈ I .

Proof We proceed by induction on p(d) :=
∣∣∣{i ∈ I : di > 0}

∣∣∣. If p(d) = 0, then

x = 0 and there is nothing to show. Now assume p(d) > 0, and consider {u, v} ∈ E
with xu,v 	= 0. Let j ∈ I with d j > 0 and define d ′ ∈ RI≥0 by d

′
j := 0 and d ′

i := di for

all i ∈ I \{ j}. Letπ ′ := f −1
(
bal(d ′)

)
and x ′ := x(π ′) the flow satisfying demands d ′.

Note that p(d ′) = p(d) − 1. If x ′
u,v 	= 0, then, by induction, edge {u, v} is contained

in an si -ti -path for some i ∈ I . Thus, we can assume that x ′
u,v = 0. Let Δx := x − x ′

and Δπ := π − π ′. Then Δx is an s j -t j -flow of value d j > 0 and, due to Eq. (1) and
Assumption 1, sgn(Δxu,v) = sgn(Δπu −Δπv) for all {u, v} ∈ E . Furthermore, since
xu,v 	= 0 and x ′

u,v = 0, we have Δxu,v 	= 0. Hence, by Lemma 8(b) we conclude that
edge {u, v} is contained in some s j -t j -path. ��
Lemma 12 Let (G, D) be a network topology and (Ḡ, D̄) its minor obtained by con-
tracting all edges e ∈ E that are not contained in any si -ti -path, i ∈ I . Then (G, D)

is robust if and only if (Ḡ, D̄) is robust.

Proof “⇒”: This direction follows directly from Lemma 3.
“⇐”: Let d ∈ RI≥0, π := f −1

(
bal(d)

)
, and x := x(π) be the flow satisfying

demands d. By Lemma 11, xu,v = 0 and thus πu = πv for all edges e = {u, v} ∈ E
which are not contained in any si -ti -path, i ∈ I . Therefore, contracting these edges
does not alter the stress on the network, i.e., strG(d) = strḠ(d). Thus, due to the
robustness of (Ḡ, D̄), for every d ′ ∈ RI≥0 with d

′ ≤ d, we have strG(d ′) = strḠ(d ′) ≤
strḠ(d) = strG(d). Hence (G, D) is robust. ��
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(a) (b) (c)

Fig. 7 Three examples of bi-arborescences

4 Robustness for special graph classes

For certain special classes of graphs, such as trees and cycles, we can givemore explicit
characterizations of robustness.

4.1 Robust tree topologies

For the case that the network is a tree, it turns out that robustness is closely related to
the possibility to give an orientation to each edge of the tree such that the resulting
directed graph is a so-called bi-arborescence (see Fig. 7) and the unique paths from a
source to the corresponding sink follow this orientation.

We use the following terminology: A directed graph is an arc-tree if its underlying
undirected graph is a tree. Furthermore, for a directed graph (V , A), a sequence of pair-
wise distinct nodes P = (v1, . . . , vk) is a path if (vi , vi+1) ∈ A or (vi+1, vi ) ∈ A for
all i = 1, . . . , k−1, and P is a directed path if (vi , vi+1) ∈ A for all i = 1, . . . , k−1.
Denote the arc set of P by A(P). For two nodes u, v ∈ V , a (directed) path (v1, . . . , vk)

is a (directed) u-v-path if v1 = u and vk = v. An arc-tree (V , A) is called an
arborescence if there exists a node r ∈ V , called root of the arborescence, such that,
for every v ∈ V , there exists a directed r -v-path.

Definition 4 An arc-tree (V , A) is called a bi-arborescence if there exists a node
r ∈ V , called root of the bi-arborescence, such that, for every v ∈ V , there exists a
directed v-r -path or a directed r -v-path.

See Fig. 7 for an illustration. Note that any arborescence is also a bi-arborescence.
In contrast to arborescences, however, the root of a bi-arborescence is not necessarily
unique.

We give an alternative characterization of bi-arborescences in terms of changes of
edge orientations along a path. To that end, for a directed graph (V , A) and a node
v ∈ V , let δ+(v) ⊆ A be the set of arcs that start in v, and let δ−(v) ⊆ A be the set
of arcs that end in v.
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(a) (b) (c)

Fig. 8 Illustration of the proof of Lemma 13

Definition 5 Let (V , A) be a directed graph and P a path. A node v ∈ V with∣∣∣δ−(v) ∩ A(P)

∣∣∣ = 2 or
∣∣∣δ+(v) ∩ A(P)

∣∣∣ = 2 is called a flipping node of P . Moreover,

the number

ϕ(P) :=
∣∣∣{v ∈ V : v is a flipping node of P}

∣∣∣

is called the number of flips of path P .

Lemma 13 An arc-tree (V , A) is a bi-arborescence if and only if every path in (V , A)

has at most one flip.

Proof “⇒”: If (V , A) is a bi-arborescence, then, for any path P , the only possible
flipping node of P is the node with minimal graph-theoretic distance to the root r ; see
Fig. 8a.

“⇐”: If |δ−(v)| ≤ 1 for all v ∈ V , then (V , A) is an arborescence and thus a
bi-arborescence. Otherwise, among all nodes u with |δ−(u)| ≥ 2 choose one such that
there is no directed path from u to any other such node (this node exists due to the
acyclicity of the graph). We call this node r and argue that (V , A) is a bi-arborescence
with root r : Let v ∈ V be arbitrary and let P be the unique r -v-path. If the first arc
on P is in δ+(r), then P is a directed r -v-path since otherwise the first flipping node
r ′ on P would have two incoming arcs and could be reached from r , contradicting
our choice of r ; see Fig. 8b. If the first arc on P is in δ−(r), then reversing P yields a
directed v-r -path, since otherwise adding the second arc in δ−(r) to P yields a path
with at least two flips, a contradiction; see Fig. 8c. ��

Weproceed to give a characterization of robust trees. Itwill dependon the possibility
to turn the tree into a bi-arborescence such that each si -ti -path follows this orientation,
i.e., each si -ti -path is directed.
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Definition 6 For a simple undirected graph (V , E), a set of arcs A ⊂ V × V is called
an orientation of E if |A| = |E | and E = {{u, v} : (u, v) ∈ A}. A network topology
(T , D) is called tree topology if T = (V , E) is a tree. A tree topology is robustly
orientable if there exists an orientation A of E such that (V , A) is a bi-arborescence
with a directed si -ti -path for every i ∈ I .

Lemma 14 Every minor of a robustly orientable tree topology is robustly orientable.

Proof Let (T , D) be a robustly orientable tree topology. Note that after contracting
an edge e ∈ E or deleting a pair of labels si , ti the resulting network topology is still
robustly orientable. Since T is a tree, every minor of (T , D) can be obtained by a finite
sequence of edge contractions and label pair deletions. By induction, every minor of
(T , D) is robustly orientable. ��

For a tree topology (T , D) denote by PT
i the unique si -ti -path in T , i ∈ I . We can

now give a characterization of robust tree topologies.

Theorem 2 Let (T , D) be a tree topology and let (T̄ , D̄) be the minor that is obtained
from (T , D) by contracting all edges e ∈ E with e /∈ ⋃

i∈I E(PT
i ). Then (T , D) is

robust if and only if (T̄ , D̄) is robustly orientable.

Proof By Lemma 12, (T , D) is robust if and only if (T̄ , D̄) is robust. Thus, it remains
to show that (T̄ , D̄) is robust if and only if it is robustly orientable.

“⇒”: We show the contraposition. First, assume that there is no orientation Ā of Ē
such that the arc-tree (V̄ , Ā) contains a directed si -ti -path for every i ∈ I . Then, there
exist i , j ∈ I and an edge e ∈ E(PT̄

i ) ∩ E(PT̄
j ) such that e is traversed in opposite

directions when going from si to ti and from s j to t j , respectively. Thus, contracting
every edge in Ē \ {e} and deleting all labels except for si , ti , s j , t j yields a type-1
minor. By Theorem 1, (T̄ , D̄) is not robust.

Second, assume there is an orientation Ā of Ē such that, for every i ∈ I ,
the arc-tree (V̄ , Ā) contains a directed si -ti -path, but (V̄ , Ā) is not a bi-arbor-
escence. By Lemma 13, (V̄ , Ā) contains a path P with at least two flipping nodes.
By considering subpaths, it is without loss of generality to assume that P =
(v1, . . . , v f , . . . , v f ′ , . . . , vr ) has exactly two flipping nodes v f and v f ′ with f > 1
and f ′ < r . By potentially reversing the path, it is without loss of generality to
assume that |δ−(v f ) ∩ A(P)| = 2 and |δ+(v f ′) ∩ A(P)| = 2. Let ai = (v f −1, v f ),
a j = (v f , v f +1), and ak = (v f ′ , v f ′+1). By construction, when traversing P

– ai is traversed before a j ,
– a j is traversed before ak ,
– ai and ak are traversed along their orientation,
– a j is traversed against its orientation;

see Fig. 9 for an illustration.
Furthermore, by the construction of the arc-tree (V̄ , Ā), there exist i , j , k ∈ I such

that, for every � ∈ {i, j, k}, the arc a� is contained in the directed s�-t�-path. Let ei ,
e j , ek ∈ Ē be the edges corresponding to the arcs ai , a j , ak ∈ Ā. Within (T̄ , D̄),
contracting all edges in Ē \ {ei , e j , ek} and deleting all labels except for si , ti , s j , t j ,
sk , tk yields a type-2 minor. By Theorem 1, (T̄ , D̄) is not robust.
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Fig. 9 An arc-tree containing a
type-2 minor, as described in the
proof of Theorem 2

“⇐”: Assume (T̄ , D̄) is robustly orientable. Then, by Lemma 14, every minor of
(T̄ , D̄) is robustly orientable. But then (T̄ , D̄) can neither contain a type-1 nor a type-2
minor, since these minors are clearly not robustly orientable. By Theorem 1, (T̄ , D̄)

is robust. ��

4.2 Robust cycles

Next, we give a characterization of robust cycles. We start by considering a necessary
condition for robustness.

Lemma 15 Let (G, D) be a network topology such that G is a cycle. If (G, D) is
robust, then, for all i, j ∈ I , every si -t j -path contains s j or ti .

Proof If there exists an si -t j -pathwhich neither contains s j nor ti , then there also exists
an s j -ti -path which neither contains si nor t j . Thus, by Lemma 7, (G, D) contains a
type-1 minor and is therefore not robust. ��

We can now give a full characterization of robust cycles. To that end, for a path
P = (v1, . . . , vk) we write vi ≺P v j if i < j .

Theorem 3 Let (G, D) be a network topology such that G is a cycle and si 	= ti for
all i ∈ I . Then (G, D) is robust if and only if both of the following two conditions
hold:

(a) There exist two edges {u1, v1}, {u2, v2} ∈ E and two node-disjoint paths Pu ∈
Pu1,u2 , Pv ∈ Pv1,v2 with {si : i ∈ I } ⊆ V (Pu), {ti : i ∈ I } ⊆ V (Pv).

(b) Moreover, there is no pair i, j ∈ I such that si ≺Pu s j and t j ≺Pv ti .

Figure 10 shows examples of robust and non-robust cycles.

Proof (of Theorem 3) “⇒”: By contradiction, first assume that (a) holds, but (b) does
not hold. Then there exist i , j ∈ I with si ≺Pu s j and t j ≺Pv ti . Consequently, there
exist node-disjoint paths P ∈ Psi ,t j and P ′ ∈ Ps j ,ti . By Lemma 7, (G, D) contains a
type-1 minor and is thus not robust, a contradiction.

Next, assume that (a) does not hold. Thus, there exist i , j , k ∈ I such that the cycle
G can be decomposed into the concatenation of four paths: P1 ∈ Psi ,t j , P2 ∈ Pt j ,sk ,
P3 ∈ Psk ,ti , and P4 ∈ Pti ,si ; see Fig. 11.

Applying Lemma 15 to si and t j implies that s j ∈ V (P1). Applying Lemma 15
once more to sk and t j implies that tk ∈ V (P2). But then there exists an si -tk-path
which neither contains sk nor ti , contradicting Lemma 15.

“⇐”: Assume by contradiction that (G, D) is not robust. By Theorem 1, it contains
a type-1 or a type-2 minor. First assume that (G, D) contains a type-2 minor. Then
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Fig. 10 The cycles in (a) and (b)
are robust, whereas the cycles in
(c) and (d) are not robust. The
cycle in (c) violates Property (a)
in Theorem 3. The cycle (d)
violates Property (b) since
s3 ≺Pu s2 and t2 ≺Pv t3

(a) (b)

(c) (d)

Fig. 11 A cycle violating
Property (a) of Theorem 3

(a)

(b) (c)

Fig. 12 The possible cases for non-robust cycles. In (a) the cycle contains a type-2 minor. In (b) and (c) it
contains a type-1 minor

G is of the form shown in Fig. 12a where each of the paths P2 and P4 might be of
length zero, whereas all of the paths P1, P3, P5, and P6 contain at least one edge.
Consequently, Property (a) is not satisfied. Now, assume (G, D) contains a type-1
minor. Then G has one of the forms shown in Fig. 12b, c, where each of the paths P1
and P3 might be of length zero, whereas both of the paths P2 and P4 contain at least
one edge. In the first case, Property (a) is violated. In the second case, if P1 or P3 has
length zero, then Property (a) is violated, otherwise Property (b) is violated. ��
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5 Robustness in the entry-exit model

LetG = (V , E) be an undirected graph, and let S, T ⊂ V be nonempty disjoint sets of
sources and sinks, respectively.We call (G, S, T ) an entry-exit topology. In this section
we define robustness for entry-exit topologies and give a complete characterization
of the class of robust entry-exit topologies by exploiting the results on robustness of
network topologies proved in the previous sections.

The set of possible balance vectors is

B(S, T ) :=
{
b ∈ RV : bs ≥ 0 for all s ∈ S, bt ≤ 0 for all t ∈ T ,

∑

v∈V
bv = 0, bv = 0 for all v ∈ V \ (S ∪ T )

}
.

For b, b′ ∈ B(S, T ) we write b � b′ if |bv| ≤ |b′
v| for all v ∈ V .

Definition 7 An entry-exit topology (G, S, T ) together with potential loss functions
ψu,v ∈ Ψ , for {u, v} ∈ E , is called robust if, for all β ∈ RE

>0, the function
str : B(S, T ) → R≥0 is non-decreasing with respect to �, i.e., for all b, b′ ∈ B(S, T )

with b � b′ we have str(b) ≤ str(b′).

Note that in contrast to the definition of robustness of network topologies, where the
stress function is required to be non-decreasing with respect to demands of given pairs
of sources and sinks, the definition of robustness of entry-exit topologies requires the
stress function to be non-decreasingwith respect to demands that lie in the set B(S, T ),
i.e., demands that may involve any source or sink of the network.

We will show that robustness of an entry-exit topology is equivalent to robustness
of a certain corresponding network topology. To that end, let

D(S, T ) := (
(s, t) : (s, t) ∈ S × T

)

be the tuple of all source-sink pairs with sources in S and sinks in T . Sticking to
the notation of the previous sections, this means that D(S, T ) = (Di )i∈I , where
I = S × T , and for i ∈ I we have Di = (si , ti ). We state the following classic
observation:

Observation 1 For each b ∈ B(S, T ) there is a d ∈ RS×T
≥0 with bal(d) = b.

Lemma 16 For every b, b′ ∈ B(S, T ) with b � b′, there exist d, d ′ ∈ RS×T
≥0 with

d ≤ d ′ such that bal(d) = b and bal(d ′) = b′.

Proof Let b, b′ ∈ B(S, T ) with b � b′ and set Δb := b′ − b ∈ B(S, T ). By
Observation 1, let d, Δd ∈ RS×T

≥0 with bal(d) = b and bal(Δd) = Δb, and set

d ′ := d+Δd ∈ RS×T
≥0 . Then d ≤ d ′ and bal(d ′) = bal(d)+bal(Δd) = b+Δb = b′.

��
Lemma 17 An entry-exit topology (G, S, T ) is robust if and only if the network topol-
ogy

(
G, D(S, T )

)
is robust in the sense of Definition 1.
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Proof “⇒”: Assume that (G, S, T ) is robust, and let d ≤ d ′ ∈ RS×T
≥0 . Then,

bal(d)s =
∑

t∈T
d(s,t) ≤

∑

t∈T
d ′
(s,t) = bal(d ′)s for all s ∈ S,

bal(d)t = −
∑

s∈S
d(s,t) ≥ −

∑

s∈S
d ′
(s,t) = bal(d ′)t for all t ∈ T ,

bal(d)v = 0 = bal(d ′)v for all v ∈ V \ (S ∪ T ).

Thus, bal(d) � bal(d ′) and bal(d), bal(d ′) ∈ B(S, T ). Since (G, S, T ) is robust, it
follows that str(d) = str

(
bal(d)

) ≤ str
(
bal(d ′)

) = str(d), showing that
(
G, D(S, T )

)

is robust.
“⇐”: Assume that

(
G, D(S, T )

)
is robust, and let b, b′ ∈ B(S, T ) with b � b′. By

Lemma 16 there exist d, d ′ ∈ RS×T
≥0 with d ≤ d ′, bal(d) = b, and bal(d ′) = b′. Since(

G, D(S, T )
)
is robust, it follows that str(b) = str

(
bal(d)

) ≤ str
(
bal(d ′)

) = str(b′),
showing that (G, S, T ) is robust. ��

As our main result of this section, we provide a complete characterization of robust-
ness for entry-exit topologies. The following theorem states that an entry-exit topology
is robust if and only if there is an articulation node separating sources from sinks, i.e.,
there exists a node r ∈ V such that removing r from G disconnects G into two
subgraphs GS and GT with S \ {r} ⊆ V (GS) and T \ {r} ⊆ V (GT ).

Theorem 4 An entry-exit topology (G, S, T ) is robust if and only if G contains an
articulation node which separates the sources from the sinks.

Proof By Lemma 17 it suffices to show that the network topology
(
G, D(S, T )

)
is

robust if and only if G contains an articulation node that separates the sources from
the sinks.

“⇒”:Assume that there is no articulationnode separating the sources from the sinks.
ApplyingMenger’s Theorem to S and T yields the existence of s, s′ ∈ S, t , t ′ ∈ T such
that there are two node-disjoint paths P ∈ Ps,t and P ′ ∈ Ps′,t ′ . For i := (s, t ′) ∈ I and
j := (s′, t) ∈ I , we have thatPs,t = Psi ,t j andPs′,t ′ = Ps j ,ti . Consequently, Lemma7
implies that

(
G, D(S, T )

)
contains a type-1 minor. By Theorem 1,

(
G, D(S, T )

)
is

not robust.
“⇐”: Assume that

(
G, D(S, T )

)
is not robust. Then Lemma 1 implies that(

G, D(S, T )
)
contains a type-1 or a type-2 minor. First, assume that

(
G, D(S, T )

)

contains a type-1 minor. By Lemma 7, there exists i = (s, t ′) ∈ I and j = (s′, t) ∈ I
and node-disjoint paths P ∈ Psi ,t j = Ps,t and P ′ ∈ Ps j ,ti = Ps′,t ′ . Consequently,
there exists no articulation node between the sources and the sinks.

Next, assume that
(
G, D(S, T )

)
contains a type-2 network (Ḡ, D̄) as a minor; see

Fig. 1b. This type-2 minor contains node disjoint paths P̄ ∈ P Ḡ
si ,ti

and P̄ ′ ∈ P Ḡ
sk ,tk

. By

Lemma 6, also
(
G, D(S, T )

)
contains node-disjoint paths P ∈ PG

si ,ti
and P ′ ∈ PG

sk ,tk
and can therefore not contain an articulation node separating the sources from the
sinks. ��
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6 Algorithmically determining the robustness of a network

After having fully characterized robust network topologies theoretically, we show in
this section that the robustness of a network topology can be decided in polynomial
time. Referring to Theorem 1, deciding the robustness of a network is equivalent to
deciding whether a network has a type-1 or type-2 network as a minor. In this context,
Robertson and Seymour [30] showed that, for a fixed graph Ḡ, there is an algorithm
which decides whether Ḡ is a minor of larger graph G in time polynomial in the size
of G. Their result, however, is only known to hold for unlabeled graph minors, and a
generalization of their result to labeled graph minors is beyond the scope of this work.
Instead, to show that we can efficiently decide whether a graph has a type-1 or type-2
minor, we will use the following result of Robertson and Seymour [30].

Lemma 18 (Robertson and Seymour [30]) Let G = (V , E) be an undirected graph,
k a fixed natural number, and A = {(u1, v1), . . . , (uk, vk)} ⊆ V × V . Then, the
existence of node-disjoint paths P1 ∈ Pu1,v1 , . . . , Pk ∈ Puk ,vk can be decided in time
polynomial in the size of G.

For a set of node pairs A = {(u1, v1), . . . , (uk, vk)} ⊆ V × V , we call paths P1 ∈
Pu1,v1 , . . . , Pk ∈ Puk ,vk internally node-disjoint if, for all i , j ∈ {1, . . . , k}with i 	= j ,
we have

(
V (Pi )\{ui , vi }

)∩V (Pj ) = ∅, i.e., all nodes in V (Pi ) and V (Pj ) are pairwise
distinct, except for possibly {ui , vi }∩{u j , v j } 	= ∅. Note that decidingwhether a graph
G contains internally node-disjoint paths Pi ∈ PG

ui ,vi , for i = 1, . . . , k, can be easily

reduced in polynomial time to deciding whether a certain slightly modified graph Ĝ

contains node-disjoint paths P̄i ∈ P Ĝ
ûi ,v̂i

, where (ûi , v̂i ) are corresponding copies of

the pairs (ui , vi ), i = 1, . . . , k. Let (Internally)NodeDisjointPaths(A) be the
polynomial algorithm that decides whether there exist (internally) node-disjoint paths
Pi ∈ Pui ,vi , for i = 1, . . . , k.

Theorem 5 Deciding whether a network topology (G, D) is robust can be done in
time polynomial in the input size of (G, D).

Proof By Lemma 7, (G, D) contains a type-1 minor if and only if there exist i ,
j ∈ I with two node-disjoint paths P ∈ Psi ,t j and P ′ ∈ Ps j ,ti . This can be
decided in polynomial time by iterating over all i , j ∈ I with i 	= j and calling
NodeDisjointPaths

({(si , t j ), (s j , ti )}
)
.
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Moreover, if (G, D) does not contain a type-1 minor, we claim that the polynomial
algorithm ContainsType2Minor correctly decides whether (G, D) contains a type-
2 minor. To prove this claim, assume that (G, D) contains a type-2 minor (Ḡ, D̄), but
no type-1 minor. Denote the three edges of Ḡ by ei , e j , and ek ; see Fig. 13.

By Lemma 1, G contains a subtree for which contracting all edges except ei , e j ,
and ek , and deleting all labels except for si , ti , s j , t j , sk , tk yields (Ḡ, D̄). Within
this tree, let P be the path from si to tk , let Pt j and Ps j be the paths from t j to P and
from s j to P , respectively, and let Pti and Psk be the paths from ti to P ∪ Pt j and from
sk to P ∪ Ps j , respectively. Finally, let u j ∈ V (Pt j ) ∩ V (P), v j ∈ V (Ps j ) ∩ V (P),
ui ∈ V (Pti )∩V (P∪Pt j ), and vk ∈ V (Psk )∩V (P∪Ps j ); see Fig. 14 for an illustration.
Four cases can occur:

1. ui /∈ V (P) and vk /∈ V (P),
2. ui ∈ V (P) and vk /∈ V (P),
3. ui /∈ V (P) and vk ∈ V (P),
4. ui ∈ V (P) and vk ∈ V (P).

If ui ∈ V (P), then ui �P u j , since otherwise there exist node-disjoint si -t j - and s j -ti
paths, and hence (G, D) would contain a type-1 minor. Similarly, vk ∈ V (P) implies
v j � vk . Therefore, in the �-th case, the path P is the union of internally node-disjoint

Fig. 13 The type-2 minor in the
proof of Theorem 5
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Fig. 14 Example of a tree T containing a type-2 minor. Here, ui /∈ V (P) and vk ∈ V (P). Thus, T is the
union of internally node-disjoint paths for the pairs in A3

paths for the pairs in B�, � ∈ {1, 2, 3, 4}, where

B1 = {(si , u j ), (u j , v j ), (v j , tk)},
B2 = {(si , ui ), (ui , u j ), (u j , v j ), (v j , tk)},
B3 = {(si , u j ), (u j , v j ), (v j , vk), (vk, tk)},
B4 = {(si , ui ), (ui , u j ), (u j , v j ), (v j , vk), (vk, tk)}.

Moreover, if the �-th case occurs, then the union of P , Pti , and Pt j , is the union of
internally node-disjoint paths for the pairs in B� ∪ C�, where

C1 = C3 = {(u j , ui ), (ui , ti ), (ui , t j )},
C2 = C4 = {(ui , ti ), (u j , t j )}.

Finally, in the �-th case, the union of P , Pti , Pt j , Ps j , and Psk , is the union of internally
node-disjoint paths for the pairs in A� = B� ∪ C� ∪ D�, where

D1 = D2 = {(v j , vk), (vk, s j ), (vk, sk)},
D3 = D4 = {(v j , s j ), (vk, sk)}.

Hence, for one � ∈ {1, 2, 3, 4}, there exist internally node-disjoint paths for all pairs
in A�. Since the algorithm iterates over all such sets and checks for the existence of
internally node disjoint paths, it corresctly decides that the graph has a type 2 minor.

On the other hand, assume that the algorithm returns true. Then, there exists a
set of pairs A� = B� ∪ C� ∪ D� of the form as defined above, such that the sets
{si }, {ti , t j , ui , u j }, {s j , sk, v j , vk}, and {tk}, are pairwise disjoint, and there exists
internally node-disjoint paths for all pairs in A�. Let T ′ be the union of these paths,
and let T ⊆ T ′ be a spanning tree of T ′. Let P be the si -tk-path in T , let ei and ek be
the first and the last edge of P , respectively, and let e j be an edge of the u j -v j -path in
T . Then, deleting from G all edges in E \ E(T ), afterwards contracting all edges in
E(T ) \ {ei , e j , ek}, and finally deleting all labels except for si , ti , s j , t j , sk , tk yields
a type-2 minor. ��
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7 Case study

In order to illustrate our characterization of robust network topologies we consider two
real-world gas networks, determine all possible robust network topologies, and give
examples of non-robust network topologies. We analyze slightly simplified versions
of the gas networks of Greece (see the GasLib-134 instance of the GasLib library [33])
and Belgium (see the paper by De Wolf and Smeers [11] for a thorough discussion on
this network). The networks are illustrated in Fig. 15.

For each network, the data set consists of the network structure G, as well as the
location of sources S, sinks T , and storages P . At sources, gas can be injected into the
network, while at sinks, gas can be discharged. At storages, gas can be both injected
and discharged. Based on this data we construct network topologies by introducing
pairs (si , ti ), i ∈ I , where we require that for each i ∈ I we have si ∈ S ∪ P ,
ti ∈ T ∪ P , and T ⊆ {ti : i ∈ I }. The latter condition ensures that all sinks are
delivered. Both for Belgium and Greece, the graph G is a tree, and thus, we can apply
the results developed in Sect. 4.1. In particular, when computing the set of all robust
network topologies, by Theorem 2, we can restrict ourselves to network topologies
for which it is possible to give an orientation to the edges of the graph such that each
si -ti -path follows this orientation.

We use this fact to give the following compact representation of network topologies.
Each edge e ∈ E is given an orientation or remains unoriented. The resulting graph
then represents the set of all network topologies (G, D), D = (si , ti )i∈I , such that for
all i ∈ I the unique path from si to ti follows the orientation of the edges. When an
edge e is unoriented, no si -ti -path is allowed to pass e. We call such a representation
a configuration. For instance, the configuration

v1 v2 v3 v4

represents the network topologies whose set of source-sink pairs is contained in the
set

{{(v1, v2), (v3, v2)}, {(v1, v2)}, {(v3, v2)},∅
}
.

We call a configuration robust if all network topologies that are represented by that
configuration are robust. We further call a robust configuration maximal if all con-
figurations representing a strict superset of network topologies are not robust. By
Theorem 2, it follows that a configuration is robust if and only if (after contracting the
unoriented edges) it does not contain a path with two flips.

Both for Belgium and Greece, we compute all maximal robust configurations and
give examples of non-robust configurations. The robust configurations for Belgium are
illustrated in Fig. 16. In the first two robust configurations, (a) and (b), gas is imported
from Algeria. In (a) the storage in Loenhout operates as a source, whereas in (b) it
serves as a sink and is filled up. In the third robust configuration, (c), gas is imported
from Norway and both the storages in Dudzele and Loenhout operate as sinks. In the
robust configurations (d)–(f) no gas is imported and all sinks are supplied by storages.
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(a)

(b)

Fig. 15 Schematic plot of the Belgian and Greek gas networks

Note that for the configurations to be robust, it is necessary that no gas is imported
from Algeria and Norway at the same time, since otherwise there exists a path with
two flips. Examples of this situation are shown in Fig. 17.

The robust configurations for Greece are illustrated in Fig. 18. In (a) gas is inserted
at all three sources. Note that in this situation gas from Revythoussa can only supply
sources in the very southwest in order to avoid a path with two flips. In (b) no gas
is inserted at Sidirokastro. Thus, the sinks to the east are supplied by gas from Kipi.
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(a) (b) (c)

(d) (e) (f)

Fig. 16 All maximal robust configurations for the Belgian gas network

(a) (b) (c)

Fig. 17 Examples of non-robust configurations for the Belgian gas network

(a) (b) (c)

Fig. 18 All maximal robust configurations for the Greek gas network

The third robust configuration is shown in (c). Here, all sinks are supplied by gas
from Revythoussa and no gas is inserted at the other two sources. Whenever gas
from Revythoussa is sent to the north, in order for the configuration to be robust,
Revythoussa must be the only source at which gas is inserted. Otherwise, we obtain a
path with two flips as illustrated in Fig. 19a, b.
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(a) (b) (c)

Fig. 19 Examples of non-robust configurations for the Greek gas network

Fig. 20 Even though the
network topology is non-robust,
for specific edge resistances the
stress function can still be
non-decreasing

8 Conclusion and outlook

In this paper we gave a full characterization of robust network topologies. We proved
that a network topology is robust if and only if it neither contains a type-1 nor a
type-2 network as a minor. Applying this general result, we derived very specific
characterizations of robustness for special classes of network topologies. For trees,
robustness turned out to be equivalent to the possibility to (after contracting edges
which are not contained in any si -ti -path) give an orientation to the edges such that
the resulting directed graph is a bi-arborescence and every si -ti -path follows that
orientation. For cycles, we proved that a network topology is robust if and only if
sources and sinks lie on two disjoint paths and the sources and their corresponding
sinks occur in the same order on these two paths. Furthermore, we studied entry-exit
topologies which can be interpreted as special cases of network topologies. We proved
that an entry-exit topology is robust if and only if there exists an articulation node
which separates the sources from the sinks. Finally, we devised an efficient algorithm
determining the robustness of a given network topology.

We now discuss open problems for future research. In our definition of robustness
the stress function of a network is required to be non-decreasing for all possible edge
resistances of the network. Therefore, it could be possible that even though a network
topology is not robust in our sense, for specific given edge resistances, the stress
function is still non-decreasing. This is indeed the case for the following example.
Consider the network topology in Fig. 20 which contains a type-2 minor.

Assume that βe = 1 and ψu,v is the identity for every edge e = {u, v}. Then the
potential loss along an edge equals the amount of flow through that edge. Without loss
of generality we can assume that the potential of t2 is fixed to zero. Then the stress
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function str : R3≥0 → R≥0 is given by

str(d1, d2, d3) = max(πs1 , πs3) − min(πt1 , πt3)

= max(d1, d3 + d2) − min(−d1,−d3 + d2)

= max(d1, d3 + d2) + max(d1, d3 − d2)

=

⎧
⎪⎨

⎪⎩

2d1 if d1 ≥ d3 + d2,

d1 + d2 + d3 if d3 + d2 ≥ d1 ≥ d3 − d2,

2d3 if d3 − d2 ≥ d1,

which is a non-decreasing function. However, when doubling the resistances β{s1,t2}
and β{s2,t3}, and setting d1 = d3 = 1, then for all d2 ∈ [0, 1] we have

str(d1, d2, d3) = max(πs1 , πs3) − min(πt1, πt3)

= max(2d1, d3 + d2) − min(−d1,−2d3 + d2)

= max(2d1, d3 + d2) + max(d1, 2d3 − d2)

= max(2, 1 + d2) + max(1, 2 − d2)

= 4 − d2,

which is a decreasing function in d2.
A very interesting question would be to give a characterization and/or an efficient

algorithm that determine whether a potential-based flow network with given edge
resistances is robust in the sense that the stress function is non-decreasing. Further-
more, following the analysis of the qualitative property of monotonicity, another step
would be to examine quantitively how much the stress of a network changes when
demands are changing.
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