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Abstract The effect of low-level laser therapy (LLLT) on the
cardiovascular system is not fully established. Since the endo-
thelium is an important endocrine element, establishing the
mechanisms of LLLT action is an important issue.The aim
of the study was to evaluate the effect of transdermal LLLT
on endothelial function.In this study, healthy volunteers
(n = 40, age = 20–40 years) were enrolled. N = 30 (14 female,
16 male, mean age 30 ± 5 years) constituted the laser-
irradiated group (LG). The remaining 10 subjects (6 women,
4 men, mean age 28 ± 5 years) constituted the control group
(CG). Participants were subjected to LLLT once a day for
three consecutive days. Blood for biochemical assessments
was drawn before the first irradiation and 24 h after the last
session. In the LG, transdermal illumination of radial artery
was conducted (a semiconductor laser λ = 808 nm, irradiation
50 mW, energy density 1.6 W/cm2 and a dose 20 J/day, a total
dose of 60 J). Biochemical parameters (reflecting angiogene-
sis: vascular endothelial growth factor (VEGF), fibroblast
growth factor (FGF), angiostatin; antioxidative status: gluta-
thione (GSH) and the nitric oxide metabolic pathway: sym-
me t r i c d ime thy l a rg in ine (SDMA) , a symme t r i c
dimethylarginine (ADMA) and L-arginine) were assessed. In
the LG, a significant increase in GSH levels and considerable
decrease in angiostatin concentration following the LLLT
were observed. No significant differences in levels of the

VEGF, FGF, SDMA, ADMAwere observed.LLLT modifies
vascular endothelial function by increasing its antioxidant and
angiogenic potential. We found no significant differences in
levels of the nitric oxide pathway metabolites within 24 h
following the LLLT irradiation.

Keywords Low-level laser therapy (LLLT) . Vascular
endothelium . Nitric oxide metabolism . Oxidative stress

Introduction

The effect of low-level laser therapy (LLLT) on blood vessels
and streaming blood is not fully established. Endothelial cells
play a pivotal role in the maintenance of cardiovascular ho-
meostasis due to the paracrine regulation of haemostasis, in-
flammation and vascular tone. Endothelial dysfunction is a
well-established factor for the development of cardiovascular
disease and, nowadays, is considered to be the first pathogenic
link leading to its development [1]. One of the crucial factors
affecting the normal endothelial function is its redox status.
An antioxidative imbalance resulting from increased oxidative
stress induces abnormal regulation of the haemostatic process-
es, promotes vasoconstriction by releasing the cytokines acti-
vating vascular smooth muscles, induces inflammatory reac-
tion and changes vascular proliferative potential [2]. Increased
oxidative stress results in scavenging nitric oxide, a potent
vasodilatory and anti-inflammatory compound, leading to for-
mation of peroxynitrites, which in turn promote S-nitration
and nitrosylation of amino acid residues leading to changes
in protein function and stability. Increased proteolysis is a
source of methylated amino acids, i.e. asymmetrical
dimethylarginine (ADMA), which is a potent inhibitor of ni-
tric oxide synthase (NOS) and is considered to be an indepen-
dent cardiovascular risk factor. Symmetrical dimethylarginine

* Arkadiusz Derkacz
aderkacz@wp.pl

1 Department of Internal and Occupational Diseases, Hypertension and
Clinical Oncology, Wroclaw Medical University, Borowska 213
Street, 50-552 Wroclaw, Poland

2 Research and Development Department, Wrovasc – Integrated
Cardiovascular Centre Provincial Specialist Hospital in Wroclaw,
Kamienskiego 73a Street, 51-124 Wroclaw, Poland

Lasers Med Sci (2016) 31:1301–1307
DOI 10.1007/s10103-016-1971-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s10103-016-1971-2&domain=pdf


does not exert inhibitory effect on the NOS and is a marker of
early kidney damage by oxidative stress. All the abnormalities
mentioned above change the nitric oxide bioavailability by
shifting the balance between its synthesis and degradation,
and it may in turn promote inflammation and modify the
proliferative/antiproliferative balance of the vascular bed [3].
The proliferative action of endothelium may be assessed by
analysing the levels of growth factors (vascular endothelial
growth factor (VEGF) and fibroblast growth factor (FGF)
and an endogenous angiogenesis inhibitor, angiostatin, that
blocks the growth of new blood vessels. The low-level laser
irradiation may modulate endothelial function both directly
but also due to the paracrine signalling following the irradia-
tion of blood cells [4, 5]; however, the exact molecular mech-
anism underlying this phenomenon remain poorly
understood.

LLLT has been demonstrated to increase the endothelial
cell proliferation, migration as well as NO secretion.
Moreover, it has been shown that activation of the PI3K/Akt
pathway was a critical step for the elevated for eNOS expres-
sion upon LLLT. Furthermore, the iNOS expression and
VEGF synthesis were shown to be upregulated by LLLT at
the level of transcription possibly via the PI3K signalling
pathway [6, 7].

Similarly, the long term effects of LLLT on profile of en-
dothelial function, and subsequently cardiovascular risk re-
main unknown and most of the studies conducted so far were
focused mostly on the short term outcome. Furthermore, the
effect of LLLTon the paracrine interaction between streaming
blood and endothelial cell layer in the vessels. Hence, the aim
of the study was an attempt to evaluate the effect of the trans-
dermal LLLT on profile endothelial function and to address
the question regarding possible paracrine response to the
changes in the levels of vasoactive molecules in streaming
blood.

Material and methods

Study group

In this study n = 40 healthy volunteers at age of 20–40 years
were enrolled, where n = 30 (14 female and 16male, mean age
mean age 30 ± 5 years) constituted the laser irradiated (laser
group (LG)). The remaining 10 subjects (6 women and 4 men,
mean age 28 ± 5 years) were the control group (CG).

The recruited subjects were young and without a signifi-
cant past medical history. Exclusion criteria for the study were
disorders that may affect endothelial function, such as cardio-
vascular disease (hypertension, diabetes mellitus, peripheral
artery disease, heart failure) and cardiovascular events in the
past (stroke, transient ischemic attack (TIA), myocardial in-
farction). Subjects with an active or chronic inflammatory

process (acute or chronic infectious diseases), endocrine dis-
eases, autoimmune diseases, haematological diseases, neo-
plastic disorders were also excluded from the study. Subjects
with other factors potentially interfering with the obtained
results (dermatological abnormalities, reduction of blood flow
in the radial artery, drug therapy affecting the endothelial func-
tion) were not enrolled to the study.

Study procedure

Each participant of the LG underwent the laser irradiation of
the skin located above the course of the radial artery with 24-h
intervals between procedures for three consecutive days. We
have chosen the radial artery as the easily accessible and lo-
cated in a relatively safe for irradiation body area.

Before starting the illumination, 40 ml of blood had been
drawn from the antecubital vein from each subject for the
subsequent biochemical analyses. The second blood drawing
was conducted on the fourth day of the study, 24 h after the
last irradiation.

Blood samples from the CG were drawn in the same time
intervals.

Laser probe and irradiation procedure

A semiconductor laser LS 808/2000 (Laser Secura, Poland)
issuing the radiation of a wavelength of λ = 808 nm and a
maximum power of 2 W was used in this study.

An element-emitting radiation was permanently, optically
connected (Bpigtailed^) with optical fibre. The end of the op-
tical fibre was designed to work from an approximate distance
of 20 cm, while the area of exposure was a circle with approx-
imately 2 mm in diameter. During the study, the energy dose
of one irradiation procedure was 20 J/ day, a total dose of 60 J
with an application of radiation of 50 mW. The energy density
was 1.6 W/cm2.

In order to validate the power and radiation energy, a
PMD100D metre (Thorlabs Ltd., UK) was used prior to the
study. In the course of the study, the radiation energy and the
power stability were measured twice in order to avoid unreli-
able results. The wave length of radiation was controlled using
an Optical Spectrum Analyzer AQ6370C (Yokogawa Electric
Corporation, Japan).

After determining the location of the radial artery by pal-
pation about 2 cm proximally to the styloid process of the
radial bone (located ca. 3 cm proximally to the wrist line),
terminal points were marked on the skin on the palpated loca-
tion and 4 cm directed proximally along the forearm.
Irradiation was performed by providing the energy with slow
sweeping method along the course of the artery with the
sweeping rate 0.5 Hz.
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Biochemical tests

During the study, the following biochemical parameters were
measured:

& marker of endothelial oxidative stress—reduced glutathi-
one (GSH)

& metabolites of the nitric oxide pathway—ADMA, SDMA
(the substrate’s analogues for endothelial nitric oxide syn-
thase, eNOS; where ADMA is an endogenous competitive
inhibitor of eNOS), L-Arginine (a substrate for eNOS),
cGMP (a second messenger in the intracellular signal
transduction initiated by NO).

& endothelial angiogenic factors—VEGF, FGF, angiostatin.

The reduced glutathione was measured in whole blood
using a colorimetric assay BIOXYTECH GSH/GSSG-412.
Plasma concentrat ions of L-arginine, asymmetric
dimethylarginine (ADMA) and symmetric dimethylarginine
(SDMA) were measured by high-performance liquid chroma-
tography (HPLC), and precolumn derivatization was mea-
sured with o-phthaldialdehyde (OPA) by a previously pub-
lished method [8]. Plasma concentrations of cGMP, serum
VEGF and FGF were measured using commercial ELISA kits
(R&D Systems Europe Ltd, United Kingdom). Angiostatin in
the serum was determined using ELISA kit ELH-Angiostatin
(RayBio Inc., USA). Tests were conducted according to the
manufacturer’s instructions and the samples were stored at
−80 °C until analysis.

Statistical analysis

Statistical analysis was performed using the Statistica 10.0
Stat Soft® software. For analysing unpaired variables, after
preliminary analysis of normal distribution and homogeneity
of variance, the Shapiro Wilk’s and Leven’s tests were per-
formed. The significance of the differences in mean values
were then analysed using the Mann–Whitney U test for non-
parametric variables or t test for parametric ones. For paired
variables, dependent on the parametricity, t test for matched
variables or signs test and Wilcoxon’s test were conducted, as
appropriate. Values of p < 0.05were considered as statistically
significant.

Results

No significant differences between the two groups regarding
age (LG 30.03 ± 5.05 vs. CG 27.82 ± 4.65 years; p = 0.40),
sex (women/men ratio at both groups, p = 0.72) nor BMI

(LG 22.67 ± 2.62 vs. CG 22.44 ± 2.27 kg/m2; p = 0.67) were
observed.

The mean values of analysed biochemical parameters be-
tween the two groups were similar, both at baseline and at the
endopoint (Table 1). No significant changes in the analysed
parameters were observed in the CG when comparing the
baseline and endpoint examinations (Table 1).

A significant increase in the reduced glutathione level in
LG was noted following the LLLT (769.41 ± 145.37 vs.
815.15 ± 151.69 μmol/l respectively; p = 0.045).

LLLT resulted in a significant decrease in the angiostatin
levels 265.22 ± 151.43 vs. 255.16 ± 228.68 pg/ml respective-
ly; p = 0.002).

No significant differences between other parameters in LG
were observed (Table 1).

Discussion

In this study the effect of LLLT on endothelium and the plate-
let aggregation wasmeasured using the biochemical and plate-
let aggregation parameters. Taken into account that the studies
conducted so far were only experimental and related mostly to
the cell cultures or experimental animal models, this is the first
study to analyse the long-term effect of laser irradiation on the
elements mentioned above in a clinical setting.

In this study, a radiation wavelength of λ = 808 nm was
used since such range is located within the optical frame
(about 550–1000 nm) and is relatively poorly absorbed by
tissues. The greater values of the radiation wavelengths have
relatively the highest tissue penetration. The total dose of ra-
diation used in the experiment is strictly connected with the
number of exposures. It is assumed that a single dose of radi-
ation equals 20 J. Looking into the anatomical features and
taking into account the possibility of the deepest tissue pene-
tration with applied radiation wavelength, the most available
artery was chosen. Based on the literature review, there are no
studies assessing the most effective dose acting locally on
endothelium and blood flow.

Considering the dose absorbed by the peripheral tissues,
the applied energy levels in this study were much higher than
those ones used in experimental studies on cell cultures or
small laboratory animals.

Reduced glutathione

Obtained results of biochemical parameters have shown that
low-level laser irradiation leads to an increase in reduced glu-
tathione, which acts as a sulphide buffer. It may be postulated
that low-level laser modulation of the reduced glutathione
levels could affect the generation of reactive oxygen species.
There are a few reports confirming the antioxidant effect of
LLLT based on the changes in the redox status [9, 10].
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It appears that this effect depends on a specific dose of
irradiation as well as its wavelength. In the study by Silveir
et al. conducted in an animal model, the He–Ne laser (wave-
length of λ = 660 nm) of energy density of 1 J/cm2 as well as
3 J/cm2 induced the reduction of oxidative stress. On the other
hand, the GaAs laser with a dose of 3 J/cm2 caused an expect-
ed effect [11].

Parameters of laser irradiation used in this study (wave-
length 808 nm, energy 20 J on exposure) have also been prov-
en to be successful in achieving an anti-oxidative effect. In this
case, the LLLTcontributed to changing in the level of reduced
glutathione. So far, very few studies demonstrated the rela-
tionship between LLLTand GSH in the context of antioxidant
action. The de Lim et al. study carried out on rats could be an
example. After the low-level laser irradiating, an increased
level of reduced glutathione was observed (wavelength λ =
660 nm, power 30 mW, energy 5.4 J), which suggests antiox-
idant properties of the irradiation [12]. The results of this study
prove the effect of LLLT on the GSH levels in human, which
was previously observed only in animal models.

Growth factors

Low-level laser radiation is presently considered to induce cell
proliferation. Numerous in vitro studies conducted on various
types of cell cultures, such as fibroblasts, endothelial cells,
keratinocytes, myoblasts and osteoblasts [13–15] confirm
the thesis. The studies report that LLLT induces proliferation
of endothelial cells due to the growth factor release such as
VEGF [16, 17] or FGF [18, 19]. The Goralczyk et al. study
demonstrated that LLLT of HUVEC (human umbilical vein
endothelial cells) induces a proliferative effect (wavelength
λ = 635 nm, energy density of 2 and 4 J/cm2) [16].

Furthermore, the Martignango et al. study indicated that
irradiation with a wavelength of λ = 904 nm and energy den-
sity of 2 and 3 J/cm2 used on murine fibroblasts increases the
VEGF gene expression, which induces cells proliferation [20].
A similar effect was observed during irradiation of human
keratinocytes with a laser of a wavelength of λ = 780 nm,
and it was most noticeable by applying radiation energy equal
to 1.5 J/cm2 [21].

The LLLT influence on changes in growth factors (VEGF,
FGF) was measured in this study. There were no significant
differences in their concentration after biostimulation.
Insignificant increases in average levels of VEGF after
LLLT were observed. Noteworthy, in the study by Derkacz
et al. conducted on a clinical material, no increase in VEGF
after using intravascular arteries irradiation was observed.
However, intravascular irradiation caused a significant de-
crease of FGF levels, which was not observed in this study
[17]. Similar observations relating to a lack of changes in
VEGF levels may be a consequence that both studies were
conducted on humans using the same wavelength (808 nm).T
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Differences in the response of FGF to LLLT may result
from limited bioavailability of the percutaneous irradiation
method when comparing to the intravascular one.

Angiostatin

A significant reduction in the level of angiostatin in the laser
group in response to LLLTwas shown. Angiostatin is a well-
known angiogenesis inhibitor [22, 23]. Taking into account
the results, we can assume that LLLT decreases the level of
angiostatin, and causes a shift of the balance favouring the
pro-angiogenic activity. Therefore, LLLT may indirectly pro-
mote the angiogenesis. A few reports confirm this statement,
although stimulation of angiogenesis is associated rather with
an increase in iNOS activity as well as in VEGF levels. The
influence of LLLTon the concentration of angiostatin was not
studied so far [24, 25].

The Zaidi et al. study demonstrates that LLLT stimulates
angiogenesis through the angiomotin increase and angiostatin
decrease in sclerodermic mice. A 14-day exposure to laser
radiation contributed to the formation of collateral circulation
in the limbs, which were previously hypoxic [20]. In the avail-
able literature, there were no more data regarding the relation-
ship between LLLT and the level of angiostatin. The results
confirm the hypothesis that LLLT should not be used in hu-
man with malignancies since the angiostatin deficiency may
disinhibit the uncontrolled angiogenesis [26].

The effect of LLLT on the nitric oxide metabolism

In this study we intended to assess the effect of LLLT on the
metabolism of nitric oxide. The analysis of parameters asso-
ciated with the NO metabolic pathway (ADMA, SDMA and
L-A rginine) were used for this purpose. However, there were
no significant differences after the irradiation procedure.
Nevertheless, numerous reports indicate beneficial effects of
low-level laser irradiation on the bioavailability of NO [6, 7,
27, 28].

The authors analysed different parameters associated with
the metabolism of nitric oxide from those ones found in this
study. Our study analyses the relatively long-term effects of
the high power density. In the literature, NO is shown to be
released immediately and to stay for at least a few hours after
irradiation [29]. Therefore, the results of this study do not
oppose previous findings but look at a different time frame.

It is noted in particular, that LLLT increases the gene ex-
pression of the nitric oxide synthase. The Lohr et al. study
shows that in case of hypoxia, LLLT (wavelength of λ =
670 nm) stimulates the secretion of NO [28]. Similarly,
Osipov et al. showed that the photolysis of nitrosyl complexes
in haemoglobin is a source of NO [30]. In the present study,
we investigated the effect of LLLT on the concentration of
ADMA. The presence of numerous publications highlights

the importance of ADMA in the development of cardiovascu-
lar disease in relation to endothelial dysfunction. There is cur-
rently no data relating to the direct effects of LLLTon ADMA
levels, which contributed to our observations. However, those
studies confirm numerous beneficial effects of LLLT on the
metabolism of NO that presumably takes place in a different
mechanism than the one demonstrated in this study.

LLLT and endothelial and platelet function

A vast majority of the studies on the effect of LLLT on endo-
thelium were conducted in an in vitro model, and there are
only scarce studies regarding the modulating role of LLLT on
human endothelium and its proliferation [13, 21, 31, 32]. In an
ex vivo study conducted on human material, it has been
shown that LLLT may modulate vascular tone of the coronary
arteries and left internal mammary artery following their pre-
vious pharmacologically induced contraction [33]. Some stud-
ies postulate that this effect might be mediated by changes in
the nitric oxide metabolism, which is opposed by the results of
our study [6, 7].

The effect of LLLT on platelet function is also a matter of
several studies and controversies. In study by Brill et al. the
effect of LLLTwas varying dependent on the wave length and
the HeNe laser with the λ = 632 nm and power of 7 mW was
associated with decreased platelet aggregation induced by
TRAP (the thrombine receptor agonist peptide) [34, 35]. The
effect was also explained by changes in the nitric oxide me-
tabolism, as assessed by cGMP levels. We used the wave
length of λ = 808 nm, which could explain different results
observed in our study.

Study limitations

The study limitations resulted from the test procedure itself.
During the study, only one wavelength of the laser radiation
was used. Other radiation wavelengths may potentially have a
different effect on the organism, including the endothelial
function. Using the described method, it is not possible to
estimate the exact dose of radiation that reaches the endothe-
lium. However, other irradiation methods would involve an
invasive procedure, which would be difficult to justify on
ethical ground. Due to the small endothelial area subjected
to laser irradiation, the observed effects were rather paracrine
via streaming blood than exerted directly on the whole
endothelium.

Conclusions

Low-level laser radiation modulates the endothelial function
by increasing its anti-oxidative and angiogenic potential.
Administration of LLLT (λ = 808 nm, total dose 60 J) resulted
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in no significant changes in parameters of the NO metabolic
pathway 24 h after LLLT irradiation.
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