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Abstract
Alzheimer’s disease (AD) and dementia are the most worrying health problems faced by people globally today. Although 
the pathological features of AD consisting of amyloid-beta (Aβ) plaques in the extracellular space (ECS) and intracellular 
tau tangles are well established, the developed medicines targeting these two proteins have not obtained the expected clinical 
effects. Photobiomodulation (PBM) describes the therapeutic use of red light (RL) or near-infrared light (NIR) to serve as a 
noninvasive neuroprotective strategy for brain diseases. The present review discusses the mechanisms of the photoelectric 
coupling effect (light energy-induced special electronic transition-related alterations in protein structure) of PBM on reducing 
Aβ toxicity. On the one hand, RL or NIR can directly disassemble Aβ in vitro and in vivo. On the other hand, formaldehyde 
(FA)-inhibited catalase (CAT) and  H2O2-inactived formaldehyde dehydrogenase (FDH) are formed a vicious circle in AD; 
however, light energy not only activates FDH to degrade excessive FA (which crosslinks Aβ monomer to form Aβ oligomers 
and senile plaques) but also sensitizes CAT to reduce hydrogen peroxide levels  (H2O2, which can facilitate Aβ aggregation 
and enhance FA generation). In addition, it also activates mitochondrial cytochrome-c to produce ATP in the neurons. Clinical 
trials of phototherapeutics or oral coenzyme Q10 have shown positive effects in AD patients. Hence, a promising strategy 
combined PBM with nanopacked Q10 has been proposed to apply for treating AD.
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Introduction

Alzheimer’s disease (AD) is the most common form of 
dementia affecting more than 50 million people globally in 
2018. With the disease burden expected to exceed 152 mil-
lion by 2050 according to World Alzheimer Report 2018 
[1]. People live longer nowadays. Most countries have 
entered the ageing society, and ageing is the main cause 
of dementia. The disability rate of AD is high, and the 
patients lose the ability to live independently in the termi-
nal stage, bringing a heavy economic burden on the family 
and society. It has been one of the main diseases affecting 
the sustainable development of the global economy.

The amyloid-beta (Aβ) deposition in the brain extracel-
lular space (ECS) to appearance senile plaques (SP) and tau 
hyperphosphorylation to form neurofibrillary tangles (NFTs) 
are the two typical pathological characteristics of AD [2, 3]. 
However, in the past decades, antibodies, vaccines, or small 
molecule drugs aimed against the production, aggregation, 
and clearance of Aβ and tau have not achieved ideal clinical 
efficacy [4]. Aβ deposition in the brain ECS to form SP has 
been found in AD over 100 years [5], and there are numer-
ous hypotheses about what endogenous factors induce Aβ 
aggregation; however, no one has been confirmed so far.

Recent studies have revealed that ageing induces a 
marked elevation in endogenous formaldehyde (FA) levels 
in the brains [6], and urine FA concentrations were posi-
tively correlated with cognitive decline in aged humans [7]. 
In particular, excessive FA in the brains is considered to be 
a critical trigger of Aβ aggregation and cognitive dysfunc-
tion [8–10]. For example, the results of in vitro experiments 
showed that FA at pathological concentration crosslinked Aβ 
monomer into dimer, trimer, oligomers, and fibrils. The data 
of in vivo experiments indicated that Aβ-binding with FA 
dehydrogenase (FDH) led to endogenous FA accumulation 
in the brains [11]; especially, injection of FA promoted Aβ 
oligomerization and SP formation in the brain of APP/PS1 
mice [9, 12]. Notably, injection of FA can directly promote 
tau hyperphosphorylation and NFTs formation [13]. In addi-
tion, injection of FA at a pathological concentration (which 
was detected in APP/PS1 mice) can mimic ageing-induced 
memory impairments in healthy adult male mice [10]. These 
data support the viewpoint that accumulated endogenous FA 
is closely related to the occurrence and development of AD.

Photobiomodulation for Alzheimer’s disease

How to find out an effective therapeutical method for AD 
is a worldwide difficulty. Owing to the failure of drug 
developments to treat AD in the world, more and more 

researchers start to pay attention to nondrug therapy. 
The safe and noninvasive nondrug methods to improve 
cognitive functions and alleviate mental disorders in AD 
patients become urgently needed in the global. PBM may 
be a promising strategy for AD treatment.

The development of phototherapeutics

PBM is a method to treat diseases and enhance the recovery 
of the body by using the warm effect, photochemical effect, 
photobiological regulation, and other characteristics of sun-
light or artificial light, including infrared, ultraviolet, visible 
light, and laser [14]. According to the choice of spectrum, it 
can be divided into the following: full spectrum irradiation, 
such as natural light illumination, bright light therapy (BLT), 
and monochromatic light irradiation, such as red, blue, and 
compound light. For example, the laser diode also called 
injection laser diode stands for light amplification by stimu-
lated emission of radiation. This electronic device trans-
forms the electrical energy provided by the input source into 
the beam of light. It has the characteristics of high brightness 
(high energy density), good directivity (directional radiation 
and small divergence angle), pure monochromaticity (the 
purest light color and single light wave frequency), and good 
coherence [15]. If the laser cannot directly cause irreversible 
damage in clinical trials, it is a weak laser, which is mainly 
used in physiotherapy and named low-level laser therapy 
(LLLT) with less than 100 ~ 200 mW. It can produce benign 
biological stimulation, responses, and photochemical effects, 
so as to regulate the functions of the immune system, nerv-
ous system, blood circulation system, and tissue metabolism 
[16, 17].

Patterns of photobiomodulation

There are three possible patterns for the current study for 
PBM in AD: (1) retinal pathway. For example, the 40 Hz 
white light scintillator via eyes can attenuate the pathologi-
cal characteristics of AD mice [18]. (2) Nonretinal access 
includes body surface exposure, endovascular irradiation, 
and nasal exposure. (3) Direct irradiation pathway includes 
helmet-type transcranial illumination [19]. BLT and LLLT 
are the most investigated in the clinical application of AD. 
Among them, LLLT has better curative effects on AD, and 
near-infrared light of ~ 1000 nm is mostly used [20], but 
the “thermal effect” of this wavelength is obvious. Its side 
effects including mild mania, migraine, eye fatigue, nausea, 
and agitation, have been observed in clinical trials [21]. In 
2015, a phototherapeutic device with red light at shorter 
wavelength (630 ± 20 nm) had been developed in China [22], 
which has been proved to have positive clinical effects, less 
thermal side effects, and better security than NIR.
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Photobiomodulation improves cognitive function 
in animals and patients

Multiple methods of PBM have been found to improve the 
cognitive function of AD patients. For example, clinical 
BLT therapy (1000 lx) can ameliorate cognitive disorders 
in AD patients [23, 24]. Intravascular red light treatment for 
20–40 min can improve cognition [25]. Transcranial treat-
ment combined with intranasal near-infrared irradiation at 
810 nm alleviates cognitive decline [26]. Near-infrared light 
(1060–1080 nm) has been found to improve cognitive per-
formance [27]. All-day bright light combined with melatonin 
can improve cognitive function and sleep quality in patients 
[28]. The results of animal models showed that near-infrared 
light at 1070 nm rescues memory deficits in AD model mice 
[29]. Some studies of LLLT on biological cells have been 
carried out; particularly, LLLT at 632.8 nm irradiation on 
AD model mice attenuates memory decline [30].

Photobiomodulation with high‑energy red 
light

The above-mentioned Chinese phototherapeutic device is 
composed of helmet and belt with 630-nm RL. The helmet 
is used to irradiate Aβ-deposited brain region (hippocampus, 
prefrontal, parietal, and occipital lobe) of AD patients. The 
belt is carried out to illuminate live (a main detoxification 
organ) to activate FDH for degrading FA.

There were two reasons why 630-nm wavelength was 
selected. First, RL at 630 nm has been found to reduce 
Aβ-mediated SP in brain ECS and decrease intracellular 
AβO in APP/PS1 mice. It also activates FDH to degrade 
formaldehyde, thereby reducing Aβ deposition in brain ECS 
and rescuing the drainage of the interstitial fluid (ISF) [11]. 
Second, RL at 630 nm has few thermal effects but can pen-
etrate the skull [11, 31, 32]. Although RL or NIR with longer 
wavelengths can penetrate the skull more easily, light at over 
650 nm has a “heating effect” [31–33], which most likely 
induces clinical side effects, such as headache, insomnia, 
and stroke [34].

Red light disassembles Aβ fibrils 
via photoelectric coupling effects

A previous study has shown that there are changes in the 
secondary structure of Aβ40 or the complex of Aβ40-C60 
examined by using circular dichroism (CD) after the incu-
bation of 5 days at 37 °C in the purified protein solutions 
with blue or red photoirradiation, respectively [35]. Different 
PBM techniques have been established to reduce Aβ self-
assembly [36–39]. Recent study has found that FA can bind 

with  28th lysine residue of Aβ42 monomer and enhance Aβ 
assembly; however, RL at 630 nm irradiating Aβ solution 
markedly reduced the formation of Aβ fibrils in vitro [9]. 
It also decreased Aβ-mediated SP deposition in ECS and 
intracellular AβO in APP/PS1 mice [11] (Fig. 1A, B).

RL directly disassembles FA‑crosslinking Aβ

Formaldehyde is a critical trigger of Aβ aggregation

Notably, a clinical investigation has shown that blood 
FA levels were gradually elevated in the aged human [6]. 
Unexpectedly, excessive FA can crosslink Aβ monomer to 
form dimer, trimer, oligomers, and fibrils in vitro. In AD, 
Aβ-binding with FA dehydrogenase (FDH) causes FA accu-
mulation in the brains [11]. FA also elicits Aβ oligomeriza-
tion and SP formation in the brain of APP/PS1 mice [9, 12].

Metabolical pathways of endogenous formaldehyde

Gaseous FA is the simplest small organic molecule that first 
appeared in the early evolution of the earth, containing C, 
H, and O elements at the same time [40]. Unexpectedly, 
endogenous FA exists in the cells of all living things [41]. 
FA production and degradation enzymes have been shown to 
regulate the balance of endogenous FA levels in the organ-
ism of eukaryotes [8, 42], which can avoid its neurotoxic and 
cytotoxicity [43, 44].

Formaldehyde-generating enzyme FA is endogenously 
generated by the following enzymes: sarcosine dehydroge-
nase (SARDH), TET methylcytosine dioxygenase 1 (TET1), 
lysine specific demethylase 1 (LSD1), endoplasmic reticu-
lum demethylase, semicarbazide-sensitive amine oxidase 
(SSAO), and mitochondrial cytochrome P450 enzyme.

Formaldehyde-degrading enzyme endogenous FA is 
mainly degraded by glutathione-dependent FA dehydroge-
nase (FDH, also known as ADH3), alcohol dehydrogenase 1 
(ADH1), and GSH-independent aldehyde dehydrogenase 2 
(ALDH2). Then, S-methyl GSH dehydrogenase, glyoxalase, 
and catalase (CAT) can also degrade FA.

Physiological and pathological functions of endogenous 
formaldehyde

Exogenous air pollutant-gaseous FA indeed induces cog-
nitive impairments in a survey in 75,322 participants 
[45]. Recently, endogenous FA has been proven to dually 
regulate memory formation. Under physiological condi-
tion, learning activity and high-frequent stimulations can 
elicit a transient elevation in the active FA levels, which 
are generated in the mitochondria of hippocampal neu-
rons via SARDH; especially, this elevated active FA can 
activate NMDA-receptor and enhance memory formation 
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[46]. However, FA overload suppresses NMDA-receptor 
by crosslinking NR1 and NR2B, which inhibits memory 
formation [46].

Clinical survey showed that blood FA levels were grad-
ually elevated in the aged human and a marked increase in 
the age of 70 [6]. This suggests that endogenous FA was 
accumulated during the ageing process, and 70 may be the 
key point of memory decline. In a clinical investigation in 
604 elderly and 517 dementia patients, uric FA concentra-
tion was positively correlated with cognitive decline than 
age-matched controls [10, 47]. Remarkably, the imbalance 
of expression and activity of FA-generating enzyme-SSAO 
and degrading enzyme-FDH is the critical reason for FA 
accumulation during ageing process [47, 48]. In APP/PS1 
mice, there is a vicious circle between FA accumulation 
induced by Aβ-inactivated FDH and FA-promoted Aβ 
oligomerization intracellularly and fibrillation extracel-
lularly (Fig. 1A, B), which leads to irreversible memory 
decline [8, 9, 12]. Hence, scavenging of FA contributes to 
the treatment of AD.

RL reduces the effects of FA‑crosslinking Aβ

The irradiation of RL at 630 nm can change the secondary-
helical structure of Aβ; thus, it reduces the formation of 
fibrils [11]. The light energy at a special wavelength can 
couple with the special chemical bonds of biological pro-
teins, causing electron transitions, inducing protein disas-
sembly or enzyme activation [49]. RL destructing the dimer 
of FA-crosslinked Aβ is the direct cause of Aβ disassembly 
[9, 11].

RL at 630 nm indirectly disassembles Aβ fibrils

Photoelectric coupling activates FDH to degrade FA

A previous study found that FA is the critical factor to form 
Aβ dimer and quickly form trimers, oligomers, and fibrils, 
while the addition of FA scavengers reduces the formation 
of Aβ fibers in vitro [9]. Age-related FA accumulation in the 
brains can enhance the formation of SP and NFTs [47, 50], 

Fig. 1  Model of photoelectric coupling effects of photobiomodu-
lation on Alzheimer’s disease. (A) FA accumulation derived from 
Aβ-inactivating FDH and expression imbalance of FA-generating 
and FA-degradating enzyme (SSAO and FDH). (B) Photobiomodula-
tion with RL or NIR on FA-promoted Aβ neurotoxicity. Red symbols 
(flash): red or near-infrared light illumination. (C) Model of laser-
activating human FDH. (D) Model of laser-activating human catalase. 
(E) Model of laser-activating human cytochrome-c. AD, Alzheimer’s 

disease; AHE:  C11H19N3O7S; Aβ, amyloid-beta; AβO, Aβ oligomers; 
ATP, adenosine triphosphate; CAT, catalase; Cyt-c, cytochrome-c; 
Cys, cysteine; ECS: extracellular space (diameter: 38 ~ 64  nm); FA, 
formaldehyde; FDH, formaldehyde dehydrogenase; Fe, ferrum; Fe-
HEME: the Fe(III) heme; HEC: heme C; ISF, interstitial fluid; ROS, 
reactive oxygen species; SSAO, semicarbazide-sensitive amine oxi-
dase; SP, senile plaques; Tyr, tyrosine
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which leads to AD occurrence [9, 12]. However, 630-nm 
RL can photocouple the thiol group (Cys-45), which binds 
with AHE  (C11H19N3O7S) of FDH, to promote FA degrada-
tion [49]. FDH contains the common structure  Zn2+-thiolate 
catalytic center. Loss of catalytic  Zn2+ or mutation of Cys45 
binding with catalytic  Zn2+ of FDH (also named GSNOR) 
leads to the FDH inactivation [51]. Cys45 residues bind-
ing with catalytic  Zn2+ were oxidized by  H2O2 and associ-
ated with a release in  Zn2+ and loss activity of hFDH [49] 
(Fig. 1C), thus reducing intracellular Aβ oligomerization 
and extracellular SP deposition in ECS [11].

Photoelectric coupling activates CAT to degrade  H2O2

During the ageing process,  H2O2 was gradually accumulated 
in the brain.  H2O2 not only increases the accumulation of 
FA [52] but also directly promotes the aggregation of Aβ 
to form SP [53]. However, 630-nm RL can activate catalase 
(CAT) by photoelectric coupling to tyrosine (Tyr) residue 
and promote  H2O2 degradation. Tyr-358 is the catalytic 
center of CAT and participates in the oxidation–reduction 
reaction of the Fe(III) heme (Fe-HEME). Consistently, FA 
has a spontaneous chemical reaction with Tyr directly (6, 
52). Thus, excess FA most likely binds to Tyr residue and 
inactive catalase [49] (Fig. 1D); thus reducing the aggrega-
tion of Aβ.

Photoelectric coupling activates cyt‑c to increase ATP 
generation

It has been found that the photons produced by NIR or RL 
can pass through the bone and be absorbed by the chromo 
group of the mitochondria of neurons, photoelectric cou-
pling to cytochrome-c oxidase (cyt-c). For example, 630-
nm laser light can activate cyt-c, which also contains an 
active center, Tyr244 binding to heme; and the redox status 
of heme in cyt-c responded to red laser light [54]; Tyr244 
participates in the oxidation–reduction reaction of heme C 
(HEC,  C34H34FeN4O4,) [55]. Herein, the active center of 
Tyr-358-binding heme in human CAT may be similar to the 
model of cyt-c (Fig. 1E). RL or NIR has been proven to 
directly increase the generation of cell ATP [56, 57]. Irra-
diation of rats with 660-nm RL stimulates a dose-dependent 
increase in oxygen consumption and ATP generation in the 
cerebral cortex by enhancing cyt-c activity [58]. The irradia-
tion of NIR at 808 nm also improves the generation of ATP 
in the cerebral cortex [59]. This may be the possible reason 
that the impaired neurons could be rescued by PBM in AD.

LLLT accelerates Aβ clearance in the brain and liver

New research suggests that exposure to a light flickering at 
40 Hz can promote gamma brain wave activity through the 

photic entrainment phenomenon [18]. Because the suprachi-
asmatic nucleus is linked to the light dark cycle [60], robust 
light–dark patterns are critical for controlling circadian Aβ 
clearance from the brain to the liver in AD model mice and 
humans [61]. Hence, this is another possible mechanism that 
RL or NIL can disassemble Aβ in vivo [62], which acceler-
ates brain-liver Aβ kinetics [63].

In a word, aging-associated FA metabolism disorders and 
Aβ-inhibited FDH lead to endogenous FA accumulation in 
the brains; in turn, excessive FA crosslinks the Aβ monomer 
to oligomerization, tau hyperphosphorylation to form NFTs 
in the cytoplasm, and SP formation in ECS. FA also induces 
ROS generation, and  H2O2 promotes Aβ aggregation. Mean-
while, FA-inhibited cytochrome-c reduces ATP generation 
in the mitochondria, while PBM alleviates Aβ neurotoxicity 
by reducing Aβ assembly intracellularly and extracellularly; 
especially, it activates FDH, CAT, and Cyt-c, respectively 
(Fig. 1C, D). In addition, PBM can reduce the levels of 
inflammation factors and oxidative stress [11], increase neu-
rogenesis and synaptogenesis [64], improve mitochondrial 
activity and ATP generation [65], and accelerate blood flow 
[66]; subsequently, it contributes to the treatment of AD.

Effect of photobiomodulation 
on inflammatory factors in AD

It has found that RL or NIR reduces SP numbers [8, 9] and 
alleviates cognitive deficits in AD transgenic mice by disas-
sembling Aβ, [11]; however, multiple effects of PBM may 
occur to ameliorate the course of dementia; for example, it 
can reduce inflammatory factors in AD. NIR at 1070 nm can 
reduce perivascular microglia and rescue memory deficits 
in AD model mice [29]. The 40 Hz white light scintillator 
can increase microglia colocalization with Aβ to scavenge 
SP [18]. Light also can attenuate Aβ-induced superoxide and 
inflammation in astrocytes [67–69].

Remarkably, acute exogenous FA exposure induces early 
Alzheimer-like changes in mouse [70]. It can mimic inflam-
matory reaction during atherogenesis [71]. FA stimulates 
the release of inflammation factors, for example, IL-1, IL-6, 
and TNF-α [72–74]. However, LLLT reduces inflammation 
factors caused by gaseous FA exposure [75]. Red light at 
630 nm can decrease the levels of IL-1β and TNF-α in AD 
transgenic mice [11]. Hence, the PBM-reduced inflamma-
tory factor contributes to the treatment of AD.

Prospects of photobiomodulation for AD

Over the past century, the world has been faced with prob-
lems including a high incidence and poor drug efficacy 
for AD. How to reduce Aβ toxicity through noninvasive 
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physical therapy is an emerging field in research of AD. 
Noninvasive physical therapy has become a new direction 
that develops rapidly at present. However, it also remains 
some problems on laser therapy such as acting slowly and 
poor compliance due to the thermal effect of light. There-
fore, it is urgent to investigate the molecular mechanism of 
more effective laser to disassemble Aβ, decrease the ther-
mal effect of light, improve the penetration rate of skull, 
and enhance clinical efficacy.

Notably, excessive FA inhibits Cyt-c activity and 
reduces coenzyme Q10 levels in the mitochondria, which 
finally induces neuron death; however, Q10 (an endogenous 
FA scavenger) can degrade FA, reduce Aβ oligomers and 
SP, and rescue memory functions in APP/PS1 mice [9]. 
Assessing serum Q10 levels has been proposed to predict 
the development of dementia [76], and AD [77]. Encourag-
ingly, an enhanced water-soluble nano-Q10 can improve 
cognitive functions in AD model mice [78]. A combination 
of PBM and nano-Q10 for treating AD has been found to 
be more therapeutically effective than one of these meth-
ods used alone [79, 80]. This is based on the facts that 
this kind of combination treatment has positive effects 
on reducing oxidative stress and neuroinflammation in a 
depression model mice [81] and a model of transient global 
brain ischemia [79]. It also can prevent Aβ assembly in AD 
model mice and alleviate PD-like behaviors in PD model 
mice [82, 83, 84]. Hence, the combination of these two 
methods to accelerate ISF drainage will contribute to Aβ 
clearance and drug delivery in AD patients [8] (Fig. 1B).

Low-level laser therapy (LLLT) is not carcinogenic and 
teratogenic to animal tissues. Through multiple molecular 
signaling pathways, it regulates cell functions, improves 
cell survival, promotes neural stem cell proliferation, and, 
subsequently, alleviates the pathological characteristics of 
AD model mice. Some preliminary clinical investigations 
have found that LLLT as a noninvasive adjuvant treatment 
is a promising therapeutic strategy for AD patients. It is 
worth looking forward to the fact that the thermal effect 
of laser light may be ameliorated by regulating the pulse 
frequency, duty cycle, and light intensity.
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