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Abstract Bilevel programs (BL) form a special class of optimization problems.
They appear in many models in economics, game theory and mathematical physics.
BL programs show a more complicated structure than standard finite problems. We
study the so-called KKT-approach for solving bilevel problems, where the lower level
minimality condition is replaced by the KKT- or the FJ-condition. This leads to a spe-
cial structured mathematical program with complementarity constraints. We analyze
the KKT-approach from a generic viewpoint and reveal the advantages and possible
drawbacks of this approach for solving BL problems numerically.
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1 Introduction

In the present article we consider bilevel problems (BL) of the form:

PBL : min
x,y

f (x, y) s.t. (x, y) ∈ MBL (1.1)

where x ∈ R
n, y ∈ R

m and the feasible set is given by
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310 G. B. Allende, G. Still

MBL =
{
(x, y) ∈ R

n+m
∣∣∣∣ g j (x, y) ≥ 0, j ∈ J = {1, . . . , q} and

y is a global minimizer of Q(x)

}
.

The so-called lower level problem

Q(x) : min
y

φ(x, y) s.t. y ∈ Y (x) = {
y ∈ R

m | vi (x, y) ≥ 0, i ∈ I = {1, . . . , l}}

represents a parametric program. Throughout the article we assume ( f, g1, . . . , gq) ∈
[C2]1+q

n+m := C2(Rn+m, R
1+q) and (φ, v1, . . . , vl) ∈ [C3]1+l

n+m . Note that we consider
local minimizers in the upper and global minimizers in the lower level.

Bilevel problems form an important class of mathematical programs. They appear
for example in equilibrium models, in Stackelberg Games (cf., [2]), and in semi-infinite
programming (see [19,20]). The bilevel structure makes BL difficult to solve. Even
for the feasibility check, obviously, a finite program (in y) has to be solved. During
the last 20 years, books and many papers are dedicated to this topic, see e.g., [2,6,13]
and the references therein.

Also from a topological viewpoint, BL is more complicated than standard finite
programming. The feasible set of a BL may for example not be closed (see e.g., [20]).
This phenomenon arises when the feasible set Y (x) of the lower level problem does
not depend continuously on x , and non-closedness can even be stable with respect to
(wrt.) small, smooth perturbations of the problem functions.

An appealing way to deal with general BL’s is the so called Karush-Kuhn-Tucker
(KKT) approach where the lower level constraint, that y is a global minimizer of the
program Q(x), is firstly relaxed to the condition that y is a local minimizer of Q(x).
The latter condition is then replaced by the KKT-conditions

∇yφ(x, y) −
l∑

i=1

λi∇yvi (x, y) = 0,

λi ≥ 0, vi (x, y) ≥ 0, i = 1, . . . , l,
λivi (x, y) = 0, i = 1, . . . , l.

(1.2)

In this exposition, we more generally replace the lower level constraint by the Fritz-
John (FJ) (necessary) conditions

λ0∇yφ(x, y) −
l∑

i=1

λi∇yvi (x, y) = 0,

λ0 ≥ 0 and λi ≥ 0, vi (x, y) ≥ 0, i = 1, . . . , l,
λivi (x, y) = 0, i = 1, . . . , l

l∑
i=0

λi = 1.

(1.3)

Then instead of PBL , we consider the program

PFJBL : min
x,y,λ

f (x, y) s.t. (x, y, λ) ∈ MFJBL, (1.4)
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Solving bilevel programs with the KKT-approach 311

where MFJBL = {
(x, y, λ) ∈ R

n+m+l+1 | (1.3) holds and g j (x, y) ≥ 0, j ∈ J
}
. Sim-

ilarly we define the program PKKTBL with corresponding feasible set MKKTBL ={
(x, y, λ) ∈ R

n+m+l | (1.2) holds and g j (x, y) ≥ 0, j ∈ J
}
. Note that each mini-

mizer y(x)of Q(x)necessarily has to solve the FJ-conditions (1.3), so that the inclusion

MBL ⊂ MFJBL|Rn×Rm (1.5)

must hold. Here, MFJBL|Rn×Rm denotes the projection of MFJBL into the space R
n ×R

m .
So, the main purpose of the KKT-approach is to find (local) minimizers of the

original BL program by computing (local) minimizers of the relaxation PFJBL.

Remark 1.1 Note that in case, the lower level problem Q(x) is convex and satisfies
a constraint qualification, y is a global minimizer of Q(x) iff the KKT-condition (or
equivalently the FJ-condition) is satisfied. So, under this condition, PBL and PKKTBL

(as well as PFJBL) are equivalent.
However, in general, (since (1.4) does not guarantee that y is a solution of Q(x))

PBL and PFJBL are not equivalent. So, the genericity results on PFJBL in this paper do
not (directly) allow conclusions on the generic structure of bilevel programming.

By (1.5) however, PFJBL does yield a valid relaxation of the original problem PBL .
We emphasize that in general a solution of Q(x) does not necessarily satisfy the KKT-
conditions (1.2). So, the inclusion MBL ⊂ MKKTBL|Rn×Rm is not true in general. It is
therefore preferable to consider PFJBL instead of PKKTBL. Note that in [12] it has been
shown (for n = 1) that the inclusion MBL ⊂ MKKTBL|Rn×Rm holds generically.

Both problems PKKTBL, PFJBL represent specially structured mathematical programs
with complementarity constraints (MPCC). These MPCC problems have a less com-
plicated structure than the original BL. In particular the feasible sets MKKTBL,MFJBL

are always closed. For literature on MPCC we refer the reader e.g., to , [4,5,7,14]
and [16]. To solve PKKTBL, PFJBL numerically, we can e.g., apply a smoothing procedure,
where the complementarity constraints λivi = 0 are replaced by the perturbed rela-
tions λivi = τ with small τ > 0. In this way , we obtain a perturbed problem PKKTBL(τ )

or PFJBL(τ ) which can be solved with methods from standard nonlinear programming.
This approach has been successfully applied to the numerical solution of semi-infinite
programs (see [21]).

The aim of the present article is to analyze this KKT-approach for solving BL. For
that purpose the generic structure of the MPCC problem PFJBL is studied. It appears
that some of the difficulties of BL disappear in the KKT formulation PFJBL, but a part of
the singular behavior also persists in PFJBL. A main result of our paper (Theorem 3.2),
however, reveals that at a local solution of BL where the KKT approach leads to
a singular system, generically, the minimizer can be computed by a (non-singular)
reduced system. This suggests a (conceptual) computational approach which is able
to overcome the singular behavior of the original BL. We emphasize that our genericity
analysis exhibits the intrinsic structure of the KKT approach and precisely describes
the situations any generic solution method for PFJBL should be able to deal with.

The article is organized as follows. In Sect. 2 we sketch the results on MPCC prob-
lems needed later on. Section 3 considers the MPCC program PFJBL and analyzes the
generical properties of its feasible set and the critical points. The consequences of
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these results in terms of the original BL problem are discussed in Sect. 4. The whole
investigations lead to an algorithmic approach for solving BL which is described in
Sect. 5 along with some numerical experiments.

2 Preliminaries

In this section, we sketch concepts and results on MPCC needed later on, such as sta-
tionarity, optimality conditions, the smoothing method and certain genericity results
(see [3] for details). Let us firstly recall some definitions for standard finite programs:

(P) : min
x

f (x) s.t. x ∈ M :=
{

x ∈ R
n | hk(x) = 0, k ∈ K

g j (x) ≥ 0, j ∈ J

}
(2.1)

where K = {1, . . . , q0}, J = {1, . . . q}, and f, h1, . . . , hq0 , g1, . . . , gq ∈ C2. For
example, the active index set J0(x), the Lagrangian function L(x, λ, μ) with Lagrang-
ian multipliers (λ, μ), the LICQ- and MFCQ-condition, the tangent space TxM, the
Karush-Kuhn-Tucker condition as well as SC (strict complementarity) and the second
order condition (SOC), (∇2

x L(x, λ, μ)|Tx M is regular). We refer the reader to [10],
[3] for details. We like to notice that in this section we use the symbols f, g j to denote
functions in a different context than in the other sections.

We now consider MPCC problems of the form

(PCC ) : min
x

f (x) s.t. x ∈MCC =

⎧⎪⎪⎨
⎪⎪⎩

x ∈ R
n

∣∣∣∣∣∣∣∣

hk(x) = 0, k ∈ K
g j (x) ≥ 0, j ∈ J

ri (x)si (x) = 0, i ∈ I
ri (x), si (x) ≥ 0, i ∈ I

⎫⎪⎪⎬
⎪⎪⎭

(2.2)

with I = {1, . . . , l}. For this class of programs the standard concept has to be adapted
as follows (see e.g., [13,15]). For a feasible point x ∈ MCC we introduce the active
index sets

J0( x ) = {
j | g j ( x ) = 0

}
, Irs( x ) = {i | ri ( x ) = si ( x ) = 0},

Ir ( x ) = {i | ri ( x ) = 0, si ( x ) > 0}, Is( x ) = {i | si ( x ) = 0, ri ( x ) > 0}.

The Lagrangian function of FJ-type (near x) is given by:

L(x, μ0, λ, μ, ρ, σ ) = μ0 f (x) −
∑

j∈J0( x )

μ j g j (x) −
q0∑

k=1

λkhk(x)

−
∑

i∈Ir ( x )∪Irs ( x )

ρi ri (x) −
∑

i∈Is ( x )∪Irs ( x )

σi si (x).

We say that MPCC-LICQ holds at x ∈ MCC if the vectors ∇hk( x ), k ∈ K , ∇g j ( x ),
j ∈ J0( x ),∇ri ( x ), i ∈ Ir ( x )∪Irs( x ),∇si ( x ), i ∈ Is( x )∪Irs( x ) are linearly inde-
pendent. In the sequel, h, g, r and s stands for (h1, . . . , hq0), (g1, . . . , gq), (r1, . . . , rl)
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Solving bilevel programs with the KKT-approach 313

and (s1, . . . , sl) respectively. For y ∈ R
m and some index set I0 ⊂ {1, . . . , m} we

use the abbreviation yI0 to denote the subvector (yi , i ∈ I0) and write ∇sI0 instead of
[∇si , i ∈ I0].
Definition 2.1 Let x ∈ MCC .

• We call x a critical point if MPCC-LICQ is satisfied at x and with (unique) multi-
pliers (λ, μ, ρ, σ ) the relation ∇x L( x, 1, λ, μ, ρ, σ ) = 0 holds.

• We call x a strongly stationary point if there are multipliers (λ, μ, ρ, σ ) satisfying
∇x L( x, 1, λ,μ, ρ, σ ) = 0 and μ ≥ 0 as well as σi , ρi ≥ 0,∀i ∈ Irs( x ).

Note that in the MPCC literature mostly the concept of weakly stationary points is
used (“critical points that need not to satisfy MPCC-LICQ”).

Proposition 2.1 (cf. [8,15]) If x is a local minimizer where MPCC-LICQ is satisfied,
then x is a strongly stationary point.

Other first and second order optimality conditions can be found in [4] and [15].

Definition 2.2 Let x be a critical point of PCC with associated multiplier (1, λ, μ, ρ,

σ ). We say that the MPCC-strict complementarity condition (MPCC-SC) holds if

μ j �= 0, ∀ j ∈ J0( x ), ρi �= 0, σi �= 0, ∀i ∈ Irs( x ). (2.3)

The MPCC-second order condition (MPCC-SOC) is satisfied if

∇2
x L( x, 1, λ, μ, ρ, σ )|Tx MCC := V T ∇2

x L( x, 1, λ, μ, ρ, σ )V is nonsingular.

(2.4)

V is a matrix with as columns a basis of the tangent space TxMCC := {d |
∇hk( x )d = 0, k ∈ K ,∇g j ( x )d = 0, j ∈ J0( x ),∇si ( x )d = 0, i ∈ Is( x ) ∪
Irs( x ),∇ri ( x )d = 0, i ∈ Ir ( x ) ∪ Irs( x )}.
A critical point x ∈ MCC such that MPCC-LICQ, MPCC-SC and MPCC-SOC hold
is called a non-degenerate critical point in the MPCC-sense. We say that the problem
PCC in (2.2) is regular in the MPCC-sense if for any feasible point x ∈ MCC the
MPCC-LICQ condition is satisfied and each critical point is non-degenerate in the
MPCC-sense.

If x is a non-degenerate critical point in the MPCC-sense, such that μ j > 0, j ∈
J0( x ), ρi , σi > 0, i ∈ Irs( x ) are fulfilled and the matrix ∇2

x L( x, 1, λ, μ, ρ, σ )

|TxMCC is positive definite, then it can be seen that x is a local minimizer of PCC .

Remark 2.1 To show that our MPCC program PFJBL in Sect. 1 generically satisfies
MPCC-SOC we will need the following fact: It is well-known (see e.g., [9]) that

M =
(

Q B
BT 0

)
is nonsingular ⇔

{
V T QV = Q|ker(BT ) is nonsingular

and B has full rank
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If MPCC-LICQ is fulfilled, then it is easy to see that MPCC-SOC holds (at
( x, 1, λ, μ, ρ, σ )) for PCC if and only if the following matrix is non-singular
(J0 := J0( x ) etc.):

⎛
⎜⎜⎜⎜⎝

∇2
x L( x, 1, λ, μ, ρ, σ ) ∇hK ( x ) ∇gJ0( x ) ∇sIs∪Irs ( x ) ∇rIr ∪Irs ( x )

[∇hK ( x )]T 0 0 0 0
[∇gJ0( x )]T 0 0 0 0

[∇sIs∪Irs ( x )]T 0 0 0 0
[∇rIr ∪Irs ( x )]T 0 0 0 0

⎞
⎟⎟⎟⎟⎠

We also recall some basics in genericity theory. To denote the space Cκ(RN , R
M )

we use the shorthand notation [Cκ ]M
N . This space can be endowed with the so-called

strong Cτ
S -topology (τ ≤ κ) (see [10] for details). We say that a property is gener-

ically fulfilled in [Cκ ]M
N wrt. the Cτ

S -topology if there is a set P0 ⊂ [Cκ ]M
N such

that the property holds for all functions in P0 and where P0 = ∩∞
i=1Pi with subsets

Pi ⊂ [Cκ ]M
N which are open and dense sets wrt. the Cτ

S -topology. By identifying the
MPCC program with its problem functions ( f, h, r, s, g) the set of MPCC’s can be
identified, e.g., with the set [C2]1+q0+2l+q

n . We now give genericity results for MPCC
in two different forms:

Theorem 2.1 ([4,17]) Fix ( f, h, r, s, g) ∈ [C2]1+q0+2l+q
n . Then for almost all

(b, Ch, dh, Cr , dr , , Cs, ds, Cg, dg) ∈ R
n+q0n+q0+ln+l+ln+l+qn+q , the problem defi-

ned by ( f +bT x, h+Ch x +dh, r +Cr x +dr , s+Cs x +ds, g+Cgx +dg) is regular in
the MPCC-sense (almost all is to be understood in the sense of the Lebesgue measure).

Moreover, generically in [C2]1+q0+2l+q
n wrt. the C2

S-topology, the problems PCC

are regular in the MPCC-sense.

The second statement is proven in [17] (and [4]) based on the genericity results of
Jongen-Jonker-Twilt for standard programs (see e.g., [9]). The first statement can be
shown by using

Lemma 2.1 (Parameterized Sard Lemma, cf. [9]) Let F(z, u) be in [Cκ ]ln+p, with
κ > max {0, n − l} and z ∈ R

n, u ∈ R
p. Let us assume that 0 is a regular value

of F (i.e., ∀(z, u) : F(z, u) = 0 ⇒ ∇(z,u)F(z, u) has rank l). Then for almost every
u ∈ R

p, 0 is a regular value of the function F̂u : R
n → R

l , F̂u(z) = F(z, u).

Finally, we consider the smoothing approach for solving the MPCC problem, where
instead of (2.2), we solve the perturbed program Pτ ,

Pτ : min
x∈Rn

f (x) s.t. x ∈ Mτ :=

⎧⎪⎪⎨
⎪⎪⎩

x

∣∣∣∣∣∣∣∣

hk(x) = 0, k ∈ K
g j (x) ≥ 0, j ∈ J

ri (x)si (x) = τ, i ∈ I
ri (x), si (x) ≥ 0, i ∈ I

⎫⎪⎪⎬
⎪⎪⎭

(2.5)

where τ > 0 is a (small) perturbation parameter. We refer to [4] for convergence
results for Pτ , τ → 0.
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Solving bilevel programs with the KKT-approach 315

3 Genericity analysis of the KKT approach

We now consider the KKT formulation PFJBL (cf., (1.4)) of the bilevel problem PBL .
Since it is a complementarity constrained program with a special structure, the gene-
ricity results of Theorem 2.1, valid for generic MPCC programs, have to be adjusted
to the special structure of PFJBL.

Remark 3.1 Note that in [18] a genericity analysis wrt. MPCC-LICQ has been done
for a program (MPCC’s with stationary constraints) similar to the KKT formulation.
However, our FJ approach leads to a program with a (slightly) different structure so
that (unfortunately) a separate genericity analysis is needed. Besides, our approach
does not lead to an (artificial) condition (φ, v, g) ∈ [C�], � > max{1, n} as in [18].

It appears that also for PFJBL generically MPCC-LICQ is satisfied at all feasible
points. But for the local minimizers ( x, y, λ), the situation is more complicated than
for general MPCC problems. We will show that in the generic situation the conditions
MPCC-SC and MPCC-SOC may fail at local minimizers ( x, y, λ) of PFJBL.

With respect to a feasible point ( x, y, λ) of problem PFJBL, we introduce the active
index sets:

J0v( x, y ) = {i ∈ I | vi ( x, y ) = 0}
J0g( x, y ) = { j ∈ J | g j ( x, y ) = 0}
Jλ0

=
{{0}, if λ0 = 0

∅, otherwise

J0( x, y, λ )= {
i ∈ I | vi ( x, y )=0, λi > 0

}
J	0( x, y, λ )= {

i ∈ I | vi ( x, y )=λi =0
}

	0( x, y, λ )= {
i ∈ I | vi ( x, y ) > 0, λi =0

}
(3.1)

Note that J0v( x, y ) = J0( x, y, λ ) ∪ J	0( x, y, λ ) does not depend on λ. We begin
by showing that, MPCC-LICQ is generically fulfilled for PFJBL. The density part is
proven by applying the Sard Lemma 2.1 to an appropriately chosen perturbation of
(fixed) problem functions φ̂, v̂i , ĝ j of a given BL program. We define perturbations
of these functions:

(
)

φ(x, y) = φ̂(x, y) + xT [Cx
φ]y + yT [C y

φ ]y

2 + dT
φ y

vi (x, y) = v̂i (x, y) + xT [Cx
i ]y + yT [C y

i ]y
2 + bxT

i x + byT

i y + di , i ∈ I
g j (x, y) = ĝ j (x, y) + CT

g j
(x, y) + dg j , j ∈ J.

The matrices Cx
φ, Cx

i ∈ R
nm , the m × m symmetric matrices C y

φ, C y
i ∈ R

m(m+1)
2 and

the vectors dφ ∈ Rm, bx
i ∈ R

n, by
i ∈ Rm, di ∈ R; Cg j ∈ R

(n+m), dg j ∈ R in (
)

define the perturbations. So, (
) defines perturbed problem functions depending on
the parameters

Q := (Cx
φ, C y

φ, dφ, Cx
i , C y

i , bx
i , by

i , di ; i ∈ I, Cg j , dg j , j ∈ J ) ∈ R
NFJBL where

NFJBL := nm + m(m+1)
2 + m + l

(
nm + m(m+1)

2 + n+m+1
) + q(n+m+1).

Theorem 3.1 Let (φ̂, v̂1, . . . , v̂l) ∈ [C3]1+l
n+m and (ĝ1, . . . , ĝq) ∈ [C2]q

n+m be fixed.
Then for almost all parameters Q ∈ R

NFJBL the condition MPCC-LICQ holds at all
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points of the feasible set MFJBL defined by the perturbed problem functions (φ, v, g) =
(φ, v1, . . . , vl , g1, . . . , gq).

Moreover, generically in the set {(φ, v, g)} ≡ [C3]1+l
n+m×[C2]q

n+m, wrt. the C3
S×C2

S-
topology, MPCC-LICQ holds at all points of the feasible set MFJBL.

Proof In [3] this result has been proven for MKKTBL. However, since in the proof for
MFJBL additional (non-trivial) technical difficulties appear we give the first part of the
proof in detail. This first part is shown by using the Parameterized Sard Lemma. To do
so, we consider a feasible point ( x, y, λ ) of the problem PFJBL defined by the problem
functions (φ, v, g). There is a partition J0 = J0( x, y, λ ), J	0 = J	0( x, y, λ ),

	0 = 	0( x, y, λ ) of I = {1, . . . , l} and a set J0g = J0g( x, y ) ⊂ {1, . . . , q}, such
that ( x, y, λ ) solves the feasibility conditions:

(1) λ0∇yφ(x, y) −
l∑

i=1

λi∇yvi (x, y) = 0,

(2) vi (x, y) = 0, i ∈ J0 ∪ J	0,

(3) λi = 0, i ∈ J	0 ∪ 	0,

(3) λ0 = 0, in this case Jλ0 := {0},
or Jλ0 := ∅ if λ0 �= 0

(4)

l∑
i=0

λi = 1,

(5) g j (x, y) = 0, j ∈ J0g.

(3.2)

Let us fix a (possible) active index set (J0, J	0,	0, J0g, Jλ0). For any solution
(x, y, λ) of (3.2) the MPCC-LICQ fails, if and only if there is a vector 0 �=
(α, β, μ, γ, ρ) ∈ R

κ , κ = m + |J0 ∪ J	0| + |J0g| + |J	0 ∪ 	0| + |Jλ0 | + 1
such that (x, y, λ, α, β, μ, γ, ρ) solves the equations:

(6)

[
λ0∇(x,y)[∇yφ(x, y)]T −

l∑
i=1

λi∇(x,y)[∇yvi (x, y)]T

] ⎛
⎜⎝

α1
...

αm

⎞
⎟⎠

+
∑

i∈J0∪J	0

βi∇(x,y)vi (x, y) +
∑
j∈J0g

μ j∇(x,y)g j (x, y) = 0,

(7)

∇y[φ(x, y)]T

⎛
⎜⎝

α1
...

αm

⎞
⎟⎠ + γ0 + ρ = 0, (γ0 �= 0 ⇒ λ0 = 0)

−∇y[vi (x, y)]T

⎛
⎜⎝

α1
...

αm

⎞
⎟⎠ + ρ = 0, i ∈ J0,

−∇y[vi (x, y)]T

⎛
⎜⎝

α1
...

αm

⎞
⎟⎠ + γi + ρ = 0, i ∈ J	0 ∪ 	0,

and (3.2)

(3.3)
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To apply the Sard Lemma we have to show that for all solutions of (3.3) its Jacobian
(wrt. the variables and appropriate parameters) has full row rank. In order to simplify
the analysis we consider different cases.

Case α=0: If α=0, then ρ =γ =0, and thus the gradients ∇(x,y)gJ0g , ∇(x,y)vJ0∪J	0

must be linearly dependent at (x, y). In other words, LICQ fails in the feasible
set M0,

M0 =
{
(x, y) ∈ R

n+m
∣∣∣∣ vi (x, y) = 0, i ∈ J0 ∪ J	0,

g j (x, y) ≥ 0, j ∈ J0g.

}

But M0 is the feasible set of a standard nonlinear program, and it is well-known (see
[10]) that for almost every linear perturbation of (v̂J0∪J	0 , ĝJ0g ), the LICQ condition
holds for all (x, y) ∈ M0. So, for almost every (bx

i , by
i , di ; i ∈ I, Cg j , dg j , j ∈ J )

there is no point (x, y, λ) in the feasible set MFJBL (defined by the perturbed func-
tions (φ, v, g)) where LICQ fails at a (nontrivial) solution (α, β, μ, γ ) of (3.3) with
α = 0.

Case α �= 0: Without loss of generality (wlog.) we assume α1 = 1 in (3.3). Note that
now the system (3.3) only depends on the variables (x, y, λ, α2, . . . , αm, β, μ, γ, ρ) ∈
R

n+m+l+κ−1. We define the following vectors and matrices: ŷ = [y1(1|α)+
(0, y2, . . . , ym)]

	1 =

⎛
⎜⎜⎜⎝

−(1, α2, . . . , αm) 0 . . . 0
0 (1, α2, . . . , αm) 0 . . . 0

0 0
. . . 0

0 0 . . . (1, α2, . . . , αm)

⎞
⎟⎟⎟⎠

∈R
(l+1)×m(l+1),

	i
2 =

⎛
⎜⎝

−λi + βi y1 . . . −λiαm + βi ym

0
. . . 0

0 0 −λi + βi y1

⎞
⎟⎠ ∈ R

m×m,

Y =

⎛
⎜⎜⎜⎝

y1 y2 . . . ym

0 y1 0 . . . 0

0 0
. . . 0

0 0 . . . y1

⎞
⎟⎟⎟⎠ ∈ R

m×m,

Yl =

⎛
⎜⎜⎜⎝

−ŷ 0 . . . 0
0 ŷ 0 . . . 0

0 0
. . . 0

0 0 . . . ŷ

⎞
⎟⎟⎟⎠ ∈ R

(l+1)×m(l+1),

and for a matrix A we put 	(A) := (λ0 A,−λ1 A, . . . ,−λl A), �(A) :=
(β1 A, . . . , βl A).

Sub-case μ �= 0: The Jacobian of the system (3.3) (α1 = 1) with respect to the vari-
ables z = (x, y, λ, α2, . . . , αm, β, μ, γ, ρ) and the parameters u = (dφ, by

i , di ; i ∈ I,
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Cg j , dg j , j ∈ J ) (cf., Lemma 2.1) is (in the sequel ⊗ denotes matrices of appropriate
dimensions and (6), (7) etc. indicates the derivatives of the corresponding equations
in (3.2), (3.3)):

∂(x,y,λ) ∂α,β,μ ∂ρ ∂γ ∂dφ |∂by
i

∂di ∂Cg j
∂dg j

(6) ⊗ ⊗ 0 0 0|⊗ 0 μ1 In+m ..μq In+m 0

(7) ⊗ ⊗
1
...

1

⊗ −	1 0 0 0

(1) ⊗ 0 0 0 	(Im) 0 0 0
(2) ⊗ 0 0 0 ⊗ I|J0∪J	0||0 0 0
(5) ⊗ 0 0 0 0 0 ⊗ IJ0g |0
(3) 0|I|J	0∪	0∪Jλ0 | 0 0 0 0 0 0 0
(4) 0|1, . . . , 1 0 0 0 0 0 0 0

By checking the rows of this matrix and using the fact that by
∑l

i=0 λi = 1, (at
least) one of the numbers λi , i = 0, . . . , l, is non-zero, we can see that the Jacobian
has full row rank.

Sub-case μ = 0, β �= 0: Denoting by C y0
φ and C y0

i the first column of C y
φ and

C y
i , respectively, the Jacobian matrix wrt. the given variables and parameters reads:(
(6x ), (6y) represent the equations (6) in (3.3) corresponding to the partial derivatives

wrt. the variables x , y, respectively
)

∂(x,y,λ,α,β) ∂ρ,γ ∂
C y0

φ

|∂
C y0

i
∂dφ |∂by

i
∂bx

i
∂di ∂dg j

(6x ) ⊗ 0 0 0 �(In) 0 0

(6y) ⊗ 0 λ0

(
1 α

0 I

)
	1

2, . . . , 	
l
2 0|�(Im) 0 0 0

(7) ⊗
⎛
⎜⎝

1
.
.
.

1

∣∣∣∣∣∣∣
I
0

⎞
⎟⎠ −Yl −	1 0 0 0

(1) ⊗ 0 	(Y ) 	(Im) 0 0 0
(5) ⊗ 0 0 0 0 0 IJ0g |0
(2) ⊗ 0 0|⊗ 0|⊗ ⊗ I|J0∪J	0||0 0
(3) 0|I|J	0∪	0∪Jλ0 ||0 0 0 0 0 0 0
(4) 0|1, . . . , 1|0 0 0 0 0 0 0

We now show that the rows of this matrix are linearly independent (l.i.). Obviously, the
rows corresponding to row-block 5,2 are l.i. with respect to the other rows. As β �= 0,
also matrix �(In) in the first block has full row rank. To show the linear independence
of the row blocks 6y, 7, 1 we show that the sub-matrix formed by row blocks 6y, 7, 1

and columns corresponding to the derivatives with respect to ρ, C y0
φ , C y0

i , dφ, by
i has

full row rank.
Let us suppose that this does not hold. Then there is a vector (a, b, c) �= 0 such

that for the corresponding combination of the rows we find:
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λ0

(
1 0
α I

)
a + b0 ŷ + λ0Y T c = 0 [	i

2]T a − bi ŷ − λi Y T c = 0(
1
α

)
b0 + λ0c = 0 βi a −

(
1
α

)
bi − λi c = 0

(3.4)

and (see column ∂ρ)
∑

i bi = 0. Taking the first equation of each system in (3.4)
yields

a1λ0 + y1b0 + λ0c1 y1 = 0 (λi + βi y1)a1 − y1bi − y1λi c1 = 0
b0 + λ0c1 = 0 βi a1 − bi − λi c1 = 0

(3.5)

Multiplying the second row by y1 and subtracting from the first, we obtain λi a1 = 0,∀i
and

∑l
i=0 λi = 1 implies a1 = 0. So from (3.5) we get

b0 + λ0c1 = 0 bi + λi c1 = 0.

Summing up, using
∑l

i=0 λi = 1 and
∑

i bi = 0, we find c1 = 0 and then
bi = 0 for all i = 1, . . . , l. So, the system (3.4) reduces to

λ0a j + λ0 y1c j = 0 −λi a j + βi y1a j − λi y1c j = 0
λ0c j = 0 βi a j − λi c j = 0

(3.6)

for j = 1, . . . , m. By repeating the same trick, we multiply the second row by y1
and subtract it from the first and obtain: λ0a j = 0, −λi a j = 0. Finally using∑l

i=0 λi = 1 again we conclude a j = 0 for all j and analogously c = 0, contradicting
(a, b, c) �=0.

So, we have shown that row blocks 6y, 7, 1 are l.i. with respect to the other blocks.
Now the independence of blocks 3, 4 is a consequence of part ∂λ.

Sub-case μ = 0, β = 0: Here we consider the Jacobian

∂(x,y,λ,α) ∂ρ,γ ∂Cx
φ
|∂Cx

i
∂

C y0
φ

|∂
C y0

i
∂dφ |∂by

i
∂di ∂dg j

(6x ) ⊗ 0 	(I ) 0 0 0 0

(6y) ⊗ 0 0 	

(
1 α

0 I

)
0 0 0

(7) ⊗
⎛
⎜⎝

1
...

1

∣∣∣∣∣∣∣
⊗

⎞
⎟⎠ ⊗ ⊗ −	1 0 0

(1) ⊗ 0 ⊗ ⊗ 	(Im) 0 0
(2) ⊗ 0 0|⊗ 0|⊗ 0|⊗ I|J0∪J	0||0 0
(5) ⊗ 0 0 0 0 0 IJ0g |0
(3) 0|I|J	0∪	0∪Jλ0 ||0 0 0 0 0 0 0
(4) 0|1, . . . , 1|0 0 0 0 0 0 0

Again the blocks 5, 2 are linearly independent. Next we take a combination (b, c)
of blocks 7, 1 wrt. columns ∂

ρ,dφ,C y0
i

. This yields
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bi

(
1

α

)
+ λi c = 0 ∀i,

∑
i

bi = 0 (3.7)

Summing up and using
∑

i λi = 1 ,
∑

i bi = 0 gives
∑

i bi
(1
α

)+c = c = 0. Reconsid-
ering the first equations bi + λi c1 = 0 of system (3.7), implies bi = 0. So, row block
7,1 are linearly independent with respect to the other rows. The independency of block
6y is clearly a consequence of the fact that the matrix 	

( 1 α
0 Im−1

)
has full row rank since( 1 α

0 Im−1

)
is non-singular and

∑l
i=0 λi = 1. The same holds for 6x . Block 3,4 are now

evidently independent and we can conclude that the whole matrix has full row rank.
So in all cases the hypothesis of the Sard Lemma 2.1 are fulfilled and thus for almost

every perturbation u = (Cx
φ, C y

φ, dφ, Cx
i , C y

i , bx
i , by

i , , di ; i ∈ I, Cg j , dg j , j ∈ J ) the
sub-matrix of the Jacobian with columns corresponding to the variables z = (x, y, λ,

α2, . . . , αm, β, μ, γ, ρ) also has full row rank. Consequently, the number E = n+m+
l+1+m+|J0∪J	0|+|J	0∪	0|+1+|Jλ0 |+|J0g| of rows (equations) cannot exceed
the number V = n+m+l +1+m−1+|J0 ∪ J	0|+1+|Jλ0 |+|J0g|+|J	0 ∪	0| of
columns (variables) leading to the inequality 1 ≤ 0, which is impossible. So, for almost
every parameter, there is no solution of the system (3.3) with α1 = 1 (i.e., with α �= 0).

The perturbation arguments hold for any choice of active index sets J0, J	0,	0,

Jλ0 , J0g . By considering the (finite) intersection of all corresponding parameters
(Cx

φ, C y
φ, dφ , Cx

i , C y
i , bx

i , by
i , di ; i ∈ I, Cg j , dg j , j ∈ J ) such that MPCC-LICQ holds

for (3.2) we obtain our first statement.
We only give a sketch of the second general genericity statement. (See [3] for the

complete proof for MKKTBL.) It is firstly shown that for any fixed N ∈ N, the set of func-
tions (φ, v, g) where MPCC-LICQ holds at all feasible points (x, y, λ) of MFJBL with
‖λ‖ ≤ N , is open and dense in [C3]1+l

n+m×[C2]q
n+m wrt. the C3

S×C2
S-topology. The den-

sity part of the statement follows, as usual, directly from the perturbation result above.
(For details we refer to [17] where such a genericity result has been proven for another
class of programs). The openness property is shown by using stability arguments. If
we finally consider the intersection of the open and dense sets for N = 1, 2, . . ., we
obtain the generic set of functions where MPCC-LICQ holds at all feasible points. ��

We now study the structure near the critical points (cf., Definition 2.1) of problem
PFJBL (see (1.4)) in the generic case. Note that by Theorem 3.1 generically MPCC-LICQ
holds for PFJBL. The critical points (x, y, λ) are feasible points such that with multipli-
ers (α, β, μ, γ, ρ) (corresponding to the constraints λ0[∇yφ]−∑l

i=1 λi [∇yvi ] = 0,
vi ≥ 0, g j ≥ 0 λi ≥ 0 and

∑l
i=0 λi = 1) the vector (x, y, λ, α, β, μ, γ, ρ) solves the

system:

∇(x,y) f (x, y) −
∑

i∈J0∪J	0

βi∇(x,y)vi (x, y) −
∑
j∈J0g

μ j∇(x,y)g j (x, y)

−∇(x,y)

[
λ0∇yφ(x, y)T −

l∑
i=1

λi∇yvi (x, y)T

]
α = 0,

−∇yφ(x, y)T α − ρ − γ0 = 0, where Jλ0 = ∅ ⇒ γ0 = 0
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∇yvi (x, y)T α − ρ = 0, i ∈ J0,

∇yvi (x, y)T α − γi − ρ = 0, i ∈ J	0 ∪ 	0 (3.8)

with J0, J	0,	0, Jλ0 , J0g , the active index sets at (x, y, λ), as defined in (3.1). Note
that, as generically MPCC-LICQ holds, generically, any solution of (1.4) must satisfy
the KKT conditions (3.8). For numerical purposes, it would be desirable that the con-
ditions MPCC-SC and MPCC-SOC hold at critical points. MPCC-SC for (3.8) means
μ j �= 0, j ∈ J0g , βi , γi �= 0 for all i ∈ J	0. Unfortunately, as the following example
shows, MPCC-SC may fail for PFJBL even in the generic situation.

Example 3.1

min −x − y s.t. y solves Q(x) : min y
s.t. v1(x, y) := −x + y ≥ 0,

v2(x, y) := −y ≥ 0.

(3.9)

It can easily be seen that the point ( x, y ) = (0, 0) is the minimizer of this bilevel
problem and that at y with ∇yv1( x, y ) = −∇yv2( x, y ) = 1 the condition MFCQ
fails for Q( x ). The solution ( x, y ) can be found as the solution of the relaxation:

min −x − y s.t. v1(x, y) = −x + y ≥ 0, v2(x, y) = −y ≥ 0

by computing the unique solution of the equations:

v1(x, y) = −x + y = 0, v2(x, y) = −y = 0.

The KKT approach leads to the program PFJBL of the form

min −x − y s.t. −x + y ≥ 0, −y ≥ 0,

λ0 − λ1 + λ2 = 0, λ0, λ1, λ2 ≥ 0,

(−x + y)λ1 = 0, −yλ2 = 0.

λ0 + λ1 + λ2 = 1, .

(3.10)

The points (x, y, λ0, λ1, λ2) = (0, 0, λ0, 1/2, 1/2 − λ0), 0 ≤ λ0 ≤ 1/2 are the
global minimizers of (3.10). If we choose z1 := (0, 0, 1/2, 1/2, 0), the associ-
ated multipliers (see (3.8)) are α = γ = ρ = 0 and β1 = 1, β2 = 2. As
J	0(z1) = {2}, MPCC-SC is violated at z1. For a minimizer z = (0, 0, λ) with
λ = (λ0, λ1, λ2) > 0, MPCC-SC holds (J	0(z) = ∅) but the condition MPCC-SOC
fails. To see this, note that TzMKKTBL is generated by the vector (0, 0,−1, 0, 1) while
∇2

(x,y,λ)L(0, 0, λ, 1, 2, 0, 0) = 0, so that ∇2
(x,y,λ)L(0, 0, λ, 1, 2, 0, 0)|TzMKKTBL

is a
singular matrix.

To show that the failure of MPCC-SC is stable against any small smooth per-
turbation we consider (small smooth) perturbations f (x, y) = −x − y + ε1(x, y),
φ(x, y) = y+ε2(x, y), v1(x, y) = −x+y+ε3(x, y), v2(x, y) = −y+ε4(x, y) of the
problem functions in (3.9). The unique intersection point (x∗, y∗) of the constraints,

v1(x, y) = −x + y + ε3(x, y) = 0 and v2(x, y) = −y + ε4(x, y) = 0
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is still the unique minimizer of the perturbed BL-problem and the corresponding FJ-
condition in (3.10) is

∑
i λi = 1 and

λ0

(
1 + ∂ε2

∂y
(x∗, y∗)

)
− λ1

(
1 + ∂ε3

∂y
(x∗, y∗)

)
− λ2

(
−1 + ∂ε4

∂y
(x∗, y∗)

)
= 0

and allows different solutions (x∗, y∗, λ0, λ1, λ2) of (3.10). If we choose again a solu-
tion z∗ = (x∗, y∗, λ∗

0, λ
∗
1, λ

∗
2) with J0(z∗) = {1}, J	0(z∗) = {2}, 	0(z∗) = ∅ we see

that z∗ is a solution of (3.8) with corresponding multipliers α∗ = γ ∗ = ρ∗ = 0 and
β∗ = (β1, β2) is given as the unique solution of the equation

(
−1 + ∂ε3

∂x (x∗, y∗) ∂ε4
∂x (x∗, y∗)

1 + ∂ε3
∂y (x∗, y∗) −1 + ∂ε4

∂y (x∗, y∗)

) (
β1
β2

)
=

(−1 + ∂ε1
∂x (x∗, y∗)

−1 + ∂ε1
∂y (x∗, y∗)

)

Note that for small ∂εi
∂x ,

∂εi
∂y the system matrix is non-singular. So again, in view of

J	0(z∗) = {2} (γ2 = γ ∗ = 0) at the solution (z∗, α∗, γ ∗, β∗) of (3.8) MPCC-SC is
violated.

The next result describes the generic properties of the critical points of PFJBL.

Theorem 3.2 Given ( f̂ , φ̂, v̂1, . . . , v̂l) ∈ [C3]l+2
n+m, (ĝ1, . . . , ĝq) ∈ [C2]q

n+m, let us

consider the perturbed problem functions f = f̂ + bT (x, y), φ = φ̂(x, y) + cT
φ y,

vi = v̂i + cT
vi

y + dvi , g j = ĝ j + dg j . Then for almost every (b, cφ, cv, dv, dg) ∈
R

(n+m)+m+ml+l+q , at all solutions ( x, y, λ, α, β, μ, γ, ρ) of the corresponding sys-
tem (3.8) (i.e., ( x, y, λ) is a critical point of the MPCC program PFJBL in (1.4)) the
following holds: MPCC-LICQ is satisfied and depending on the cases:

BL-1: If α �= 0, MPCC-SC and MPCC-SOC are fulfilled so that ( x, y, λ) is an
isolated non-degenerate critical point of PFJBL (in the MPCC-sense).

BL-2: If α = 0, then the multipliers μ j , βi associated with g j ( x, y ), vi ( x, y ), j ∈
J0g( x, y ), i ∈ J0v( x, y ), are not equal to zero and the inequality
|J0( x, y, λ )| ≥ m + |Jλ0

( x, y, λ )| holds. If λ is such that

rank

(∇yvJ0( x,y,λ )∪{0}\Jλ0
( x,y,λ )

1, . . . , 1

)
= |J0( x, y, λ ) ∪ {0}\Jλ0

( x, y, λ )| =
m + 1 (where v0 stands for φ), then MPCC-SOC holds.
Moreover, (given the critical point ( x, y, λ )) there always exists a vertex
solution λ

∗
(of (3.14) below) such that ( x, y, λ

∗
) is a critical point of PFJBL

satisfying

rank

(∇yvJ0( x,y,λ
∗
)∪{0}\J

λ
∗
0
( x,y,λ

∗
)

1, . . . , 1

)
= |J0( x, y, λ

∗
) ∪ {0}\J

λ
∗
0
( x, y, λ

∗
)|

= m + 1. (3.11)

Proof We sketch the proof and refer to [3] for the detailed analysis for PKKTBL.
(Recall that by Theorem 3.1, MPCC-LICQ generically holds on the whole feasi-
ble set.) Let us now consider a critical point ( x, y, λ ) of (1.4) with multipliers
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(α, β, μ, γ, ρ) (cf. (3.8)). The following system describes the critical point condi-
tion together with the possibility that some of the multipliers are equal to zero,
say βi , γ j , μk = 0, i ∈ J	∗

0β ⊂ J	0, j ∈ J	∗
0γ ⊂ J	0 ∪ Jλ0 , k ∈ J ∗

0g ⊂
J0g:

(3.8), (3.2) holds and

βi = 0, i ∈ J	∗
0β ⊂ J	0,

γ j = 0, j ∈ J	∗
0γ ⊂ J	0 ∪ Jλ0 ,

μk = 0, k ∈ J ∗
0g ⊂ J0g.

(3.12)

Here, we again skip the arguments (x, y, λ). With this setting, MPCC-SC means that
J ∗

0g = J	∗
0β = J	∗

0γ = ∅.
We consider solutions (x, y, λ, α, β, γ, μ, ρ) of (3.12) for the perturbed functions

f, φ, vi , g j and distinguish between the two cases, α = 0 and α �= 0.

Case α �= 0: For fixed N ∈ N we consider solutions of (3.12) with ‖α‖ > 1
N and

apply the Parameterized Sard Lemma as in the proof of Theorem 3.1 as follows. We
compute the Jacobian of the system (3.12) wrt. the variables (x, y, λ, α, β, μ, γ, ρ)

and the parameters (b, cφ, cv, dv, dg). This gives a matrix similar to the Jacobian
matrices in the proof of Theorem 3.1. It can be checked that this Jacobian has
full row rank. The Parameterized Sard Lemma then implies that for almost every
(b, cφ, cv, dv, dg), the Jacobian matrix of the system (3.12), with respect to the vari-
ables (x, y, λ, α, β, γ, μ, ρ), has full row rank E := n + m + l + 1 + m + |J0v| +
|J	0| + |	0| + 1 + |Jλ0

| + |J0g| + |J	∗
0β | + |J	∗

0γ | + |J ∗
0g|. But this rank cannot

exceed the number V := n + m + l + 1 + m + |J0| + |J	0| + |J	0| + |	0| +
|Jλ0

| + |J0g| + 1 of involved variables. So, in view of J0 ∪ J	0 = J0v we must
have

|J	∗
0β | + |J	∗

0γ | + |J ∗
0g| = 0,

i.e. MPCC-SC holds. With similar arguments, using the full rank condition for the
Jacobian, one shows that for almost all parameters (b, cφ, cv, dv, dg) MPCC-SOC
and MPCC-LICQ holds (the last also follows more generally from Theorem 3.1). In
particular this implies that the critical point ( x, y, λ ) is an isolated non-degenerate
critical point of PFJBL.

By taking all finitely many possible combinations of active index sets into account,
we conclude that for almost every linear perturbation of ( f̂ , φ̂, v̂, ĝ), the solutions
of the system (3.12) with ‖α‖ > 1

N are non-degenerate critical points of PFJBL. Tak-
ing the intersection ∩N∈N of all these function sets, we conclude that for almost
every linear perturbation the non-degeneracy condition holds at all critical points with
α �= 0.

Case α = 0: For a solution of (3.12) this assumption implies ρ = 0 and γi = 0, i ∈
J	0 ∪ 	0 (see (3.8)). As the set J0v( x, y ) = J0( x, y, λ ) ∪ J	0( x, y, λ ) does
not depend on the particular choice of λ, the critical point condition for ( x, y, λ)

decomposes into a system in (x, y, β, μ),
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∇ f (x, y) −
∑

i∈J0v

βi∇vi (x, y) −
∑
j∈J0g

μ j∇g j (x, y) = 0,

vi (x, y) = 0, i ∈ J0 ∪ J	0
g j (x, y) = 0, j ∈ J0g

(3.13)

and for fixed ( x, y) a system in λ,

λ0∇yφ( x, y )−
∑

i∈J0v( x,y)

λi∇yvi ( x, y)=0,
∑

i∈J0v( x,y )∪{0}
λi =1, λi ≥ 0. (3.14)

Note that any solution ( x, y, λ, β, μ) of the system (3.13), (3.14) yields a critical point
( x, y ) of the standard program,

min f (x, y) s.t. vi (x, y) ≥ 0, i = 1, . . . , l,
g j (x, y) ≥ 0, j = 1, . . . , q,

(3.15)

with corresponding multipliers β and μ. So, for almost all dvi , dg j the point
( x, y ) is a non-degenerate critical point of (3.15), i.e., βi , μ j �= 0 for all i, j
and the Hessian of (3.13) (∇ denotes ∇(x,y) and we again skip the arguments
(x, y)),

A =

⎛
⎜⎜⎝

∇2 f −
∑

i∈J0∪J	0

βi∇2vi −
∑
j∈J0g

μ j∇2g j ∇vJ0∪J	0 ∇gJ0g

∇T vJ0∪J	0 0 0
∇T gJ0g 0 0

⎞
⎟⎟⎠ (3.16)

is nonsingular. This follows by the genericity results for standard programs (see [10]).
We now define

Ls = f −
∑

i∈J0∪J	0

βivi −
∑
j∈J0g

μ j g j and L Q = λ0∇yφ −
∑

i∈J0v

λi∇yvi .

The application of the Sard Lemma to the system (3.13), (3.14) implies that, for almost
every (b, dv1 , . . . , dvl , dg, cφ, cv1 , . . . , cvl ), the matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

∇2 Ls 0 ∇vJ0v ∇gJ0g

∇T vJ0v 0 0 0
∇T gJ0g 0 0 0
∇T L Q ∇yφ,∇yvJ0v 0 0

0 1, . . . , 1 0 0
0 0 | IJ	0∪Jλ0

0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.17)

has full row rank which in particular yields (by comparing the number of rows and
columns)

m + |Jλ0
| ≤ |J0|. (3.18)
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Note that by Charatheodory’s Lemma, for any given critical point ( x, y, λ ) we can
choose a solution λ

∗
of (3.14) such that ( x, y, λ

∗
) is a critical point satisfying (3.11)

(cf., (3.18)).
Now we wish to prove that MPCC-SOC is fulfilled if

(
) rank

(∇yv(J0∪{0})\Jλ0

1, . . . , 1

)
= |J0 ∪ {0}\Jλ0

| = m + 1 (full rank).

Recall that v0 = φ. Using Remark 2.1, as MPCC-LICQ holds, we only need to prove
the regularity of

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇2 Ls 0 ∇L Q ∇vJ0v ∇gJ0g 0 0

0 0

∇T
y v0

∇T
y v1
...

∇T
y vl

0 0

1
...

1

0
...

IJ	0∪Jλ0
∪	0

∇T vJ0∪J	0 0 0 0 0 0 0
∇T gJ0g 0 0 0 0 0 0
∇T L Q ∇yv0,∇yv1, . . . ,∇yvl 0 0 0 0 0

0 1, . . . , 1 0 0 0 0 0
0 0 | IJ	0∪Jλ0

∪	0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.19)

Here we assume that the vectors ∇yv0,∇yv1, . . . ,∇yvl are ordered according to
the index sets J0 ∪ {0}\Jλ0

, J	0 ∪ Jλ0
,	0. Now if (
) holds, then the columns

of

∇T
y v0

∇T
y v1
...

∇T
y vl

1
1
...

1

0
...

0
IJ	0∪Jλ0

∪	0

are l.i. Hence, the corresponding columns in M are l.i. of the other columns in M .
Using (
) we see that the number of these columns is:

m+1+|J	0| + |Jλ0
|+|	0| = |J0| + |{0}| − |Jλ0

|+|J	0|+|Jλ0
|+|	0|= l + 1.

Deleting these l + 1 columns ([c1, . . . , cl+1]) in M we obtain a matrix M̄ (with N
rows and N − l − 1 columns) that contains the matrix (3.17) as submatrix and has
additional l + 1 zero-rows. Since (3.17) (as shown above) has full row rank the matrix
M̄ has row rank N − l − 1 and the same column rank. By adding again the l + 1 l.i.
columns [c1, . . . , cl+1] it follows that the matrix M in (3.19), has full rank N . ��

Remark 3.2 Note that in the case where (
) (see proof above) is satisfied the vector λ

is a vertex of the polyhedron (3.14).
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Remark 3.3 For the special case that Q(x) does’nt contain any constraints, i.e., Q(x)

is an unconstrained problem, then PFJBL = PKKTBL reduces to a standard finite program
(with constraint ∇yφ(x, y) = 0) and the genericity results for standard finite programs
in [10] can directly be applied to find that PFJBL generically satisfies LICQ, SOC and
SC.

Remark 3.4 An important subclass of critical points are the so called C-stationary
points, see [11] (i.e., critical points such that βiγi ≥ 0∀i ∈ J	0). Cases BL-1 and
BL-2 will appear (generically) even for this class and corresponding genericity results
can be similarly obtained.

We combine the generic properties of Theorems 3.1, 3.2 in a definition.

Definition 3.1 A bilevel problem PBL is called KKT-regular if its corresponding FJ-
relaxation PFJBL has the regularity properties of the generic class in Theorems 3.1,
3.2.

Obviously, this definition directly yields

Corollary 3.1 For almost all perturbations of ( f, φ, v1, . . . , vl , g1, . . . , gq), linear
in ( f, g1, . . . , gq) ∈ [C2] and quadratic in (φ, v1, . . . , vl) ∈ [C3],the corresponding
problems PBL are KKT-regular.

From Theorem 3.2 we conclude that generically PFJBL (see (1.4)) may have singular
critical points only for solutions with α = 0. We now describe the possible singular
behavior at critical points ( x, y, λ ) in this case α = 0 in Theorem 3.2, case BL-2,
more precisely. In this case (generically) the lower level problem partially vanishes.
By (the proof of) Theorem 3.2, ( x, y ) is a critical point of the nonlinear program
(3.15) (with the upper and lower level constraints). Moreover λ must be a solution
of system (3.14) (for ( x, y )). Recall (see proof of Theorem 3.2), that for ( x, y, λ )

we can construct a critical point ( x, y, λ
∗
) of PFJBL which also satisfies (3.11). For

this particular critical point, (generically) one of the following sub-cases will hold in
BL-2:

Case 1: λ
∗
0 �= 0 then J0( x, y, λ

∗
) ⊂ J0( x, y, λ ) and rank

(∇yφ,∇yvJ0( x,y,λ
∗
)

1, . . . , 1

)
=

|J0| + 1 = m + 1. The following subcases can occur.

(a) in case |J0v( x, y )| = m: LICQ holds at y for Q( x ) and λ = λ∗ is the unique
solution of system (3.14). The point ( x, y, λ ) is an isolated non-degenerate
critical point of PFJBL in the MPCC-sense, i.e., MPCC-SOC and MPCC-SC are
fulfilled.

(b) in case |J0v( x, y )| > m: J	0( x, y, λ∗) �= ∅ holds for the vertex solutions
λ∗ of the system (3.14). So, MPCC-SC fails for ( x, y, λ∗ ) since γi = 0, ∀i ∈
J	0( x, y, λ∗).

Case 2: if λ
∗
0 = 0 then rank

(∇yvJ0( x,y,λ
∗
)

1, . . . , 1

)
= |J0| = m + 1. The following

sub-cases are possible:
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(a) in case |J0v( x, y )| = m + 1: λ = λ∗ is the unique solution of system (3.14).
The point ( x, y, λ ) is an isolated non-degenerate critical point of PFJBL in the
MPCC-sense, i.e., MPCC-SOC and MPCC-SC are fulfilled.

(b) in case |J0v( x, y )| > m + 1: J	0( x, y, λ∗) �= ∅ holds for the vertex solutions
λ∗ of the system (3.14). So, MPCC-SC fails for ( x, y, λ∗) since γi = 0, ∀i ∈
J	0( x, y, λ∗).

Remark 3.5 Only in the cases BL-1, BL-2 case 1(a) or case 2 (a) we can guarantee
that the solution ( x, y, λ ) above is an isolated, critical point of PFJBL.

4 Interpretation of the results in terms of PBL

In this section we analyze the relation between the original program PBL and the
corresponding relaxation PFJBL (or PKKTBL) in the generic case, assuming that PBL is
KKT-regular (see Definition 3.1).

We begin with the case that ( x, y, λ ) is a local minimizer of PFJBL which satisfies
the conditions BL-1 or BL-2 in Case 1(a), Case 2(a) above (see also Theorem 3.2).
Then, according to Theorem 3.2 the point ( x, y, λ ) is an isolated non-degenerate local
minimizer satisfying MPCC-LICQ, MPCC-SC, and MPCC-SOC. By the results in [4,
Theorems 3.3,3.4] generically ( x, y, λ ) is an (isolated) local minimizer of PFJBL either
of order p = 1 or of order p = 2. This means that with constants ε > 0, κ > 0 the
inequality holds:

f (x, y, λ)− f ( x, y, λ)≥κ‖(x, y, λ)−( x, y, λ)‖p for all (x, y, λ)∈MFJBL (4.1)

satisfying ‖(x, y, λ)− ( x, y, λ )‖ < ε. Note that the point ( x, y ) need not be feasible
for the original problem PBL , i.e., y need not be a local minimizer of Q( x ). However,
if ( x, y ) is feasible for PBL , then it is also an isolated local minimizer of PBL . This
is stated in

Corollary 4.1 Let PBL be a KKT-regular problem and let ( x, y, λ ) be an (isolated,
non-degenerate) local minimizer of order p = 1 or p = 2 of the corresponding pro-
gram PFJBL in (1.4). Then, the solution λ of (3.14) is uniquely determined. Moreover
under these conditions, if ( x, y ) ∈ MBL (feasible) then it is also a local minimizer of
PBL of (the same) order p = 1 or p = 2.

Proof Assume now, that (3.14) has two solutions λ �= λ̂. Then for δ ∈ [0, 1] also
( x, y, (1 − δ)λ + δλ̂) are feasible points of problem (1.4) with the same minimal
objective value f ( x, y ). So, for small δ > 0, ( x, y, (1 − δ)λ + δλ̂) is a local min-
imizer of PFJBL, contradicting the fact that ( x, y, λ) is an isolated critical point of
PFJBL.

Now, let ( x, y ) be feasible for PBL , i.e., y solves Q( x ), and consider any
(x, y, λ) ∈ MFJBL with (x, y) ≈ ( x, y ). In view of the fact that λ is the unique
solution of (3.14) a continuity argument shows that also λ ≈ λ must hold. Hence,
in view of the inclusion (1.5), from (4.1) we can conclude that the point ( x, y ) is a
(locally unique) minimizer of PBL of the same order p = 1 or p = 2. ��
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Next, we consider the situation where ( x, y, λ ) is a local minimizer of PFJBL such
that the condition BL-2, of Theorem 3.2 holds and MPCC-SC is not fulfilled (BL-2,
Case 1(b), Case 2(b)). In this case λ is not the unique solution of (3.14). Let further-
more ( x, y) be feasible for PBL , i.e., y is a solution of Q( x ). In this situation we
cannot expect that around x the solution y(x) of Q(x) can be described by a smooth
function y(x) so that in this case, the original program PBL cannot be solved by
a reduction approach. We give an illustrative (generic) example for the case BL-2,
case 1(b).

Example 4.1

min 3x1 + x2 + y s.t. x1 ≥ 0, y solves Q(x) :
min y

s.t. x1 + y ≥ 0,

x2 + y ≥ 0.

The solution y(x) of the lower level problem Q(x) is given by y(x) = −x1 if
x1 ≤ x2 and y(x) = −x2 otherwise. So the function y(x) is not C1 around x = (0, 0).
The point ( x, y) = (0, 0, 0) is the global minimizer of the problem. Since Q(x) is
linear, wlog. we can consider the KKT formulation PKKTBL instead of PFJBL, and the point
( x, y, λ1, λ2) = (0, 0, 0, 1, 0) can be shown to be the minimizer of PKKTBL with asso-
ciated multipliers α = 0, μ = 1, β = (1, 1), γ = (0, 0) and |J0v( x, y )| = 2 > m.

Let us discuss the structure for the case BL-2, cases 1, 2 (b) further. We again analyze
only the first subcase, where at a critical point ( x, y, λ) of PFJBL we consider the solution
set of (3.14) with |J0v( x, y)| > m. This solution set is a polyhedron of dimension d,

d ≤ |J0v( x, y)| − m. We denote this polyhedron by R( x, y). For each λ∗ ∈ R( x, y),
the point ( x, y, λ∗) is a critical point of PKKTBL. The vertices of R( x, y) are given by
those solutions λ∗ such that rank(∇yvJ0( x,y,λ∗)( x, y)) = |J0( x, y, λ∗)| = m. In the
present situation the following bad behavior may occur: The points ( x, y, λ) with
λ ∈ R( x, y) and J	0( x, y, λ) = ∅ (i.e., λ is in the relative interior of R( x, y)) may
be local minimizers of PFJBL, but for a vertex λ of R( x, y), the point ( x, y, λ) is no
longer a local minimizer. This means, in particular, that the set of local minimizers
may not be closed. We give an example:

Example 4.2

min −x + y s.t. y solves Q(x) : min y s.t. x ≥ 0, y ≥ 0.

The corresponding KKT relaxation PKKTBL is

min −x + y s.t. 1 − λ1 = 0, y ≥ 0,

x ≥ 0, λ1, λ2 ≥ 0,

yλ1 = 0, xλ2 = 0.

Obviously the points (x, y, λ1, λ2) = (0, 0, 1, λ2), with λ2 > 0, are feasible with
|J0v(x, y)| = 2 > 1 = m and have the same objective value f (x, y) = 0. It is not
difficult to see that these points are local minimizers of PKKTBL. However, for the vertex
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solution (λ1, λ2) = (1, 0) of (3.14) (with λ0 = 1) the corresponding point (0, 0, 1, 0)

is no longer a local minimizer. Indeed, the feasible points (x, 0, 1, 0), x > 0, have a
smaller objective value f (x, 0) = −x .

The preceding example also shows that in contrast to the other cases (see Cor-
ollary 4.1) in these cases BL-2, subcases 1, 2(b), the fact that ( x, y, λ ) is a local
minimizer of PFJBL, and that ( x, y ) is feasible for BL, does not imply that ( x, y ) is a
local minimizer of the original BL program. In these cases only a weaker statement
than in Corollary 4.1 can be proven (see [3] for details).

Corollary 4.2 Let ( x, y) ∈ MBL, such that ( x, y, λ) is a critical point of PFJBL satisfy-
ing BL-2, subcases 1, 2(b). Assume that for all possible lower level multiplier vertices
λ

∗
of (3.14), the condition βJ	0( x,y,λ

∗
)
> 0 and A|Tx M � 0 holds (with A as in (3.16),

M the feasible set of (3.15)). Then ( x, y ) is a local minimizer of the bilevel problem.

Proof The proof is similar to that of Corollary 5.2.5 in [3] for the case of PKKTBL. ��
Remark 4.1 For semi-infinite programs it is known that generically for a solution
( x, y ) of the BL formulation the condition LICQ is satisfied at y wrt. Q( x ). So for
SIP we can restrict the KKT approach to PKKTBL and in Theorem 3.2 only the cases
BL-1 and BL-2 subcase 1(a) can occur.

5 A numerical approach for solving BL

This section deals with the numerical aspects of the KKT approach for solving the
original BL problem PBL . In particular, we discuss the consequences of the preceding
genericity results for this approach. The results suggest that we have to distinguish
between the cases BL-1, BL-2 Case 1, 2(a) and the cases BL-2 Case 1, 2(b). At a
minimizer ( x, y, λ ) of PFJBL satisfying BL-1 (or BL-2,(a)) the regularity conditions
MPCC-LICQ,-SC,-SOC, are fulfilled so that this minimizer can be computed numeri-
cally with methods from MPCC, e.g., with the smoothing approach, where the problem
PFJBL is replaced by the perturbed version (see (2.5)):

P(τ ) : program (1.4) with λivi (x, y)=0 replaced by λivi (x, y)=τ, i ∈ I, (5.1)

where τ > 0 is a (small) perturbation parameter. The program P(τ ) represents an
ordinary finite program and can numerically be solved by using software for standard
programs. From [4, Theorem 5] we obtain

Proposition 5.1 Let ( x, y, λ ) be a minimizer of PFJBL such that MPCC-LICQ,-SC,-
SOC hold. Then for any τ > 0 small enough there is a (locally unique) minimizer
(xτ , yτ , λτ ) of problem (5.1). Moreover the convergence ‖(xτ , yτ , λτ )−( x, y, λ )‖ =
O(

√
τ), for τ → 0, takes place.

At minimizers ( x, y, λ ) of PFJBL in cases BL-2,1(b), 2(b), a degenerate structure
occurs, so that for the computation of these minimizers the KKT approach may not
work. We give a generic example for the case BL-2,1(b) where the minimizer of PKKTBL

cannot be approximated by minimizers of P(τ ).
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Example 5.1

min x + y s.t. y solves Q(x) : min y s.t.
y ≥ 0,

1 − y ≥ 0,

x ≥ 0.

with corresponding problem PKKTBL:

min x + y s.t. 1 − λ1 + λ2 = 0, y ≥ 0,

1 − y ≥ 0, x ≥ 0,

λ1, λ2, λ3 ≥ 0, λ1 y = 0,

λ2(1 − y) = 0, λ3x = 0.

This problem has the solution ( x, y, λ) = (0, 0, 1, 0, 0) with multipliers β1 = β2 = 1,
α = γ1 = γ2 = γ3 = 0, and |J	0( x, y, λ )| = 1. It can be shown (see [3]) that near
( x, y, λ ) there do not exist minimizers (even not critical points) of P(τ ) for (small)
τ > 0.

However, fortunately our analysis in Sect. 3 has revealed that in case BL-2, generi-
cally, the corresponding minimizer ( x, y ) of PBL can directly be found by computing
a minimizer ( x, y ) of the reduced (standard) problem (3.15) and then by checking
whether ( x, y ) is feasible for PBL (i.e., y solves Q( x )). Recall that for minimizers
of PFJBL in the case BL-2, 1, 2(a) both approaches are possible. The results obtained so
far suggest the

Conceptual method for solving PBL (in the generic case): According to our analysis
a solution of a (KKT-regular) program PBL can be obtained as a solution of PFJBL. The
latter is either a (nondegenerate) solution of (3.15) (case BL-2) or a nondegenerate
solution of PFJBL (case BL-1). So we try both alternatives:

1. Try to compute the minimizer ( x, y, λ) of PFJBL which satisfy BL-2 as a solution
( x, y) of the relaxation (3.15) (such that also (3.14) holds) and check whether y solves
Q( x). If so, ( x, y ) is a minimizer of PBL .

2. Try to compute a (nondegenerate) solution ( x, y, λ) of PFJBL by applying the
smoothing approach P(τ ) in (5.1) (or some other method) for solving the MPCC
program (1.5). In case the procedure converges to a nondegenerate solution ( x, y, λ )

(case α �= 0), check whether y solves Q( x). If so, ( x, y) is a minimizer of PBL .
If the case α = 0 is detected, i.e., the method generates (xk, yk) → ( x, y), αk → 0,
we switch to step 1 (with last iterate (xk, yk) as starting point).

Remark 5.1 Note that not any solution ( x, y, λ) of PFJBL computed by the above
method need to lead to a solution ( x, y ) of PBL . We have to additionally verify suf-
ficient conditions (second order conditions wrt. Q( x )) (see Corollary 4.1 for step 2,
Corollary 4.2 for step 1).

To illustrate our solution method we consider 3 (simple) bilevel problems (all
are taken from http://www-unix.mcs.anl.gov/~leyffer/MacMPEC). These problems
are solved numerically with the help of the corresponding program PKKTBL using the
smoothing approach P(τ ). The (standard) finite programs P(τ ) have been computed
with the MATLAB procedure fmincon. In the following the numerical results are given
in 2 decimal places, i.e., 12.00009 is written as 12.00.
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The first example is due to Bard [1]:

min(x − 5)2 + (2y + 1)2

s.t. x ≥ 0, y ≥ 0,

and y solves Q(x) : min(y − 1)2 − 1.5xy

s.t. 3x − y − 3 ≥ 0,

−x + 0.5y + 4 ≥ 0,

−x − y + 7 ≥ 0.

The reported local minimizer is ( x, y, λ) = (1, 0, 3.5, 0, 0). To solve the program
P(τ ) (corresponding to the MPCC problem PKKTBL) we started with (x0, y0) = (0, 0)

and lower level multiplier λ0 = (1, 1, 1). We computed (in 0.2 s CPU) the approxi-
mate solution (x, y, λ) = (1.00, 0.00, 3.50, 0.00, 0.00) with error 0.39 e-06 for τ =
1.00 e-06.

To study the dependence of the procedure on the starting point (x0, y0) we tried to
solve the same problem using 50 random starting points first in [−1, 5]2 and then in
[−20, 20]2. Our smoothing approach succeeded for 33 starting points in the first and
for 16 in the second case.

The second example (see also [1]) is:

min −x2
1 − 3x2 − 4y1 + y2

2

s.t. x ≥ 0, y ≥ 0, −x2
1 − 2x2 + 4 ≥ 0,

and y solves Q(x) : min y2
1 − 5y2

s.t. x2
1 − 2x1 + x2

2 − 2y1 + y2 + 3 ≥ 0,

x2 + 3y1 − 4y2 − 4 ≥ 0.

Here the reported minimizer is ( x, y, λ) = (0, 2, 1.875, 0.9062, 0, 1.25). Starting
our KKT approach with (x0, y0) = (0, 0, 0, 0) and multiplier λ0 = (1, 1) we
obtained (in 33 s CPU) the approximate solution (x, y) = (0.00, 2.00, 1.88, 0.91),
λ = (0.00, 1.25) of P(τ ). For τ = 1 e-06 the error ‖(x, y) − ( x, y )‖ was 4.97 e-05.

By choosing 50 starting points (x0, y0) randomly from [−1, 5]4 and [−20, 20]4 the
smoothing procedure succeeded 44 times in the first cases and 45 times in the second.

We end with a degenerate (non-generic) example, where MPCC-LICQ fails at the
solution point (cf., [7]). The problem is

min −x2
1 − 2x1 + x2

2 − 2x2 + y2
1 + y2

2

s.t. x ≥ 0, y ≥ 0, −x1 + 2 ≥ 0,

and y solves Q(x) : min y2
1 − 2x1 y1 + y2

2 − 2x2 y2

s.t. .25 − (y1 − 1)2 ≥ 0,

.25 − (y2 − 1)2 ≥ 0.

In this case the minimizer is (.5, .5, .5, .5) and the lower level multipliers,
λ = (0, 0). At that point, MPCC-LICQ is not satisfied. Our approach behaved sur-
prisingly stable with error of order

√
τ for τ ≥ 8.6736 e-19.
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