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                    Abstract
We develop foundational tools for classifying the extreme valid functions for the k-dimensional infinite group problem. In particular, we present the general regular solution to Cauchy’s additive functional equation on restricted lower-dimensional convex domains. This provides a k-dimensional generalization of the so-called Interval Lemma, allowing us to deduce affine properties of the function from certain additivity relations. Next, we study the discrete geometry of additivity domains of piecewise linear functions, providing a framework for finite tests of minimality and extremality. We then give a theory of non-extremality certificates in the form of perturbation functions. We apply these tools in the context of minimal valid functions for the two-dimensional infinite group problem that are piecewise linear on a standard triangulation of the plane, under a regularity condition called diagonal constrainedness. We show that the extremality of a minimal valid function is equivalent to the extremality of its restriction to a certain finite two-dimensional group problem. This gives an algorithm for testing the extremality of a given minimal valid function.
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                    Notes
	For example, in the context of homotopy methods [15], this triangulation is known as the K1 triangulation.


	Similar results were known independently in the functional equations community. For instance, [1] states the result for \(U = V\).


	Note that in [19], the word “minimal” needs to be replaced by “satisfies the symmetry condition” throughout the statement of their theorem and its proof.
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Appendices
Appendix A: Reflection groups and equivariant perturbations
We provide a general framework to motivate the definition of the functions [image: ] and [image: ] from Sect. 5.2. We describe the construction at a more abstract level with the hope that it could be a useful tool to analyze infinite group problems in higher dimensions.
We follow the direction of [5] where the relevant arithmetics of the one-dimensional problem is captured by studying sets of additivity relations of the form \(\pi ( t^i) + \pi (y) = \pi ( t^i + y)\) and \(\pi (x) + \pi ( r^i-x) = \pi ( r^i)\), where the points \( t^i\) and \( r^i\) are breakpoints of a one-dimensional minimal valid function \(\pi \). This is an important departure from the previous literature, which only uses additivity relations over non-degenerate intervals. The arithmetic nature of the problem comes into focus when one realizes that isolated additivity relations over single points are also important for studying extremality. These isolated additivity relations give rise to a subgroup of the group \({{\mathrm{Aff}}}(\mathbb R^k)\) of invertible affine linear transformations of \(\mathbb R^k\) as follows.
1.1 A.1 Reflection groups and their fundamental domains
For a point \(\mathbf{r} \in \mathbb R^k,\) define the reflection 
                              \(\rho _{\mathbf{r}}:\mathbb R^k\rightarrow \mathbb R^k\), \(\mathbf{x} \mapsto \mathbf{r}-\mathbf{x}\). For a vector \(\mathbf{t} \in \mathbb R^k,\) define the translation 
                              \(\tau _{\mathbf{t}} :\mathbb R^k\rightarrow \mathbb R\), \(\mathbf{x} \mapsto \mathbf{x} + \mathbf{t}\). We consider the reflections \(\rho _{\mathbf{r}}\) and translations \(\tau _{\mathbf{t}}\) as elements of the group \({{\mathrm{Aff}}}(\mathbb R^k)\).
Given a set R of points in \(\mathbb R^k \) and a set T of vectors in \(\mathbb R^k\), we define the reflection group 
                              \(\Gamma = \Gamma (R,T)=\langle \, \rho _{\mathbf{r}}, \tau _{\mathbf{t}} \mid \mathbf{r}\in R,\, \mathbf{t}\in T\,\rangle \). A group character of \(\Gamma \) is a group homomorphism \(\chi :\Gamma \rightarrow \mathbb C^\times \). The orbit of a point \({\mathbf{x}}\in \mathbb R^k\) under the group \(\Gamma \subseteq {{\mathrm{Aff}}}(\mathbb R^k)\) is the set \( \Gamma ({\mathbf{x}}) = \{ \gamma ({\mathbf{x}}) \mid \gamma \in \Gamma \}.\) We extend this notation to subsets of \(\mathbb R^k\): for a subset \(X \subseteq \mathbb R^k\), \(\Gamma (X) = \bigcup _{{\mathbf{x}}\in X}\Gamma ({\mathbf{x}})\).
In the following, we assume that \(R \ne \emptyset \), i.e., at least one of the generators is a reflection. The structure of the group \(\Gamma \) is easy to describe completely. The following lemma, which appeared in [5] for \(k=1\), summarizes the structure of this group and generalizes easily from [5].

                    Lemma A.1

                    Let \({\mathbf{r}}_1 \in R\). Then the group \(\Gamma =\Gamma (R,T)= \langle \, \rho _{{\mathbf{r}}}, \tau _{{\mathbf{t}}}\mid {\mathbf{r}}\in R, {\mathbf{t}}\in T\,\rangle \) is the semidirect product \(\Gamma ^+ \rtimes \langle \rho _{\mathbf{r}_1} \rangle \), where the (normal) subgroup of translations is of index 2 in \(\Gamma \) and can be written as
$$\begin{aligned} \Gamma ^+ = \{\tau _{\mathbf{t}} \mid \mathbf{t} \in Y\}, \end{aligned}$$

                    (13)
                

where Y is the additive subgroup of \(\mathbb R^k\)
                                 
$$\begin{aligned} Y = {\langle \, {\mathbf{r}}- {\mathbf{r}}_1, {\mathbf{t}}\mid {\mathbf{r}}\in R, {\mathbf{t}}\in T \,\rangle }_\mathbb Z\subseteq \mathbb R^k. \end{aligned}$$

                    (14)
                

There is a unique group character \(\chi :\Gamma \rightarrow \{\pm 1\}\subset \mathbb C^\times \) with \(\chi (\rho ) = -1\) for every reflection \(\rho \in \Gamma \) and \(\chi (\tau ) = +1\) for every translation \(\tau \in \Gamma \).

                  
                    Definition A.2

                    A function \(\psi :\mathbb R^k\rightarrow \mathbb R\) is called \(\Gamma \)-equivariant if it satisfies the equivariance formula
                                 
$$\begin{aligned} \psi (\gamma ({\mathbf{x}})) = \chi (\gamma ) \psi ({\mathbf{x}}) \quad \hbox {for} {\mathbf{x}}\in \mathbb R^k \hbox {and} \gamma \in \Gamma . \end{aligned}$$

                    (15)
                


                              
                  We will use formula (15) to give an alternative derivation of the functions [image: ] and [image: ] defined in Sect. 5.2. These functions provide the perturbation functions when Theorem 3.13 is invoked in Sect. 5.3.

                    Observation A.3

                    Let \(\Gamma = \Gamma (R,T)\) be a reflection group with \(R\cap T \ne \emptyset \) and let \(\psi \) be any \(\Gamma \)-equivariant function. Then, \(\rho _{\mathbf{0}} \in \Gamma \) and \(\psi ({\mathbf{0}}) = 0\).

                  
                    Proof

                    Let \({\mathbf{r}}\in R\cap T\); then \(\rho _{\mathbf{0}} = \rho _{\mathbf{r}}\circ \tau _{\mathbf{r}}\). Also, we have \(\psi ({\mathbf{0}}) = \psi (\rho _{\mathbf{0}} ({\mathbf{0}})) = \chi (\rho _{\mathbf{0}}) \psi ({\mathbf{0}}) = -\psi ({\mathbf{0}})\); hence, \(\psi ({\mathbf{0}}) = 0\). \(\square \)
                              

                  It follows from Observation A.3 that when \(R \cap T \ne \emptyset \) and \(\psi \) is \(\Gamma \)-equivariant, we have \(\psi \equiv 0\) on all of \(\Gamma ({\mathbf{0}})\). If we restrict ourselves to continuous \(\Gamma \)-equivariant functions and Y defined in (14) is dense in \(\mathbb R^k\), then \(\psi \equiv 0\) is the unique \(\Gamma \)-equivariant function. On the other hand, when Y has inherent discreteness properties, which we make precise in the following discussion, we can construct many non-trivial continuous \(\Gamma \)-equivariant functions. To do so, we only need to construct a function on a subset of \(\mathbb R^k\).

                    Definition A.4

                    A fundamental domain of a reflection group \(\Gamma \) is a subset of \(\mathbb R^k\) that is a system of representatives of the orbits.

                  Given a reflection group \(\Gamma \) for \(k=1\), if the group Y from (14) in Lemma A.1 is discrete, a fundamental domain of \(\Gamma \) can be chosen as a certain closed interval. In higher dimensions, when Y is discrete, the fundamental domain is no longer a closed set. Even so, it is easy to describe the closure of a fundamental domain. This is made concrete in the following discussion and Lemma A.5.
A well known fact is that for any discrete subgroup \(\Lambda \) of \(\mathbb R^k\) there exists a finite set of vectors \({\mathbf{t}}^1, \dots , {\mathbf{t}}^\ell \in \mathbb R^k\) such that \(\Lambda = \langle {\mathbf{t}}^1, \dots , {\mathbf{t}}^\ell \rangle _\mathbb Z\). These vectors are called the basis of \(\Lambda \). We say that \(\Lambda \) is a lattice of the linear subspace \(\langle {\mathbf{t}}^1, \dots , {\mathbf{t}}^\ell \rangle _\mathbb R\). The set \(V_\Lambda = \{\sum _{i=1}^\ell \lambda _i {\mathbf{t}}^i \mid 0 \le \lambda _i \le 1\}\) is called the closed fundamental parallelepiped of \(\Lambda \) with respect to the basis \({\mathbf{t}}^1, \dots , {\mathbf{t}}^\ell \). Define \({\mathbf{t}}= \sum _{i=1}^\ell {\mathbf{t}}^i\) and set \(M :=\max \{{\mathbf{t}}\cdot {\mathbf{x}}\mid {\mathbf{x}}\in V\} = {\mathbf{t}}\cdot {\mathbf{t}}\). Define \(V^+_\Lambda = \{{\mathbf{x}}\in V \mid {\mathbf{t}}\cdot {\mathbf{x}}\le \tfrac{M}{2}\}\) and \(V^-_\Lambda = \{{\mathbf{x}}\in V \mid {\mathbf{t}}\cdot {\mathbf{x}}\ge \tfrac{M}{2}\}\). (These definitions are of course with respect to the particular basis \(\{{\mathbf{t}}^1, \ldots , {\mathbf{t}}^\ell \}\); the basis will usually be fixed in a particular context).
A mixed-lattice is a subgroup \(Y \subseteq \mathbb R^k\) such that \(Y = \Lambda + L\) where \(\Lambda \) is a lattice of a linear subspace \(L'\) of \(\mathbb R^k\), L is a linear subspace of \(\mathbb R^k\), and \(L'\) and L are complementary subspaces, i.e., \(\mathbb R^k = L' + L\) and \(L \cap L' = \{{\mathbf{0}}\}\).

                    Lemma A.5

                    Let \(\Gamma =\Gamma (R,T)\) be a reflection group with \(\emptyset \subsetneq R\subseteq T\) such that the corresponding Y from (14) is a mixed-lattice, i.e., \(Y = \Lambda + L\) and let \({\mathbf{t}}^1, \ldots , {\mathbf{t}}^\ell \) be a basis of \(\Lambda \). Let \(L' = \langle \, {\mathbf{t}}^1, \ldots , {\mathbf{t}}^\ell \, \rangle _\mathbb R\). Let \(V^+_{\Lambda }\) be defined with respect to this basis. Then there exists a fundamental domain \({\tilde{V}}\) for \(\Gamma \) such that \({{\mathrm{int}}}_{L'}(V^+_{\Lambda }) \subseteq {\tilde{V}} \subseteq V^+_{\Lambda }\).

                  
                    Proof

                    We first show that \(V^+_{\Lambda }\) contains a representative for every point \({\mathbf{x}}\) in \(\mathbb R^k\). Let \({\mathbf{x}}= \sum _{i=1}^\ell \lambda _i {\mathbf{t}}^i + {\mathbf{p}}\) for some \(0 \le \lambda _i \le 1\), \({\mathbf{p}}\in Y\). We will show that \(\gamma ({\mathbf{x}}) \in V^+_{\Lambda }\) for some \(\gamma \in \Gamma \). Let \({\mathbf{x}}' = \sum _{i=1}^\ell \lambda _i {\mathbf{t}}^i\) and let \({\mathbf{t}}= \sum _{i=1}^k {\mathbf{t}}^i\). If \({\mathbf{x}}' \in V^+_{\Lambda }\), then we are done by taking \(\gamma = \tau _{-{\mathbf{p}}}\). Otherwise, \({\mathbf{t}}\cdot {\mathbf{x}}' > \tfrac{M}{2}\). Consider \(\tau _{\mathbf{t}}\circ \rho _{\mathbf{0}} ( {\mathbf{x}}') = {\mathbf{t}}-{\mathbf{x}}' = \sum _{i=1}^\ell (1-\lambda _i) {\mathbf{t}}^i\). By Observation A.3, \(\rho _{\mathbf{0}} \in \Gamma \) and so \(\gamma = \tau _{\mathbf{t}}\circ \rho _{\mathbf{0}} \circ \tau _{-{\mathbf{p}}} \in \Gamma \). Further, \({\mathbf{t}}\cdot ({\mathbf{t}}- {\mathbf{x}}') = M - {\mathbf{t}}\cdot {\mathbf{x}}' < \tfrac{M}{2}\), and hence \(\gamma ({\mathbf{x}}) = {\mathbf{t}}-{\mathbf{x}}' \in V^+_{\Lambda }\). Hence, \(V^+_{\Lambda }\) contains a representative for every point in \(\mathbb R^k\).

                    Next we show that every point \({\mathbf{x}}\in {{\mathrm{int}}}_{L'}(V^+_{\Lambda })\) is a unique representative in \(V^+_{\Lambda }\) because for any non-trivial \(\tau _{\mathbf{t}}\in \Gamma ^+\), \(\tau _{\mathbf{t}}({\mathbf{x}}) \notin V_{\Lambda }\), and for any \({\mathbf{r}}\in R\subseteq T\), \(\rho _{\mathbf{r}}({\mathbf{x}}) = \tau _{\mathbf{r}}\circ \rho _{\mathbf{0}}({\mathbf{x}})\) lies in \(\Gamma ^+({{\mathrm{int}}}_{L'}(V^-_{\Lambda }))\), which does not intersect \(V^+_{\Lambda }\) (recall that \(\Gamma ^+\) is the subgroup defined in (13) for \(\Gamma \)). \(\square \)
                              

                  
                    Fig. 10[image: figure 10]
Reflection groups [image: ] and [image: ] and the closures of their fundamental domains (blue) for \(m=3\). Left the case [image: ]. Translating the closure of the fundamental domain, [image: ] (blue triangle), by \(\tau _{\mathbf{t}}\) for [image: ] gives the triangles labeled with \(+\). Reflections by \(\rho _{\mathbf{r}}\) for \({\mathbf{r}}\in \frac{1}{q}\mathbb Z^2\) take these triangles to the triangles labeled with −. Right the case [image: ]. Translating the closure of the fundamental domain, [image: ] (blue line segment), by \(\tau _{\mathbf{t}}\) for [image: ] gives the diagonal strip, labeled \(+\), containing the fundamental domain. Further translations by \(\tau _{\mathbf{t}}\) for [image: ] give the remaining diagonal strips labeled \(+\). The reflections \(\rho _{\mathbf{r}}\) in [image: ] then take these strips to the strips labeled − (color figure online)


Full size image


                  The following lemma explains how to construct \(\Gamma \)-equivariant functions using the fundamental domain.

                    Lemma A.6

                    (Construction of \(\Gamma \)-equivariant functions) Let \(\Gamma =\Gamma (R,T)\) be a reflection group with \(\emptyset \subsetneq R\subseteq T\) such that the corresponding Y from (14) is a mixed-lattice, i.e., \(Y = \Lambda + L\) and let \({\mathbf{t}}^1, \ldots , {\mathbf{t}}^\ell \) be a basis of \(\Lambda \). Let \(L' = \langle \, {\mathbf{t}}^1, \ldots , {\mathbf{t}}^\ell \, \rangle _\mathbb R\). Let \(V^+_{\Lambda }\) be defined with respect to this basis. Let \(\psi :V^+_{\Lambda }\rightarrow \mathbb R\) be any function such that \(\psi \big |_{\partial _{L'}(V^+_{\Lambda })} = 0\), where \(\partial _{L'}(V^+_{\Lambda })\) denotes the boundary of \(V^+_{\Lambda }\) with respect to the linear subspace \(L'\). Then the equivariance formula (15) gives a well-defined extension of \(\psi \) to all of \(\mathbb R^k\).

                  Figures 8 and 10 illustrate this construction.

                    Proof

                    By Lemma A.5, \(V^+_{\Lambda }\) contains a fundamental domain. Since \({{\mathrm{int}}}_{L'}(V^+_{\Lambda })\) has unique representatives for the orbits of \(\Gamma \) and \(\psi = 0\) on the boundary \(\partial _{L'}(V^+_{\Lambda })\), the extension is well-defined. \(\square \)
                              

                  1.2 A.2 Deriving the perturbation functions [image: ] using equivariance formulas
In [5], the authors use \(\Gamma \!=\! \langle \,\rho _g, \tau _g\mid g \in \frac{1}{q}\mathbb Z\,\rangle \), where \(Y \!=\! \Lambda \!=\! \tfrac{1}{q}\mathbb Z\). Using the lattice basis \(\{ t^1 = \tfrac{1}{q}\}\), we obtain the fundamental parallelepiped \(V_\Lambda = [0, \tfrac{1}{q}]\) and hence \(V^+_\Lambda \!=\! [0, \tfrac{1}{2q}]\). In this one-dimensional case, \(V^+_\Lambda \) is actually a fundamental domain for \(\Gamma \).
We proceed similarly with two different reflection groups in dimension two. We first consider the reflection group [image: ] generated by reflections and translations corresponding to all possible vertices of \({\mathcal {P}}_q\); see Fig. 10 (left). The corresponding lattice [image: ]. Using the lattice basis [image: ], we obtain the fundamental parallelepiped [image: ] from which we obtain [image: ]. We make this particular choice of fundamental domain in part because [image: ] and [image: ]. (Note that we have simplified the notation, e.g., [image: ] is now denoted by [image: ].)
For any \(m \in \mathbb Z_{\ge 3}\), we may now interpret the function [image: ] defined in Sect. 5.2 in the following way: at all vertices of \({\mathcal {P}}_{mq}\) that lie on the boundary of [image: ], let [image: ] take the value 0, and at all vertices of \({\mathcal {P}}_{mq}\) that lie on the interior of of [image: ], we assign [image: ] to have the value 1. Interpolate these values to define [image: ] on [image: ]. By Lemma A.6, the extension of [image: ] to \(\mathbb R^2\) via the equivariance formula (15) is well-defined. This is an alternative description for the function [image: ] defined in Sect. 5.2; refer back to Fig. 8 (left) for an illustration.
One possible choice of a fundamental domain for [image: ] is
[image: ]

where \([{\mathbf{x}}, {\mathbf{y}}]\) and \([{\mathbf{x}},{\mathbf{y}})\) denote the closed and half open line segments, respectively, between \({\mathbf{x}}\) and \({\mathbf{y}}\). For our construction, only its closure, [image: ], matters.

                    Lemma A.7

                    The function [image: ] has the following properties:
	
                          (i)
                          
                            
                                            [image: ] on all edges and vertices [image: ].

                          
                        
	
                          (ii)
                          
                            
                                            [image: ] for all \({\mathbf{x}}\in \mathbb R^2\) and \({\mathbf{g}}\in \frac{1}{q}\mathbb Z^2\).

                          
                        
	
                          (iii)
                          
                            
                                            [image: ] for all \({\mathbf{x}}\in \mathbb R^2\) and \({\mathbf{g}}\in \frac{1}{q}\mathbb Z^2\).

                          
                        
	
                          (iv)
                          
                            Let \(i=1,2\) or 3, and let \(F\in \Delta {\mathcal {P}}_q\) be such that [image: ]. Then, [image: ].

                          
                        
	
                          (v)
                          
                            
                                            [image: ] is continuous piecewise linear over \({\mathcal {P}}_{mq}\).

                          
                        


                              
                  
                    Proof

                    Properties (i), (ii), (iii) follow directly from the equivariance formula (15). The function is continuous because it is continuous on the interior of each [image: ] by construction and because [image: ] on all edges [image: ]. Property (iv) follows from properties (i), (ii), and (iii) and the fact that [image: ]. Finally, the function is continuous piecewise linear by construction as well. \(\square \)
                              

                  We next analyze [image: ] from Sect. 5.2. Let [image: ] be the group generated by reflections and translations corresponding to all points on diagonal edges of \({\mathcal {P}}_q\); see Fig. 10 (right). In this case, [image: ] where [image: ] and [image: ] is as defined in Definition 4.12. We choose the lattice basis [image: ], which has the fundamental parallelepiped [image: ] and hence [image: ]. (Note that we have simplified the notation, e.g., 
[image: figure a]




 is now denoted by [image: ].)
We consider an alternative description for the function [image: ], \(m\ge 3\). This is done by setting [image: ], [image: ], and for integer i with \(1 \le i < \tfrac{m}{2}\) we set [image: ]. Then the function is interpolated over the vertices of \({\mathcal {P}}_{mq}\) that lie in [image: ]. We extend the function to all of \(\mathbb R^2\) by applying the equivariance formula (15) (the extension is well-defined by Lemma A.6). This results in the continuous piecewise linear function [image: ] defined in Sect. 5.2; refer back to Fig. 8 (right) for an illustration.

                    Lemma A.8

                    The function [image: ] has the following properties:
	
                          (i)
                          
                            
                                            [image: ] on all edges and vertices [image: ].

                          
                        
	
                          (ii)
                          
                            
                                            [image: ] for all \({\mathbf{x}}\in \mathbb R^2\) and \({\mathbf{y}}\in \mathbb R^2\) such that \(\mathbf{1} \cdot {\mathbf{y}}\equiv 0 \pmod {\tfrac{1}{q}}\).

                          
                        
	
                          (iii)
                          
                            
                                            [image: ] for all \({\mathbf{x}}\in \mathbb R^2\) and \({\mathbf{y}}\in \mathbb R^2\) such that \(\mathbf{1} \cdot {\mathbf{y}}\equiv 0 \pmod {\tfrac{1}{q}}\).

                          
                        
	
                          (iv)
                          
                            Let \(i=1,2,\) or 3 and let \(F \in \Delta {\mathcal {P}}_q\) be such that [image: ]. Then, [image: ].

                          
                        
	
                          (v)
                          
                            
                                            [image: ] is continuous piecewise linear over \({\mathcal {P}}_{mq}\).

                          
                        


                              
                  
                    Proof

                    Properties (i), (ii), (iii) follow directly from the equivariance formula (15). Property (iv) follows from properties (i), (ii), and (iii) and the fact that all faces of [image: ] are contained in the set \(\{{\mathbf{y}}\in \mathbb R^2\mid \mathbf{1} \cdot {\mathbf{y}}\equiv 0 \pmod {\tfrac{1}{q}}\}\). The function is continuous because the restriction to [image: ] is continuous and the function vanishes on the relative boundary of [image: ]. Finally, the function is piecewise linear by construction as well. \(\square \)
                              

                  Appendix B: Genuinely k-dimensional functions
1.1 B.1 Preliminaries
In this section, we prove useful properties of a special class of functions called genuinely k-dimensional functions. In the process, we motivate our assumption in Theorems 1.8 and 1.9 that [image: ].

                    Definition B.1

                    A function \(\theta :\mathbb R^k \rightarrow \mathbb R\) is genuinely k-dimensional if there does not exist a function \(\varphi :\mathbb R^{k-1} \rightarrow \mathbb R\) and a linear map \(T :\mathbb R^k \rightarrow \mathbb R^{k-1}\) such that \(\theta = \varphi \circ T\).

                  Genuinely k-dimensional functions were studied in [7]. We will show that \({\mathbf{f}}\) must be a vertex of the complex \({\mathcal {P}}\) whenever \(\pi \) is a minimal piecewise linear function over \({\mathcal {P}}\) that is genuinely k-dimensional. We will then show that it suffices to consider only genuinely k-dimensional functions. This is because if the function is not genuinely k-dimensional we can study the function in a lower dimension by instead studying its restriction to a linear subspace of \(\mathbb R^k\).
We will need the following lemma, which is implied by Lemma 13 in [3] and is a consequence of Dirichlet’s Approximation Theorem for the reals.

                    Lemma B.2

                    ([7]) Let \({\mathbf{y}}\in \mathbb R^k\) be any point and \({\mathbf{r}}\in \mathbb R^k{\setminus } \{{\mathbf{0}}\}\) be any direction. Then for every \(\epsilon > 0\) and \({\bar{\lambda }} \ge 0\), there exists \({\mathbf{w}}\in \mathbb Z^k\) such that \({\mathbf{y}}+ {\mathbf{w}}\) is at distance less than \(\epsilon \) from the half line \(\{{\mathbf{y}}+ \lambda {\mathbf{r}}\mid \lambda \ge {\bar{\lambda }}\}\).

                  The proof of the next lemma is adapted from the proof of Claim 2 in [3]. For any linear subspace M of \(\mathbb R^k\), \({{\mathrm{proj}}}_M(\cdot )\) will denote orthogonal projection onto M. Also \(M^\perp \) will denote the orthogonal complement of M.

                    Lemma B.3

                    Let L be any linear subspace of \(\mathbb R^k\). Then \({{\mathrm{proj}}}_L(\mathbb Z^k)\) has the following form: there exists a linear subspace \(L' \subseteq L\) (we allow the possibility \(L' = \{{\mathbf{0}}\}\)) such that \({{\mathrm{proj}}}_L(\mathbb Z^k) = \Lambda + D\), where \(\Lambda \) is a lattice that spans \(L'^\perp \cap L\) and D is a dense subset of \(L'\).

                  
                    Proof

                    Let \(\Lambda ' = {{\mathrm{proj}}}_L(\mathbb Z^k)\). Let \(V_\epsilon \) be the linear subspace of L spanned by the points in \(\{{\mathbf{y}}\in \Lambda '\mid \Vert {\mathbf{y}}\Vert <\epsilon \}\). Notice that, given \(\epsilon '>\epsilon ''>0\), then \(V_{\epsilon '}\supseteq V_{\epsilon ''}\supseteq \{{\mathbf{0}}\}\). Since \(\dim (V_\epsilon )\) changes discretely as \(\epsilon \rightarrow 0\), there exists \(\epsilon _0>0\) such that \(V_\epsilon =V_{\epsilon _0}\) for every \(0<\epsilon <\epsilon _0\). Let \(L'=V_{\epsilon _0}\). Observe that \(\Lambda '\cap L'\) is dense in \(L'\) and \(\Lambda = {{\mathrm{proj}}}_{L'^\perp \cap L}(\Lambda ')\) is discrete (i.e., \(B({\mathbf{0}}, \epsilon _0) \cap \Lambda = \{{\mathbf{0}}\}\)). Since \(\Lambda \) is the projection of a subgroup of \(\mathbb R^k\), it is also a subgroup and therefore it is a discrete subgroup, i.e., a lattice. We thus have the result using \(D = \Lambda ' \cap L'\). \(\square \)
                              

                  The following lemma can be found within the proof of Lemma 2.10 in [7] for the case where L is a one-dimensional linear space.

                    Lemma B.4

                    Suppose \(\theta :\mathbb R^k \rightarrow \mathbb R\) is a subadditive function such that \(\theta = 0\) on a linear space L. For any \({\mathbf{x}},{\mathbf{y}}\in \mathbb R^k\) such that \({\mathbf{x}}- {\mathbf{y}}\in L\), we have \(\theta ({\mathbf{x}}) = \theta ({\mathbf{y}})\).

                  
                    Proof

                    Since \({\mathbf{x}}-{\mathbf{y}}\in L\), \(\theta ({\mathbf{x}}-{\mathbf{y}}) = 0\). By subadditivity, \(\theta ({\mathbf{y}}) + \theta ({\mathbf{x}}-{\mathbf{y}}) \ge \theta ({\mathbf{x}})\), which implies \(\theta ({\mathbf{y}}) \ge \theta ({\mathbf{x}})\). Similarly, \(\theta ({\mathbf{x}}) \ge \theta ({\mathbf{y}})\), and hence we have equality. \(\square \)
                              

                  The following lemma is modified version of Lemma 2.10 from [7] to give detail about when we can choose a linear map T that can be represented as a rational matrix. We assume Lipschitz continuity because this continuity is implicit in continuous piecewise linear functions.

                    Lemma B.5

                    Let \(\theta :\mathbb R^k \rightarrow \mathbb R\) be nonnegative, Lipschitz continuous, subadditive and periodic modulo the lattice \(\mathbb Z^k\). Suppose there exist \({\mathbf{r}}\in \mathbb R^k{\setminus }\{{\mathbf{0}}\}\) and \({\bar{\lambda }} >0\) such that \(\theta (\lambda {\mathbf{r}}) = 0\) for all \(0\le \lambda \le {\bar{\lambda }}\). Then \(\theta \) is not genuinely k-dimensional, i.e., there exists a linear map \(T:\mathbb R^k\rightarrow \mathbb R^{k-1}\) and a function \(\varphi :\mathbb R^{k-1} \rightarrow \mathbb R\) such that \(\pi = \varphi \circ T\). Furthermore, if \({\mathbf{r}}\in \mathbb Q^k\), then T can be represented by a rational matrix.

                  
                    Proof

                    Let the Lipschitz constant for \(\theta \) be K, that is, \(|\theta ({\mathbf{x}})-\theta ({\mathbf{y}})| \le K\Vert {\mathbf{x}}-{\mathbf{y}}\Vert \) for all \({\mathbf{x}},{\mathbf{y}}\in \mathbb R^k\).

                    We will begin by showing that \(\theta (\lambda {\mathbf{r}}) = 0\) for all \(\lambda \in \mathbb R\). Let \(\lambda ' \in \mathbb R\).

                    Suppose that \(\lambda ' > {\bar{\lambda }}\) and let \(M \in \mathbb Z_+\) such that \(0 \le \lambda '/M \le {\bar{\lambda }}\). From the hypothesis, we have that \(\theta (\frac{\lambda '}{M} {\mathbf{r}})= 0\). By nonnegativity and subadditivity of \(\theta \) we see \( 0 \le \theta (\lambda ' {\mathbf{r}}) \le M \theta (\frac{\lambda '}{M} {\mathbf{r}})= 0, \) and therefore, \(\theta (\lambda ' {\mathbf{r}}) = 0\). This shows that \(\theta (\lambda {\mathbf{r}}) = 0\) for all \(\lambda \ge 0\).

                    Next suppose \(\lambda ' < 0\). By Lemma B.2, for all \(\epsilon >0\) there exists a \({\mathbf{w}}\in \mathbb Z^k\) such that \(\lambda ' {\mathbf{r}}+ {\mathbf{w}}\) is at distance less than \(\epsilon \) from the half line \(\{\lambda ' {\mathbf{r}}+ \lambda {\mathbf{r}}\mid \lambda \ge -\lambda '\} = \{\lambda {\mathbf{r}}\mid \lambda \ge 0\}\). That is, there exists a \({\tilde{\lambda }} \ge 0\) such that \(\Vert \lambda ' {\mathbf{r}}+ {\mathbf{w}}- {\tilde{\lambda }} {\mathbf{r}}\Vert \le \epsilon \). Since \(\theta ({\tilde{\lambda }} {\mathbf{r}}) = 0\), by periodicity and then Lipschitz continuity, we see that \( 0 \le \theta (\lambda ' {\mathbf{r}}) = \theta (\lambda '{\mathbf{r}}+ {\mathbf{w}}) = \theta ( \lambda ' {\mathbf{r}}+ {\mathbf{w}}) - \theta ({\tilde{\lambda }} {\mathbf{r}}) \le K \epsilon . \) This holds for every \(\epsilon >0\) and therefore \(\theta (\lambda '{\mathbf{r}}) = 0\). Thus, we have shown that \(\theta (\lambda {\mathbf{r}}) = 0\) for all \(\lambda \in \mathbb R\).

                    Let \(L = \{ \, \lambda {\mathbf{r}}\mid \lambda \in \mathbb R\}\). By Lemma B.4, for any \({\mathbf{x}},{\mathbf{y}}\) such that \({\mathbf{x}}-{\mathbf{y}}\in L\), we have \(\theta ({\mathbf{x}}) = \theta ({\mathbf{y}})\).

                    We conclude that \(\theta = \varphi \circ {{\mathrm{proj}}}_{L^\perp }\) for some function \(\varphi :\mathbb R^{k-1} \rightarrow \mathbb R\) and therefore \(\theta \) is not genuinely k-dimensional. Finally, if \({\mathbf{r}}\in \mathbb Q^k\), then \({{\mathrm{proj}}}_{L^\perp }\) can be represented by a rational matrix. \(\square \)
                              

                  1.2 B.2 Dimension reduction for functions that are not genuinely k-dimensional
We now show that it suffices to consider only genuinely k-dimensional functions for testing extremality of continuous piecewise linear functions.

                    Remark B.6

                    Given a piecewise linear continuous valid function \(\zeta :\mathbb R\rightarrow \mathbb R\) for the one-dimensional infinite group problem \(R_{\mathbf{f}}(\mathbb R,\mathbb Z)\), Dey–Richard [11, Construction 6.1] consider the function \(\kappa :\mathbb R^2\rightarrow \mathbb R\), \(\kappa (\mathbf{x}) =\zeta (\mathbf{1}\cdot \mathbf{x})\), where [image: ], and show that \(\kappa \) is minimal and extreme if and only if \(\zeta \) is minimal and extreme, respectively. If \(\zeta \) has rational breakpoints in \(\frac{1}{q}\mathbb Z\) with \(q \in \mathbb Z_+\), then \(\kappa \) belongs to our class of diagonally constrained continuous piecewise linear functions over \({\mathcal {P}}_q\). However, these functions are not genuinely 2-dimensional, and as Dey–Richard point out, we can study the one-dimensional function \(\zeta \) instead of the 2-dimensional function \(\kappa \). We call the function \(\kappa \) a diagonal embedding of \(\zeta \).

                  The following two theorems can be found in [11] for the special case of diagonal embeddings. We also refer the interested reader to [12] where the authors exhibit a sequential merge procedure, creating extreme functions in higher dimensions from extreme functions in lower dimensions and vice versa.

                    Lemma B.7

                    Let \(T:\mathbb R^k \rightarrow \mathbb R^\ell \) be a linear map. Suppose \(\pi :\mathbb R^k \rightarrow \mathbb R\) and \(\varphi :T\mathbb R^k \rightarrow \mathbb R\) satisfy \(\pi = \varphi \circ T\). Then \(\pi \) is minimal for \(R_{\mathbf{f}}(\mathbb R^k, \mathbb Z^k)\) if and only if \(\varphi \) is minimal for \(R_{T{\mathbf{f}}}(T\mathbb R^k, T\mathbb Z^k)\).

                  
                    Proof

                    (\(\Longleftarrow \)) Suppose \(\varphi \) is minimal for \(R_{T{\mathbf{f}}}(T\mathbb R^k, T\mathbb Z^k)\). We demonstrate that \(\pi \) satisfies the criterion from Theorem 1.1 to be minimal.
	
                          1.
                          
                            For any \({\mathbf{z}}\in \mathbb Z^k\), \(0 = \varphi (T{\mathbf{z}}) = \pi ({\mathbf{z}})\).

                          
                        
	
                          2.
                          
                            For any \({\mathbf{x}},{\mathbf{y}}\in \mathbb R^{k}\) we have 
$$\begin{aligned} \pi ({\mathbf{x}}) + \pi ({\mathbf{y}}) - \pi ({\mathbf{x}}+ {\mathbf{y}})= & {} \varphi (T{\mathbf{x}}) + \varphi (T{\mathbf{y}}) - \varphi (T({\mathbf{x}}+ {\mathbf{y}})) \\= & {} \varphi (T{\mathbf{x}}) + \varphi (T{\mathbf{y}}) - \varphi (T{\mathbf{x}}+ T{\mathbf{y}}) \ge 0. \end{aligned}$$


                                          
                          
                        
	
                          3.
                          
                            For any \({\mathbf{x}}\in \mathbb R^k\), we have 
$$\begin{aligned} \pi ({\mathbf{x}}) + \pi ({\mathbf{f}}-{\mathbf{x}}) = \varphi (T{\mathbf{x}}) + \varphi (T({\mathbf{f}}- {\mathbf{x}})) = \varphi (T{\mathbf{x}}) + \varphi (T{\mathbf{f}}- T{\mathbf{x}}) = 1. \end{aligned}$$


                                          
                          
                        


                              
                  Therefore \(\pi \) is minimal by Theorem 1.1.
(\(\Longrightarrow \)) Suppose \(\pi \) is minimal for \(R_{\mathbf{f}}(\mathbb R^k, \mathbb Z^k)\). We demonstrate that \(\varphi \) satisfies the criterion from Theorem 1.1 to be minimal.
	
                        1.
                        
                          For any \({\mathbf{z}}\in \mathbb Z^k\), \(0 = \pi ({\mathbf{z}}) = \varphi (T{\mathbf{z}})\).

                        
                      
	
                        2.
                        
                          For any \({\mathbf{x}},{\mathbf{y}}\in T\mathbb R^k\), let \({\hat{{\mathbf{x}}}} \in T^{-1}{\mathbf{x}}\), \({\hat{{\mathbf{y}}}} \in T^{-1}{\mathbf{y}}\). Then 
$$\begin{aligned} 0 \le \pi ({\hat{{\mathbf{x}}}}) + \pi ({\hat{{\mathbf{y}}}}) - \pi ({\hat{{\mathbf{x}}}} + {\hat{{\mathbf{y}}}}) = \varphi ({\mathbf{x}}) + \varphi ({\mathbf{y}}) - \varphi ( {\mathbf{x}}+ {\mathbf{y}}). \end{aligned}$$


                                       
                        
                      
	
                        3.
                        
                          Similarly, for any \({\mathbf{x}}\in T\mathbb R^k\), let \({\hat{{\mathbf{x}}}} \in T^{-1} {\mathbf{x}}\). Then 
$$\begin{aligned} 1 = \pi ({\hat{{\mathbf{x}}}}) + \pi ({\mathbf{f}}-{\hat{{\mathbf{x}}}}) = \varphi ({\mathbf{x}}) + \varphi (T{\mathbf{f}}- {\mathbf{x}}). \end{aligned}$$


                                       
                        
                      

Therefore \(\varphi \) is minimal by Theorem 1.1.\(\square \)
                           

                    Lemma B.8

                    Let \(\pi :\mathbb R^k \rightarrow \mathbb R\) be a minimal valid function. Let \(T :\mathbb R^k \rightarrow \mathbb R^{\ell }\) be a linear map and let \(\varphi :T\mathbb R^k \rightarrow \mathbb R\) such that \(\pi = \varphi \circ T\). Then \(\pi \) is extreme for \(R_{\mathbf{f}}(\mathbb R^k,\mathbb Z^k)\) if and only if \(\varphi \) is extreme for \(R_{T{\mathbf{f}}}(T\mathbb R^k, T\mathbb Z^k)\).

                  
                    Proof

                    (\(\Longrightarrow \)) We prove the contrapositive. Suppose \(\varphi \) is not extreme for \(R_{T{\mathbf{f}}}(T\mathbb R^k, T\mathbb Z^k)\). Then, by Lemma 1.4, there exist distinct minimal valid functions \(\varphi ^1, \varphi ^2\) for \(R_{T{\mathbf{f}}}(T\mathbb R^k, T\mathbb Z^k)\) such that \(\varphi = \tfrac{1}{2}( \varphi ^1 + \varphi ^2)\). But then \(\pi ^1 = \varphi ^1 \circ T\) and \(\pi ^2 = \varphi ^2 \circ T\) are distinct functions, and \(\pi = \tfrac{1}{2}( \pi ^1 + \pi ^2)\). By Lemma B.7, \(\pi ^1, \pi ^2\) are minimal for \(R_{\mathbf{f}}(\mathbb R^k, \mathbb Z^k)\). Therefore \(\pi \) is not extreme.

                    (\(\Longleftarrow \)) We again prove the contrapositive. Suppose that \(\pi \) is not extreme for \(R_{\mathbf{f}}(\mathbb R^k, \mathbb Z^k)\). Then there exist distinct minimal valid functions \(\pi ^1, \pi ^2\) for \(R_{\mathbf{f}}(\mathbb R^k, \mathbb Z^k)\) such that \(\pi = \tfrac{1}{2} (\pi ^1 + \pi ^2)\). Since \(\pi , \pi ^1, \pi ^2\) are minimal by Lemma 1.4, \(\pi ({\mathbf{0}})= \pi ^1({\mathbf{0}}) = \pi ^2({\mathbf{0}}) = 0\). Since \(E(\pi ) \subseteq E(\pi ^1), E(\pi ^2)\) by Lemma 1.4, and \(0 = \pi ({\mathbf{x}}) + \pi (-{\mathbf{x}}) - \pi ({\mathbf{0}}) = \Delta \pi ({\mathbf{x}},-{\mathbf{x}})\) for all \({\mathbf{x}}\in T^{-1}({\mathbf{0}})\), it follows that \(\pi ^i({\mathbf{x}}) = -\pi ^i(-{\mathbf{x}})\) for \(i=1,2\). Since \(\pi ^i\) are valid functions, \(\pi ^i \ge 0\), therefore we must have \(\pi ^i({\mathbf{x}}) =0 \) for all \({\mathbf{x}}\in T^{-1}({\mathbf{0}})\). By Lemma B.4, \(\pi ^i({\mathbf{x}}) = \pi ^i({\mathbf{y}})\) whenever \({\mathbf{x}}- {\mathbf{y}}\in T^{-1}({\mathbf{0}})\). Therefore, we must have \(\varphi ^1, \varphi ^2\) such that \(\pi ^1 = \varphi ^1 \circ T\) and \(\pi ^2 = \varphi ^2\circ T\). Since \(\pi ^1, \pi ^2\) are distinct, the functions \(\varphi ^1, \varphi ^2\) are distinct as well. Also since \(\pi = \tfrac{1}{2}( \pi ^1 + \pi ^2)\), we have \(\varphi = \tfrac{1}{2}( \varphi ^1 + \varphi ^2)\). By Lemma B.7, \(\varphi ^1, \varphi ^2\) are minimal for \(R_{T{\mathbf{f}}}(T\mathbb R^k, T \mathbb Z^k)\). Therefore \(\varphi \) is not extreme. \(\square \)
                              

                  Given any family of polyhedra \({\mathcal {F}}\) (not necessarily a polyhedral complex), we say a polyhedral complex \({\mathcal {P}}\) is a refinement of \({\mathcal {F}}\) if every polyhedron of \({\mathcal {F}}\) is a union of polyhedra from \({\mathcal {P}}\).

                    Proposition B.9

                    (Dimension reduction) Let \({\mathcal {P}}\) be a pure and complete polyhedral complex in \(\mathbb R^k\) that is periodic modulo \(\mathbb Z^k\). Let \(\pi :\mathbb R^k \rightarrow \mathbb R\) be a piecewise linear function over \({\mathcal {P}}\), such that \(\pi \) is nonnegative, subadditive, periodic modulo \(\mathbb Z^k\) and \(\pi ({\mathbf{0}}) = 0\). If \(\pi \) is not genuinely k-dimensional, then there exists a natural number \(0 \le \ell < k\), a pure and complete polyhedral complex \({\mathcal {X}}\) in \(\mathbb R^\ell \) that is periodic modulo \(\mathbb Z^\ell \), a nonnegative and subadditive function \(\phi :\mathbb R^\ell \rightarrow \mathbb R\) that is piecewise linear over \({\mathcal {X}}\), and a point \({\mathbf{f}}' \in \mathbb R^\ell {\setminus } \mathbb Z^\ell \) with the following properties : 
	
                          1.
                          
                            
                                            \(\pi \) is minimal for \(R_{\mathbf{f}}(\mathbb R^k, \mathbb Z^k)\) if and only if \(\phi \) is minimal for \(R_{{\mathbf{f}}'}(\mathbb R^\ell , \mathbb Z^\ell )\).

                          
                        
	
                          2.
                          
                            
                                            \(\pi \) is extreme for \(R_{\mathbf{f}}(\mathbb R^k, \mathbb Z^k)\) if and only if \(\phi \) is extreme for \(R_{{\mathbf{f}}'}(\mathbb R^\ell , \mathbb Z^\ell )\).

                          
                        


                              
                  
                    Proof

                    Since \(\pi \) is not genuinely k-dimensional, it follows by iteratively applying the definition of genuinely k-dimensional functions that there exist a number \(0 \le \ell < k\), a function \(\varphi :\mathbb R^\ell \rightarrow \mathbb R\), and a linear map \(T:\mathbb R^k \rightarrow \mathbb R^\ell \) such that \(\varphi :\mathbb R^\ell \rightarrow \mathbb R\) is genuinely \(\ell \)-dimensional and \(\pi = \varphi \circ T\). Since \(\pi \) is nonnegative, \(\varphi \) must also be nonnegative. Since \(\pi \) is subadditive and T is additive, \(\varphi \) must be subadditive.

                    
                                 Claim 1 
                                 \(T\mathbb Z^k\) is a lattice that spans \(\mathbb R^\ell \).

                    Since every linear map is a projection composed with an isomorphism, Lemma B.3 implies that there exists a linear subspace \(L \subseteq \mathbb R^\ell \) such that \(T\mathbb Z^k = \Lambda + D\), where \(\Lambda \) is a lattice spanning \(L^\perp \) and D is dense in L. If \(L = \{{\mathbf{0}}\}\) then we are done. So we assume \(\dim (L) \ge 1\). Since \(\pi \) is continuous (it is piecewise linear over a locally finite polyhedral complex), and T is linear map, it follows that \(\varphi \) is continuous. Also, since \(\pi \) vanishes over \(\mathbb Z^k\), \(\varphi \) vanishes over \(T\mathbb Z^k\). But this implies that \(\varphi \) vanishes over D, and thus over L. By Lemma B.4, \(\varphi \) is constant on the affine subspaces parallel to L. This contradicts the assumption that \(\varphi \) is genuinely \(\ell \)-dimensional. This concludes the proof of Claim 1.

                    Let \({\mathcal {U}} = \bigcup _{I \in {\mathcal {P}}} \{I \cap [0,1]^n\}\). Since \(\pi \) is piecewise linear over \({\mathcal {P}}\), \(\pi \) is also piecewise linear over a refinement of \({\mathcal {P}}\), in particular, over the polyhedral complex \(\bigcup _{I \in {\mathcal {U}}, {\mathbf{w}}\in \mathbb Z^k}\{ I + {\mathbf{w}}\}\), that is periodic modulo \(\mathbb Z^k\). Since \(T\mathbb Z^k\) is a lattice and for every \(I \in {\mathcal {U}}\), TI is a polytope (it is the projection of the polytope I), we can find a refinement of the family of polytopes \(\bigcup _{I \in {\mathcal {U}}, {\mathbf{w}}\in T\mathbb Z^k} \{TI + {\mathbf{w}}\}\); we denote this refinement by \({\mathcal {P}}'\), which is a pure and complete polyhedral complex of \(\mathbb R^\ell \). We observe that \(\varphi \) is piecewise linear over \({\mathcal {P}}'\) and \({\mathcal {P}}'\) is a polyhedral complex that is periodic modulo \(T\mathbb Z^k\).

                    Now simply find an invertible linear transformation \(A:T\mathbb Z^k \rightarrow \mathbb Z^\ell \) and let \(\phi := \varphi \circ A^{-1}\) be the piecewise linear function defined over the pure and complete polyhedral complex \({\mathcal {X}}:= A{\mathcal {P}}'\) and let \({\mathbf{f}}' := AT{\mathbf{f}}\). Then \({\mathbf{f}}' \not \in \mathbb Z^\ell \), since \(1 = \pi ({\mathbf{f}}) = \phi ({\mathbf{f}}')\) and \(\phi (\mathbb Z^\ell ) = \pi (\mathbb Z^k) = 0\). The two properties now follow from Lemmas B.7 and B.8. \(\square \)
                              

                  
                    Remark B.10

                    (Dimension reduction) Using Proposition B.9, the extremality/minimality question for \(\pi \) that is not genuinely k-dimensional can be reduced to the same question for a lower-dimensional genuinely \(\ell \)-dimensional function (so \(\ell < k\).) When \({\mathcal {P}}\) is a rational polyhedral complex, this reduction can be done algorithmically. The question of making this effective for the irrational case is beyond the scope of this paper.

                  1.3 B.3 The assumption of \(\hbox {f} \in \hbox {vert}({\mathcal {P}})\)
                           
We will show that \({\mathbf{f}}\) is a vertex for any minimal continuous piecewise linear function that is genuinely k-dimensional.

                    Theorem B.11

                    Let \({\mathcal {P}}\) be a pure and complete polyhedral complex in \(\mathbb R^k\) that is periodic modulo \(\mathbb Z^k\). Let \(\theta :\mathbb R^k \rightarrow \mathbb R\) be minimal, piecewise linear function over \({\mathcal {P}}\) that is genuinely k-dimensional. Then [image: ].

                  
                    Proof

                    For the sake of contradiction, suppose [image: ]. Therefore, there exists some \(I \in {\mathcal {P}}\) with \({\mathbf{f}}\in {{\mathrm{rel\,int}}}(I)\) and the dimension of I is at least one. Since \(\pi \) is minimal, \(0 \le \pi \le 1\). Since \(\pi ({\mathbf{f}}) = 1\), \(\pi \le 1\), \(\pi \) is affine on I and \({\mathbf{f}}\in {{\mathrm{rel\,int}}}(I)\), we have that \(\pi ({\mathbf{x}}) = 1\) for all \({\mathbf{x}}\in I\). Now consider \(\pi \) on \({\mathbf{f}}- I\) and note that \({\mathbf{0}} \in {\mathbf{f}}- I\). By symmetry, \(\pi ({\mathbf{x}}) = 0 \) for all \({\mathbf{x}}\in {\mathbf{f}}-I\). Since the dimension of I is at least one, there exists \({\mathbf{r}}\in ({\mathbf{f}}- I){\setminus } \{{\mathbf{0}}\}\). But then \(\pi (\lambda {\mathbf{r}}) = 0\) for all \(\lambda \in [0,1]\). Since \(\pi \) is continuous piecewise linear over \({\mathcal {P}}\), by Lemma 1.4, it satisfies the hypotheses of Lemma B.5. Therefore, \(\pi \) is not genuinely k-dimensional, which is a contradiction. Therefore, we must have [image: ]. \(\square \)
                              

                  
                    Remark B.12

                    Using Proposition B.9 and Theorem B.11, we can achieve dimension reduction when [image: ]. Thus, although the results presented in this paper assume that [image: ], this assumption is actually not very restrictive.

                  1.4 B.4 Boundedness of cells for genuinely k-dimensional functions
In this subsection, we show that for genuinely k-dimensional minimal valid functions that are piecewise linear over a pure and complete polyhedral complex \({\mathcal {P}}\) in \(\mathbb R^k\) that is periodic modulo \(\mathbb Z^k\), the cells of \({\mathcal {P}}\) are full-dimensional bounded polytopes (so they cannot be unbounded polyhedra).

                    Lemma B.13

                    Let \({\mathbf{r}}\in \mathbb R^k\) be any vector and let \(L = {\mathbf{r}}^\perp \) be the orthogonal complement of the subspace spanned by \({\mathbf{r}}\). Let U be a compact convex set with nonempty interior in \(\mathbb R^k\). Then \({{\mathrm{proj}}}_L(U + \mathbb Z^k)\) is a closed set.

                  
                    Proof

                    Since orthogonal projections onto linear subspaces are linear operators, \({{\mathrm{proj}}}_L(U + \mathbb Z^k) = {{\mathrm{proj}}}_L(U) + {{\mathrm{proj}}}_L(\mathbb Z^k)\). Observe that \({{\mathrm{proj}}}_L(U)\) is also a compact convex set with nonempty interior with respect to L. By Lemma B.3, there exists a linear subspace \(L' \subseteq L\) such that \({{\mathrm{proj}}}_L(\mathbb Z^k) = \Lambda + D\), where \(\Lambda \) is a lattice that spans \(L'^\perp \cap L\) and D is a dense subset of \(L'\). Since \({{\mathrm{proj}}}_L(U)\) is convex with nonempty interior, \({{\mathrm{proj}}}_L(U) + D = {{\mathrm{proj}}}_L(U) + L'\). Let \(U'\) be the orthogonal projection of \({{\mathrm{proj}}}_L(U)\) onto \(L'^\perp \cap L\); so \(U'\) is compact convex set. Thus, we have
$$\begin{aligned} \begin{array}{rcl} {{\mathrm{proj}}}_L(U + \mathbb Z^k) &{} = &{} {{\mathrm{proj}}}_L(U) + {{\mathrm{proj}}}_L(\mathbb Z^k) \\ &{} = &{} {{\mathrm{proj}}}_L(U) + \Lambda + D \\ &{} = &{} {{\mathrm{proj}}}_L(U) + L' + \Lambda \\ &{} = &{} U' + L' + \Lambda . \end{array} \end{aligned}$$

Since \(U'\) is a compact set and \(\Lambda \) is a closed set, \(U' + \Lambda \) is closed (see, e.g., [2] Lemma 5.3 (4)). Moreover, \(U' + \Lambda \subseteq L'^\perp \cap L\). Therefore, \(U' + \Lambda + L'\) is closed.

                    
                      \(\square \)
                    

                  Let \(H := [0,1]^k\) denote the unit hypercube.

                    Lemma B.14

                    Let \({\mathcal {P}}\) be a locally finite polyhedral complex that is periodic modulo \(\mathbb Z^k\). Then for any full-dimensional polyhedron \(I \in {\mathcal {P}}\), the set \(I + \mathbb Z^k\) is a finite union of the form \(\bigcup _{j\in J}(I_j + \mathbb Z^k)\) where J is a finite index set and each \(I_j\) is a full-dimensional polytope contained in H.

                  
                    Proof

                    We can take \(I_j\) to be all full-dimensional polytopes contained in \((I + \mathbb Z^k) \cap H\). There are only finitely many of these polytopes by the locally finite property of \({\mathcal {P}}\) [see Definition 3.1 (iv)].\(\square \)
                              

                  
                    Lemma B.15

                    Let \(\theta :\mathbb R^k \rightarrow \mathbb R\) be a piecewise linear minimal valid function over a polyhedral complex \({\mathcal {P}}\) that is pure, complete and periodic modulo the lattice \(\mathbb Z^k\). If \(\theta \) is genuinely k-dimensional, then the cells of \({\mathcal {P}}\) and \(\Delta {\mathcal {P}}\) are full-dimensional polytopes.

                  
                    Proof

                    Suppose to the contrary that a cell \(I^*\) has a recession direction \({\mathbf{r}}\). Let L be the linear subspace orthogonal to \({\mathbf{r}}\), i.e., \(L = \langle {\mathbf{r}}\rangle ^\perp \). Let \(U = \bigcup \{I \in {\mathcal {P}}\mid {\mathbf{r}}\hbox { is a recession direction for }I\}\). Define \(S = {{\mathrm{proj}}}_L(U)\).

                    
                                 Claim 1 
                                 \(S = L\).

                    First, notice that \(H \cap {\mathcal {P}}\) contains finitely many full-dimensional polytopes by the local finiteness of \({\mathcal {P}}\). Combining this observation with Lemma B.14, we can express \(U = \bigcup _{j \in J}(I_j + \mathbb Z^k)\) where J is a finite index set and each \(I_j\) is a full-dimensional polytope. Therefore, \(S = {{\mathrm{proj}}}_L(U) = \bigcup _{j \in J}{{\mathrm{proj}}}_L(I_j + \mathbb Z^k)\), which is a finite union of closed sets by Lemma B.13. Therefore, S is closed. The set S is nonempty because \(I^*\) has recession direction \({\mathbf{r}}\). If \(S \ne L\), then there exists a boundary point \({\mathbf{x}}\) of S (considered as a subset of L). Thus, there exist \(Q_0\in {\mathcal {P}}\) and \({\mathbf{y}}\in Q_0\) such that \({\mathbf{x}}= {{\mathrm{proj}}}_L({\mathbf{y}})\) and \(Q_0\) has \({\mathbf{r}}\) as a recession direction. Moreover, we can choose \({\mathbf{y}}\) so that \({\mathbf{y}}\) is in the relative interior of a face \(F_0 \subseteq Q_0\) where \(F_0\) also has \({\mathbf{r}}\) as a recession direction. Let \(Q_1, \ldots , Q_p\in {\mathcal {P}}\) be the cells that also have \(F_0\) as their face (using the local finiteness of \({\mathcal {P}}\)). We set \(p=0\) if \(F_0 = Q_0\). Since \({\mathcal {P}}\) is complete and \({\mathbf{y}}\in {{\mathrm{rel\,int}}}(F_0)\), we can choose \(\delta > 0\) such that \(B({\mathbf{y}}, \delta ) \subseteq Q_0 \cup Q_1 \cup \dots \cup Q_p\). Since \(F_0\) is a face of each of these polyhedra, \({\mathbf{r}}\) is a recession direction for each \(Q_0, Q_1, \ldots , Q_p\). Thus, \(B({\mathbf{y}},\delta ) \subseteq U\) and thus, \({{\mathrm{proj}}}_L(B({\mathbf{y}},\delta )) \subseteq S\). But \({{\mathrm{proj}}}_L({\mathbf{y}}) = {\mathbf{x}}\) and \({\mathbf{x}}\) is a boundary point of S. This is a contradiction. Therefore, \(S=L\). This concludes the proof of Claim 1.

                    Fix \({\mathbf{x}}\in L = S\). Let \(Q\in {\mathcal {P}}\) be the cell such that \({\mathbf{x}}\in {{\mathrm{proj}}}_L(Q)\) and \({\mathbf{r}}\) is a recession direction of Q. Thus, there exists a constant \(\lambda ({\mathbf{x}}) \in \mathbb R\) such that \({\mathbf{x}}+ \mu {\mathbf{r}}\in Q\) for all \(\mu \ge \lambda ({\mathbf{x}})\). Since \(\theta \) is bounded and affine over Q, \(\theta \) must be constant on the half-line \({\mathbf{x}}+ \mu {\mathbf{r}}\), \(\mu \ge \lambda ({\mathbf{x}})\). Thus, there exists a constant \(C({\mathbf{x}})\) such that \(\theta ({\mathbf{x}}+ \mu {\mathbf{r}}) = C({\mathbf{x}})\) for all \(\mu \ge \lambda ({\mathbf{x}})\). We now show that \(\theta ({\mathbf{x}}+ \mu {\mathbf{r}}) = C({\mathbf{x}})\) for all \(\mu \in \mathbb R\). Let \(\mu ' < \lambda ({\mathbf{x}})\) and let \({\mathbf{y}}= {\mathbf{x}}+ \mu '{\mathbf{r}}\). By Lemma B.2, for all \(\epsilon >0\) there exists \({\mathbf{w}}\in \mathbb Z^k\) such that \({\mathbf{y}}+ {\mathbf{w}}\) is at distance less than \(\epsilon \) from the half line \(\{{\mathbf{y}}+\mu {\mathbf{r}}\mid \mu \ge \lambda ({\mathbf{x}}) - \mu '\} = \{{\mathbf{x}}+ \lambda {\mathbf{r}}\mid \lambda \ge \lambda ({\mathbf{x}})\}\). That is, there exists \({\tilde{\lambda }} \ge \lambda ({\mathbf{x}})\) such that \(\Vert {\mathbf{y}}+ {\mathbf{w}}- ({\mathbf{x}}+ {\tilde{\lambda }} {\mathbf{r}})\Vert \le \epsilon \). Since \(\theta ({\mathbf{x}}+ {\tilde{\lambda }} {\mathbf{r}}) = \theta ({\mathbf{x}}+ \lambda ({\mathbf{x}}){\mathbf{r}})\), by periodicity and then Lipschitz continuity, we see that \( |\theta ({\mathbf{x}}+ \lambda ({\mathbf{x}}){\mathbf{r}}) - \theta ({\mathbf{y}})| = |\theta ({\mathbf{x}}+ {\tilde{\lambda }} {\mathbf{r}}) - \theta ({\mathbf{y}}+{\mathbf{w}})|\le K \epsilon . \) This holds for every \(\epsilon >0\) and therefore \(\theta ({\mathbf{y}})=\theta ({\mathbf{x}}+ \lambda ({\mathbf{x}}){\mathbf{r}})\). Thus, we have shown that for any \({\mathbf{x}}\in L\), \(\theta \) is constant on the line \({\mathbf{x}}+ \mu {\mathbf{r}}\), \(\mu \in \mathbb R\). But this contradicts the fact that \(\theta \) is genuinely k-dimensional.

                    Finally, if all cells of \({\mathcal {P}}\) are polytopes, then this property also holds for \(\Delta {\mathcal {P}}\).\(\square \)
                              

                  Appendix C: Additional proofs
1.1 C.1 Proofs of lemmas on polyhedral complexes

                    Proof of Proposition 3.3

                    First of all, we have
$$\begin{aligned} p_1(F(I,J,K))&= \{{\mathbf{x}}\in I\mid \exists {\mathbf{y}}\in J, {\mathbf{z}}\in K \hbox { such that } {\mathbf{x}}+ {\mathbf{y}}= {\mathbf{z}}\}\\&= \{ {\mathbf{x}}\in \mathbb R^k\mid \exists {\mathbf{y}}\in J, {\mathbf{z}}\in K \hbox { such that } {\mathbf{x}}+ {\mathbf{y}}= {\mathbf{z}}\} \cap I\\&= \{ {\mathbf{z}}- {\mathbf{y}}\mid {\mathbf{y}}\in J, {\mathbf{z}}\in K \} \cap I\\&= (K + (-J)) \cap I. \end{aligned}$$

A similar calculation shows \(p_2(F(I,J,K)) = (K+ (-I)) \cap J\). Finally,
$$\begin{aligned} p_3(F(I,J,K))&= \{{\mathbf{z}}\in K\mid \exists {\mathbf{x}}\in I, {\mathbf{y}}\in J \hbox { such that } {\mathbf{x}}+ {\mathbf{y}}= {\mathbf{z}}\}\\&= \{{\mathbf{z}}\in \mathbb R^k\mid \exists {\mathbf{x}}\in I, {\mathbf{y}}\in J \hbox { such that } {\mathbf{x}}+ {\mathbf{y}}= {\mathbf{z}}\} \cap K\\&= \{{\mathbf{x}}+{\mathbf{y}}\mid {\mathbf{x}}\in I, {\mathbf{y}}\in J \} \cap K\\&= (I+J) \cap K. \end{aligned}$$


                                 \(\square \)
                              

                  
                    Proof of Lemma 3.6

                    We show the 4 conditions of Definition 3.1.
	
                          (i)
                          
                            Since \(\emptyset \in {\mathcal {P}}\), we have \(F(\emptyset , \emptyset , \emptyset ) = \emptyset \in \Delta {\mathcal {P}}\).

                          
                        
	
                          (ii)
                          
                            Let \(I,J,K\in {\mathcal {P}}\). Let \({\hat{F}}\) be a face of F(I, J, K). Write I, J, K as inequality systems as \(A_I {\mathbf{x}}\le {\mathbf{b}}_I\), \(A_J {\mathbf{x}}\le {\mathbf{b}}_J\), \(A_K{\mathbf{x}}\le {\mathbf{b}}_K\). Then 
$$\begin{aligned} F(I,J,K) = \{({\mathbf{x}},{\mathbf{y}}) \mid A_I {\mathbf{x}}\le {\mathbf{b}}_I,\ A_J {\mathbf{y}}\le {\mathbf{b}}_J,\ A_K ({\mathbf{x}}+ {\mathbf{y}}) \le {\mathbf{b}}_K\}. \end{aligned}$$

 The face \({\hat{F}}\) is obtained by setting certain inequalities to equalities. This corresponds to restricting to faces of I, J, K. Therefore, there exist \(I', J',K' \in {\mathcal {P}}\) such that \(F(I',J',K') = {\hat{F}}\). Therefore \({\hat{F}} \in \Delta {\mathcal {P}}\).

                          
                        
	
                          (iii)
                          
                            Let \(I,J,K,I', J',K'\in {\mathcal {P}}\). Then \(F(I,J,K) \cap F(I',J',K') = F(I \cap I', J\cap J', K \cap K')\). Since \({\mathcal {P}}\) is closed under intersection, \(I \cap I', J\cap J', K \cap K' \in {\mathcal {P}}\). Therefore \(F(I \cap I', J\cap J', K \cap K') \in \Delta {\mathcal {P}}\).

                          
                        
	
                          (iv)
                          
                            Since \({\mathcal {P}}\) is locally finite, it follows that \(\Delta {\mathcal {P}}\) is locally finite.

                          
                        

Hence, \(\Delta {\mathcal {P}}\) is a polyhedral complex. Finally, consider any \(({\mathbf{x}},{\mathbf{y}}) \in \mathbb R^k \times \mathbb R^k\). Let \(I, J,K \in {\mathcal {P}}\) such that \({\mathbf{x}}\in I\), \({\mathbf{y}}\in J\), \({\mathbf{x}}+{\mathbf{y}}\in K\). These faces I, J, K exist since \({\mathcal {P}}\) is complete in \(\mathbb R^k\). Therefore, \(({\mathbf{x}},{\mathbf{y}}) \in F(I,J,K) \in \Delta {\mathcal {P}}\). Thus, \(\Delta {\mathcal {P}}\) is complete. Since it is a locally finite complete polyhedral complex, it is also pure. This follows from the following argument. Suppose to the contrary, there is a face F in \(\Delta {\mathcal {P}}\) that is maximal but not full-dimensional. Let \(({\mathbf{x}},{\mathbf{y}}) \in F\) be a point in the relative interior of F and note that \(({\mathbf{x}},{\mathbf{y}})\) cannot be contained in any other face of \(\Delta {\mathcal {P}}\) by the maximality of F. By the locally finite property of \(\Delta {\mathcal {P}}\), there exists an open ball B around \(({\mathbf{x}},{\mathbf{y}})\) such that B intersects \(\Delta {\mathcal {P}}\) only in F. Since \(B\cap F\) is a strict subset of B, this contradicts that \(\Delta {\mathcal {P}}\) is complete. \(\square \)
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