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Abstract
Over the last decades, algorithms have been developed for checking copositivity of
a matrix. Methods are based on several principles, such as spatial branch and bound,
transformation to Mixed Integer Programming, implicit enumeration of KKT points
or face-based search. Our research question focuses on exploiting the mathematical
properties of the relative interior minima of the standard quadratic program (StQP)
and monotonicity. We derive several theoretical properties related to convexity and
monotonicity of the standard quadratic function over faces of the standard simplex.
We illustrate with numerical instances up to 28 dimensions the use of monotonicity
in face-based algorithms. The question is what traversal through the face graph of the
standard simplex is more appropriate for which matrix instance; top down or bottom
up approaches. This depends on the level of the face graph where the minimum of
StQP can be found, which is related to the density of the so-called convexity graph.
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1 Introduction

Copositivity of a matrix is an important concept in combinatorial and quadratic opti-
mization (Burer 2009; Kaplan 2000; Povh and Rendl 2007; Väliaho 1986). Given the
standard simplex with the n coordinate unit vectors ei , i = 1, . . . , n as vertices:

Δn :=
{
x ∈ R

n+
∣∣∣ n∑

i=1

xi = 1

}
. (1)

A symmetric n × n matrix A is called copositive if

∀x ∈ Δn, xT Ax ≥ 0 (2)

and noncopositive if
∃x ∈ Δn, xT Ax < 0. (3)

Copositivity is a weaker condition than positive semidefiniteness (PSD), i.e. PSD
implies copositivity

∀x ∈ R
n, xT Ax ≥ 0. (4)

One can determine if a matrix is PSD via Cholesky decomposition in polynomial time
(O(n3)). However, determination of copositivity of a matrix has been shown to be a
co-NP complete problem (Murty and Kabadi 1987). The certification of copositivity
is related to the standard quadratic program (StQP)

f ∗ :=
(
min
x∈Δn

f (x) := xT Ax

)
. (5)

The StQP is generic in the sense that optimizing a quadratic function f (x) := xT Qx+
bT x + c over Δn is equivalent to (5), taking A := Q + 1

2 (1b
T + b1T ) + c11T , where

1 is the all-ones vector. Clearly, if f ∗ < 0, then A is not copositive and if f ∗ ≥ 0,
then A is copositive.

There have been suggestions in literature to create procedures for copositivity test-
ing based on properties of the matrix (Nie et al. 2018; Yang and Li 2009). The spatial
branch and bound (B&B) algorithm introduced by Bundfuss andDür (2008) can either
certify that a matrix is not copositive, or prove it is so-called ε-copositive. Following
such a procedure, Žilinskas and Dür (2011) claim that certifying ε-copositivity of a
copositive matrix is limited to a size up to n = 22 in a reasonable time. Certification
of ε-copositivity by simplicial refinement requires much more computation than veri-
fying non-copositivity of a matrix, which can be done for a dimension n up to several
thousands.

Basically, a spatial B&B approach samples and evaluates points that do not nec-
essarily coincide with candidates of optima of (5). In contrast, a recent work which
also compares with B&B approaches by Liuzzi et al. (2019), focusing on the first
order conditions, i.e. Karush–Kuhn–Tucker (KKT) conditions of the optima of (5).
They apply convex and linear bounds in a B&B context implicitly enumerating KKT
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points, which proved to be very efficient in low-density graphs. The consequence of
introducing monotonicity in the original B&B in Bundfuss and Dür (2008) has been
investigated in Hendrix et al. (2019) and Salmerón (2019).

Also recent is the work of Gondzio and Yildirim (2018) which translates the KKT
conditions to a MIP type of approach making use of fast integer programming imple-
mentations in order to solve the StQP (5) for instances of hundreds of variables. The
mentioned procedures do not focus on the second order considerations to find an
optimum.

An older work, Scozzari and Tardella (2008) derives algorithms based on the obser-
vation that a minimum point of (5) can only be on the so-called relative interior of a
face of the standard simplex, if f is convex on that face. Their focus is on the convexity
of f on the edges of that face. In this way, they look for what they call a clique in the
convexity graph, consisting of the vertices of the standard simplex and edges where
f is strictly convex.
Our focus is also face-based, where we look for negative points of f for noncopos-

itivity detection, where only local minimum points on the relative interior of faces are
evaluated. The search procedure traverses what we call the face graph of the standard
simplex, as depicted in Fig. 1. Each node is a face of the standard simplex, described
by a bit string bk ; if the i th position is 1, then vertex ei is included in the face. We
introduce the ordered index set Ik as the ordered set of indices of the variables in face
Fk . Nodes on level � are �-faces, so the standard simplex is the root, and vertices ei
are on the lowest level. Level � has

(n
�

)
faces. Node set F := {1, . . . , 2n − 1} contains

all face numbers. An edge (m, k) implies that either Fm is a facet of Fk or vice versa.
This means that bit string bk differs in one bit from bm and consequently Ik has one
index more than Im or the other way around.

In this context, the procedure of Scozzari and Tardella (2008) first marks nodes on
level � = 2 (edges of the standard simplex) as strictly convex and goes up in the graph
to identify faces on a level as high as possible with all edges convex to find interior
minima, with a value as low as possible. For faces Fm on a lower level, we have that
Fm ⊂ Fk implies minx∈Fm f (x) ≥ miny∈Fk f (y). Now, having f convex on all edges
is a necessary but not sufficient condition for f to be convex on the face. Therefore,
Scozzari and Tardella (2008) test whether the matrix Ak related to the elements of face
Fk is positive definite (PD). We will show, that this is a sufficient, but not necessary
condition for f to be convex on Fk .

Our main research question is how we can traverse the face graph identifying those
faces where f is strictly convex on the relative interior and evaluate the corresponding
minima in order to find points with a negative objective function value or to prove
that A is copositive. To report on the findings of our investigation of the research
questions, our paper is organized as follows. Section 2 discusses the mathematical
properties relevant for the algorithm development about monotonicity and first and
second order conditions. Section 3 sketches the traversal variants of a face-based
algorithm. Section 4 uses several benchmark instances to investigate numerically for
what type of matrices which graph traversal is more effective. The main conclusions
and future research questions are described in Sect. 5.
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000011 000102 001004 010008 1000016

Fig. 1 Face graph of the standard simplex for n = 5, where faces Fk are numbered by index k and bit string
bk indicates which elements are considered positive and which zero

2 Properties of a StQP

In our notation, we use as identitymatrix in dimension n the symbol In := (e1, . . . , en)
and 1 represents the all-ones vector in appropriate dimension.Moreover, we use Dn :=
In − 1

n 11
T = (d1, . . . , dn) as the projection matrix on the zero sum plane P := {x ∈

R
n|1T x = 0}. It is useful to consider matrix Ak in order to evaluate f := xT Ax on

face Fk .

Definition 1 Given a symmetric n×nmatrix A and a binary vector bk with correspond-
ing index set Ik , Ak is the sub-matrix of A with rows and columns that correspond to
indices in Ik . For face Fk at level �, Ak is an � × � matrix.

Note that minx∈Fk xT Ax is equivalent to minx∈Δ�
xT Akx .

2.1 Optimality conditions

The first order conditions (KKT conditions) for a local minimum of StQP (5) are used
in the studies of Gondzio and Yildirim (2018), Liuzzi et al. (2019), Salmerón et al.
(2018) and Scozzari and Tardella (2008). For a local minimum point x ≥ 0 of (5)
there exist values of the dual variables μ and λi ≥ 0 such that

Ax = μ1 + Inλ, xT λ = 0. (6)
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The expression xiλi = 0 is called complementarity and is closely related to the
question onwhich face theminimum point can be found. Gondzio and Yildirim (2018)
shows that the StQP (5) can be solved for hundreds of variables using Mixed Integer
Programming (MIP) applying binary variables to capture the complementarity. Liuzzi
et al. (2019) derives a B&B algorithm which implicitly enumerates the KKT points
obtaining new linear and convex expressions for the bounds.

It is known that the minimum of an indefinite quadratic function can be found at
the boundary of the feasible set. Basically, the feasible set Δn of (5) does not have an
interior. Consider the relative interior rint(Δn) of Δn as

rint(Δn) :=
⎧⎨
⎩x ∈ R

n
∣∣∣ n∑

j=1

x j = 1; x j > 0, j = 1, . . . , n

⎫⎬
⎭ . (7)

When we know that a face Fk has a relative interior minimum point y∗, it is given by

Ak y
∗ − μ1 = 0, 1T y∗ = 1, (8)

where y∗ is mostly in a space of dimension lower than n. Translation of the solution
to n-dimensional space requires adding zeros on the positions i /∈ Ik . So, either the
global minimum point of StQP can be found in one of the vertices of the standard
simplex (unit vector ei ) or at the relative interior of one of the other faces. To have
a relative interior optimum on Fk , f should at least be convex on Fk . Scozzari and
Tardella (2008) characterize this by looking for faces where Ak is positive definite
(PD). However, this is not a necessary condition. For instance, matrix

A :=
⎛
⎝ 0 −1 −2

−1 1 −3
−2 −3 2

⎞
⎠ (9)

defines a function f which is strictly convex onΔ3, but is not PD. Consider the matrix
H := Dn ADn . This matrix defines the convexity on the standard simplex.

Proposition 1 If the matrix H := Dn ADn is positive semidefinite (PSD), then the
function f := xT Ax is convex on Δn.

Proof Let x, y ∈ Δn . Notice that (y − x) ∈ P such that ∃r ∈ R
n, y − x = Dnr . Then

for 0 ≤ λ ≤ 1

(1 − λ) f (x) + λ f (y) − f ((1 − λ)x + λy)

= (1 − λ) f (x) + λ f (y) − (1 − λ)2 f (x) − λ2 f (y) − 2(1 − λ)λxT Ay

= λ(1 − λ)[ f (x) + f (y) − 2xT Ay]
= λ(1 − λ)[xT Ax + yT Ay − 2xT Ay]
= λ(1 − λ)(y − x)T A(y − x) = λ(1 − λ)rT Hr ≥ 0
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This means that for any x, y ∈ Δn and 0 ≤ λ ≤ 1, (1 − λ) f (x) + λ f (y) ≥
f ((1 − λ)x + λy). 	

The other way around, to have a relative interior optimum, H should be PSD.

Proposition 2 If ∃ x∗ ∈ argminΔn
f (x) ∩ rint(Δn), then Dn Ax∗ = 0 and

H := Dn ADn is positive semidefinite.

Proof Following the KKT conditions (6), only the constraint 1T x = 1 is binding, i.e.
there exists a value μ such that Ax∗ = μ1. As Dn = In − 1

n 11
T ,

Dn Ax
∗ = Dnμ1 = μ[In − 1

n
11T ]1 = μ[1 − n

n
1] = 0. (10)

Considering f (x) in a δ−ball B(x∗, δ) around x in rint(Δn) can be described as
considering x = (x∗ + h) ∈ rint(Δn) with h = Dnr ∈ P . As x∗ is a relative interior
minimum point, there exists δ > 0, such that ∀r ∈ B(0, δ), f (x∗ + Dnr) ≥ f (x∗).
So ∀r ∈ B(0, δ)

f (x∗ + Dnr) = f (x∗) + 2(Dn Ax
∗)T r + rT Hr ≥ f (x∗). (11)

As Dn Ax∗ = 0, we have that ∀r ∈ B(0, δ), rT Hr ≥ 0, so H is a positive semidefinite
matrix. 	

With respect to strict convexity, one of the eigenvalues of H with respect to direction
1 is zero, as Dn1 = 0. Basically, this means that the other eigenvalues of H should
be positive. Our implementations and Scozzari and Tardella (2008) use Cholesky
decomposition routines to test whether Ak or Hk are PD or PSD.

Proposition 2 can be extended to any face Fk if we consider the standard simplex
Δ� in dimension � equal to the number of positive elements in face Fk .

Corollary 1 If ∃ x∗ ∈ argminFk f (x) ∩ rint(Fk), then also ∃ y∗ ∈ rint(Δ�), such
that D�Ak y∗ = 0 and Hk := D�AkD� is positive semidefinite.

2.2 The convexity graph

The analysis of Scozzari and Tardella (2008) focuses on convexity of the edges of a
face. Function f over edge (ei , e j ) can be written as

ϕ(ρ) := f (ei + ρ(e j − ei )) = Aii + 2ρ(Ai j − Aii ) + ρ2(Aii + A j j − 2Ai j ). (12)

The function f is strictly convex over edge (ei , e j ) of Δn if

Aii + A j j − 2Ai j > 0. (13)

In that case, a relative minimum point of f over the line ei + ρ(e j − ei ) is given by

ρ∗ := Aii − Ai j

Aii + A j j − 2Ai j
. (14)
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If 0 < ρ∗ < 1, then we have an interior minimum over edge (ei , e j ) with function
value

f ∗
i j := Aii − (Aii − Ai j )

2

Aii + A j j − 2Ai j
. (15)

Definition 2 The convexity graph G := (N ,C) of a matrix A is a graph with node set
N := {1, . . . , n} having an edge (i, j) ∈ C if (13) holds, i.e. f is strictly convex over
the edge between ei and e j (Scozzari and Tardella 2008).

Actually, a node can be removed from G if it is not incident to any edge on which f
is convex. Graph Gk is defined similarly to matrix Ak . A necessary but not sufficient
condition for f to be convex on Fk is that graph Gk is complete. Due to the focus
of Scozzari and Tardella (2008), we illustrate that the condition is not sufficient for
matrix

Ak :=
⎛
⎝ 8 5 3
5 3 3
3 3 4

⎞
⎠ . (16)

The corresponding convexity graph Gk is complete, but f is not convex on Fk , neither
Ak nor Hk are PSD.

Looking for a face Fk with an interior optimum of the StQPmeans looking for faces
that correspond to a complete Gk on a level as high as possible. This consideration
brings up some typical properties. We did not focus on sparse matrices in our study. A
counter-intuitive property is that Ai j = 0 corresponds to a convex edge. Hence, when
A is sparse, the corresponding convexity graph will be quite dense.

The necessary condition of convex edges for an interior optimum, also implies that
an edge, where f is strictly concave, cannot belong to a face with a relative interior
optimum.

Proposition 3 Let x∗ ∈ argminΔn
xT Ax. If Aii + A j j −2Ai j < 0, i.e. f (x) := xT Ax

is strictly concave over edge (ei , e j ), then x∗
i x

∗
j = 0.

Proof A minimum point x∗ is either a vertex or a relative interior point of a face Fk .
The edge (ei , e j ) apparently cannot be subset of Fk , so either x∗

i = 0 or x∗
j = 0. 	


An anonymous referee drew our attention to the following consequence, which may
be used in algorithm development. Consider matrix Ã where in A, we replace the
corresponding concave edge entrance Ai j by Ãi j := 1

2 (Aii+A j j ) if Aii+A j j−2Ai j <

0. The corresponding function f̃ := xT Ãx enhances a linearization of f over the
concave edges. Following the same reasoning that a relative interior optimum on face
Fk requires f to be strictly convex on its edges, we have the following property.

Corollary 2 Let f̃ (x) := xT Ãx, where Ã is defined as A replacing Ãi j = 1
2 (Aii +

A j j ) if Aii + A j j − 2Ai j < 0. The StQP (5) is equivalent for A and Ã, i.e. x∗ ∈
argminΔn

xT Ax implies x∗ ∈ argminΔn
xT Ãx and f ∗ = f̃ ∗.

Due to the equivalence, this property does not seem relevant when checking faces
on convexity going level up in the face graph. However, this might be very relevant
for search procedures going downward in the face graph that use monotonicity con-
siderations; this is outlined in the following section.
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2.3 Monotonicity considerations

In simplicial B&B methods like that of Bundfuss and Dür (2008) that use simplicial
partition sets S := conv(V) based on vertex set V := {v1, . . . , vn}, Hendrix et al.
(2019) elaborated theoretically how monotonicity can be used. We extend the results
here and investigate what this enhances for face-based algorithms specifically. For a
general simplicial set conv(V), we can consider the facet Φi := conv(V \ {vi }).
Proposition 4 Consider simplex S := conv(V) and facet Φi . If ∃y ∈ Φi such that
(vi − y)T AV ≥ 0, then minS f (x) is attained at Φi .

Proof Consider the matrix V with columns that correspond to the vertices of S. Then
point y ∈ Φi can be written as y = Vλ for a vector λ ∈ Δ with λi = 0. Assume
the minimum is attained at x∗ := Vλ∗ with λ∗

i > 0. Now consider the point x :=
x∗ − λ∗

i (vi − y) = V γ with γ = λ∗ − λ∗
i (ei − λ). Then we have that γ ∈ Δ with

γi = 0, so x ∈ Φi . Moreover,

f (x) = x∗T Ax∗ + (x − x∗)T A(x + x∗) = f (x∗) − λ∗
i (vi − y)T AV (γ + λ∗).

As (vi − y)T AV ≥ 0 and γ + λ∗ ≥ 0, we have that f (x) ≤ f (x∗), so the minimum
is attained at x ∈ Φi . 	


The importance of this theoretical result is that, for the StQP (5) and the proof on
copositivity, one can reduce the search in a B&B algorithm like Bundfuss and Dür
(2008) to a facet of simplicial subset S.

Corollary 3 Consider simplex S := conv(V) and facet Φi . If ∃p �= i∀ j(vi − vp)
T

Av j ≥ 0, the minimum of f is attained at facet Φi .

Proof Follows directly from Proposition 4, by taking y as vertex vp ∈ Φi . 	

For a face-based algorithm, the analysis is easier, as it says we can drop out vertex

ei from the face Fk we are investigating. The condition of Corollary 3 implies

∃p �= i, aki − akp ≥ 0, (17)

where aki and akp are columns i and p of Ak , respectively.
Actually, monotonicity considerations in face-based algorithms are only relevant

when searching the face graph in Fig. 1 top-down, as it specifies which facets on the
lower level can contain a minimum point, eliminating in a B&B way the search on
other faces.

3 Algorithms

The authors of Salmerón (2019) report the findings of the consequence of including
monotonicity in the B&B algorithm of Bundfuss and Dür (2008). In this paper, we
develop three traversal variants of the face graph of Δn . The algorithms only evaluate
the vertices, i.e. the diagonal elements of A, the centroid and proven interior minimum
points of faces Fk .
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1. TDk (Alg. 1), Traverses the faces in Decreasing order of k and checks whether
they should be investigated. This requires at least for each face to store a marker
indicating if a face and sometimes all its sub-faces need not be checked.

2. TDown (Alg. 2), tries to avoid storage by checking the faces in a list for each level
and Traverses the face graph Downwards level-wise.

3. TUp (Alg. 3), follows the line of the algorithm of Scozzari and Tardella (2008)
TraversingUpwards the face graph. However, in contrast it works also level-wise,
as negative points may be found in local minima on lower levels.

In each algorithm, we first check matrix A to be copositive due to

– ∀i, j, Ai j ≥ 0, i.e. A is entry-wise nonnegative
– A is PSD (Cholesky decomposition).

Then the following actions are taken:

– Check diagonal elements Aii ≥ 0, i.e f is nonnegative in vertices of Δn (� = 1).
– Evaluate the centroid; f ( 1n 1) ≥ 0.
– Create the convexity graph G checking strict convexity over edges via (13), mean-
while calculating their minima given by (15) (this corresponds to � = 2).

3.1 TDk

The TDk version in face-based Algorithm 1 goes over the faces of the graph from
higher index value k downward until the list has been checked or a negative point has
been found. It has the similarity with B&B approaches, that on a higher level, we hope
to exclude evaluation on lower levels in the graph. Therefore, it uses a global indicator
list Tagk

– Tagk = 0: face Fk has not been checked,
– Tagk = 1: face Fk need not be checked and
– Tagk = 2: no need to check face Fk nor any of its sub-faces Fm ⊂ Fk .

When f is shown to be monotonous, we can tag some of the facets as checked. As
all sub-matrices Am of a copositive matrix Ak are also copositive, we do not have to
evaluate the sub-faces Fm in the face graph. This means that like in B&B the efficiency
of the algorithm depends on which level � of the graph we detect a face Fk where Ak

is copositive. The higher in the graph, the more nodes do not have to be evaluated.
Computationally, Algorithm 1 has the advantage that we only have to store one byte

Tagk for each face. However, from a complexity point of view, the number of faces
increases exponentially in the dimension n. Moreover, one face has usually several
parents in the face graph, such that it may be visited or marked several times during
the algorithm.

3.2 TDown

The idea of Algorithm 2 is to inspect only the interesting faces of each level of the
face graph. Only faces are evaluated at a level that may still contain negative points of
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Algorithm 1 Copositivity detection, traversing in decreasing k order (TDk)
Require: A: symmetric n × n matrix, n ≥ 3.
1: if A is entry-wise nonnegative or A is PSD then
2: return A is copositive
3: Evaluate Aii , centroid and edge minima where f is convex via (15), generating G
4: if negative point found then
5: return A is not copositive
6: Tagk := 0 for faces k not checked
7: k := 2n − 1
8: while k > 2 do
9: if Tagk = 0 then
10: if Ak ≥ 0 then
11: Set Tagm :=2 for all sub-facets Fm ⊂ Fk
12: break
13: if ∃i for which (17) holds, the minimum is on the facet without eIk (i) then
14: Set Tagm :=1 for facets Fm ⊂ Fk which include eIk (i)
15: else
16: if Gk is complete then
17: if Hk is positive semidefinite then
18: Determine x∗

k ∈ Fk solving (8)

19: if x∗T
k Ak x

∗
k < 0 then

20: return A is not copositive
21: else
22: Tagm :=2 for Fm ⊂ Fk
23: k := k − 1
24: return A is copositive

f . Two lists of candidate faces are active L� and L�−1, where only the numbers of the
faces are stored. In the pseudo-code, removal or insertion of a face Fk in a list means
the removal or insertion of number k.

Moreover, it maintains one global listR, which stores the values k of faces with a
nonnegative interior minimum or with a completely positive matrix Ak . On each level,
it keeps a listN of facets of the faces that cannot have aminimum due tomonotonicity.
Let us note that sub-faces of the faces in N are still considered, as the optimum of
f on a monotonous face is on the boundary. This is different for faces in R; none of
the sub-faces of Fk, k ∈ R can contain negative minima, so all its sub-faces can be
dropped. In this way, no sub-face of Fk, k ∈ R nor facet Fk, k ∈ N has to be included
in the next level list L�−1. In the worst case, list L� may still be huge with increasing
dimension n. Most troublesome, however, is the list management overhead.

3.3 TUp

Algorithm 3, TUp, follows the upward search of the algorithm of Scozzari and Tardella
(2008) in their search for the minimum of StQP(5) in the levels of the face graph. Their
terminology is to look for maximum cliques in the convexity graph, i.e.Gk is complete
on a level � as high as possible. Finding such a face Fk still requires checking whether
Hk is PSD in order to have a possible interior optimum on face Fk . The algorithm
stops if it finds a negative interior optimum or alternatively has found the highest
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Algorithm 2 Copositivity detection top-down in the face graph (TDown)
Require: A: symmetric n × n matrix.
1: if A is entry-wise nonnegative or A is PSD then
2: return A is copositive
3: Evaluate Aii , centroid and edge minima where f is convex via (15), generating G
4: if negative point found then
5: return A is not copositive
6: L� := {2n − 1},R := ∅, � := n
7: while � > 2 do
8: L�−1 := ∅, N := ∅
9: while L� �= ∅ do
10: Retrieve k from L�

11: if Ak ≥ 0 then
12: Save k in R
13: else if ∃i for which (17) holds, the minimum is on the facet without eIk (i) then
14: Save m of facet Fm ⊂ Fk without eIk (i) in L�−1
15: Save m of facets Fm ⊂ Fk including eIk (i) in N
16: else
17: if Gk is complete then
18: if Hk is PSD then
19: Solve (8) to find x∗

k ∈ Fk
20: if x∗T

k Ak x
∗
k < 0 then

21: return A is not copositive
22: else
23: Save k inR
24: else
25: Save all facets Fm : Fm ⊂ Fk in L�−1
26: L�−1:=L�−1 \ N
27: Eliminate from L�−1 all sub-faces Fm : Fm ⊆ Fk , k ∈ R
28: � := � − 1
29: return A is copositive

level (maximum clique) corresponding to the convexity graph where the minimum is
nonnegative.

4 Numerical investigation

The most appropriate way to traverse the face graph for copositivity testing, depends
on the convexity graph of the instance under consideration. On one hand there is the
density of the convexity graph, i.e. on how many edges f is strictly convex, and on
the other hand the level � on which the minimum of StQP can be found in case the
matrix is copositive. These two number are related. We first illustrate the behavior
with cases from literature based on the maximum clique problem. Then we vary more
systematically the level � on which the minimum can be found and the density of the
convexity graph. The instances can be found in the appendices.

Computer time is relative to the computational platform used. The algorithms were
implemented inMatlab 2016b using routines to run standard Cholesky decomposition
and solving the linear set of equations (8). They were run on an i5 CPU on a desktop
computer.
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Algorithm 3 Copositivity detection searching bottom-up (TUp)
Require: A: symmetric n × n matrix.
1: if A is entry-wise nonnegative or A is PSD then
2: return A is copositive
3: Evaluate Aii , centroid and edge minima where f is convex via (15), generating G
4: if negative point found then
5: return A is not copositive
6: � := 2 and L2 includes all edges where f is strictly convex
7: while � < n − 1 do
8: L�+1 := ∅
9: while L� �= ∅ do
10: Retrieve m from L�

11: for each vertex e j /∈ Fm do
12: Add vertex e j to Fm generating Fk
13: if k /∈ L�+1 and Gk is complete then
14: if not Ak ≥ 0 then
15: if Hk is PSD then
16: Solve (8) to find x∗

k ∈ Fk
17: if x∗T

k Ak x
∗
k < 0 then

18: return A is not copositive
19: Add k to L�+1
20: � := � + 1
21: return A is copositive

A first example is due to Hall and Newman (1963) and called the Horn matrix. It
is copositive in dimension n = 5; the corresponding face graph is depicted in Fig. 1.
The traversal variants show a varying behavior. TDk visits all faces in 0.01s. detecting
monotonicity and does not require the PSD check of Cholesky. TDown visits all faces
by level in 0.02s. TUp detects that none of the faces on level � = 3 corresponds to a
complete graph Gk (clique) in 0.05s, such that the edge minima of 0 determine the
global minimum. No face on a higher level is investigated.

4.1 Measuring performance of face graph traversal onmax-clique instances

Part of benchmark cases in literature are based on themaximumclique problemaccord-
ing to the following relation: Let ω be the clique number of a graph defined by its
adjacency matrix AG . One way to find it is to determine the minimum integer value t
such that (t − 1)11T − t AG is copositive, i.e. the clique number is

ω := min{t : [(t − 1)11T − t AG] is copositive}. (18)

Despite that there are better ways to determine the clique number, we used
instances from maximum clique DIMACS challenge (http://archive.dimacs.rutgers.
edu/Challenges/) of dimensionsn =14, 16 and28. Instance 1tc.16.clique (n = 16)was
converted to a clique from Challenge Problems (https://oeis.org/A265032/a265032.
html). Notice that this type of instances do no exhibit edges where f is strictly con-
cave, as for (13), we have that Aii + A j j − 2Ai j = 2t − t(AG)i j − 2 ≥ 0 for t ≥ 2.
This also implies that the matrix Ã discussed in Corollary 2 is Ã = A.
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Table 1 Results of Algorithm 1 (TDk) on DIMACS max-clique instances

n t d% �∗ #Eval #Mon #An #PSD # f T Cpos

14 3 68 5 1467 1427 0 2 2 0.31 s ✗

14 4 68 5 1467 1427 0 2 2 0.25 s ✗

14 5 68 5 7495 7169 0 22 22 1.05 s ✓

16 6 88 8 4920 4918 0 2 2 0.66 s ✗

16 7 88 8 4920 4918 0 2 2 0.65 s ✗

16 8 88 8 26,764 16,617 0 147 147 3.44 s ✓

28 3 59 4 93,341,409 39,975,812 68 2 2 11,451s ✗

28 4 59 4 180,630,459 85,812,632 445 106 106 21,672s ✓

For the instances, we have the following characteristics:

– n: dimension
– t : parameter for the clique number ω

– d%: density of the convexity graphmeasured as the percentage of edges (excluding
diagonal elements of C) on which f is strictly convex

– �∗: level on which the minimum point of StQP can be found, or a negative point
is found

Running the algorithms, We measure the following indicators:

– #Eval: number of evaluated faces
– #Mon: number of times f is monotonous on a face
– #An: number of times the evaluated Ak was completely nonnegative
– #PSD: number of times PSD evaluation of Hk was performed using Cholesky
decomposition

– # f : number of function evaluations of an interior optimum
– T: running time of the algorithm
– Cpos: copositivity has been proven.

Algorithm TDk runs over the list of 2n − 1 faces and marks them with respect
to monotonicity detection and the existence of higher level faces that may be all
nonnegative or have a nonnegative relative interior optimum. InTable 1,we canobserve
that each time the PSD status has been checked with Cholesky, Hk appeared PSD, the
solution of (8) resulted in an interior point that has been evaluated. Therefore, we
leave out this column for the same instances in the other face-based algorithm results.

The largest instance to solve is Johnson8-2-4 (http://archive.dimacs.rutgers.edu/
Challenges/), with n = 28 and max clique number ω = 4. Computationally, if each
marker Tagk only requires one byte, the algorithm requires 228 bytes, i.e. 0.5 GB, just
to store the marker. For t = 3, A is not copositive and the TDk algorithm requires 3
h 11 min to find an interior negative minimum at level � = 4. For t = 4, the matrix
is copositive and the matlab implementation of the algorithm requires 6 h to run over
the complete list.

The idea of Algorithm TDown is to use sets R and N not to store information on
all faces. Theoretically, this is an elegant idea and the monotonicity is passed on to
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Table 2 Results of Algorithm 2 (TDown) on DIMACS max-clique instances

n t d% �∗ #Eval |R| #Mon #An # f T Cpos

14 3 68 5 289 0 126 0 2 0.06 s ✗

14 4 68 5 289 0 126 0 2 0.05 s ✗

14 5 68 5 319 5 152 0 6 0.09 s ✓

16 6 88 8 145 0 8 0 2 0.03 s ✗

16 7 88 8 145 0 8 0 2 0.01 s ✗

16 8 88 8 145 1 8 0 2 0.01 s ✓

28 3 59 4 – – – – – > 24 h ✗

28 4 59 4 – – – – – > 24 h ✓

We also measure |R|: number of faces in global list R

Table 3 Results of Algorithm 3,
TUp on DIMACS max-clique
instances

n t d% �∗ #Eval # f #An T Cpos

14 3 68 4 177 73 0 0.09 s ✗

14 4 68 5 207 103 0 0.10 s ✗

14 5 68 5 209 105 0 0.11 s ✓

16 6 88 7 1423 1287 0 0.69 s ✗

16 7 88 8 1459 1324 0 0.66 s ✗

16 8 88 8 1461 1326 0 0.67 s ✓

28 3 59 4 827 422 0 1.21 s ✗

28 4 59 4 931 526 0 1.44 s ✓

next levels in a more systematic way. However, computationally the algorithm may
get stuck if the list L� gets larger. Table 2 shows this effect for the largest instance,
where suddenly the algorithm is not successful anymore; it looses a lot of time in
managing the lists. One should also take into account that level � = 14 alone contains(28
14

) = 40,116,600 faces. Therefore, the time required by TDown is practically larger
than that of algorithm TDk for the largest instance, whereas for the instances up to
n = 16 it is the fastest of the three traversal variants due to the efficient use of the
monotonicity information.

Algorithm TUp works upwards. As all instances have relative interior optima on a
relatively low level, the number of faces to be checked is very low. Table 3 shows that
for all measured instances, the algorithm requires less than 2 seconds. It surprised the
authors that the TDown implementationwalking down from n = 14, 16 could be faster
than the TUp implementation. The latter requires more PSD tests, but this is due to a
compiled Cholesky routine, which is faster than the monotonicity test which is based
on a matlab script. Apparently, one can reduce the number of facets to be evaluated
either by proving convexity over the facet or by monotonicity from top-down. The
implementation of TDown gets stuck in handling the large list L� on each level.
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Table 4 Results of the three algorithms varying the density of the convexity graph. Instances can be found
in “Appendix B”. We also measured #KKT: number of times KKT point determined and measured the
effect of replacing A by Ã according to Corollary 2

n d% �∗ Alg #Eval #PSD KKT # f #Mon #An T

11 75 6 TDk 915 14 9 3 649 164 0.13 s

TDk Ã 732 13 8 3 633 136 0.12 s

TDown 466 13 8 3 122 6 0.07 s

TDown Ã 181 13 8 3 36 8 0.03 s

TUp 237 74 27 2 – 97 0.06 s

11 85 8 TDk 954 49 22 3 774 188 0.13 s

TDk Ã 792 48 22 3 679 136 0.12 s

TDown 364 53 25 3 118 4 0.06 s

TDown Ã 190 44 19 3 35 4 0.03 s

TUp 455 222 94 9 – 167 0.10 s

11 93 10 TDk 825 153 60 6 672 132 0.12 s

TDk Ã 825 153 60 6 672 132 0.12 s

TDown 206 111 48 6 26 4 0.03 s

TDown Ã 206 111 48 6 26 4 0.03 s

TUp 1091 761 234 14 – 264 0.18 s

16 70 6 TDk 22,039 33 19 4 17,546 1030 4.28 s

TDk Ã 19,140 27 17 4 18,385 816 4.13 s

TDown 8693 33 19 4 4132 14 2.07 s

TDown Ã 529 22 14 4 125 6 0.08 s

TUp 630 132 47 4 – 362 0.32 s

16 84 9 TDk 26,104 265 67 5 21,427 1139 4.25 s

TDk Ã 25,514 265 67 5 22,224 1235 4.20 s

TDown 8670 273 69 6 3467 22 2.32 s

TDown Ã 6862 288 70 6 2,985 16 1.80 s

TUp 3122 1485 209 8 – 1528 1.35 s

16 94 15 TDk 22,416 1532 112 5 20,862 710 4.12 s

TDk Ã 22,416 1532 112 5 20,862 710 4.12 s

TDown 644 379 74 5 123 7 0.12 s

TDown Ã 644 379 74 5 123 7 0.12 s

TUp 33,030 23,546 543 9 – 9438 9.19 s
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4.2 Face graph traversal on instances with a varying density convexity graph

Scozzari and Tardella (2008) show us that randommatrices for n=10, 30, 50, 100, 200,
500, 1000 and 1500, with a control on the density of the convexity graph of 0.25, 0.5
and 0.75 can be generated according to a description in Bomze and De Klerk (2002)
and Nowak (1999). The findings report that one can solve problems with a density
of 0.25 up to dimension n = 500, a density of 0.5 up to n = 200 and a density of
0.75 up to n = 100. Intuitively, this provides the idea that the bottom-up approach
is more appropriate for low density convexity graphs and the top-down approach for
cases where the density graph is dense.

Tomeasure this effect, we generated the instances following Nowak (1999) varying
in dimension and convexity graph density that can be found in “Appendix B”. First
of all, they are all copositive, so the algorithms solve the StQP. As we can directly
observe from the instances, is that the matrices contain more variation in the numbers,
i.e. implying a higher condition number providing the phenomenon, that now the
matrix Hk is not necessarily PSD when the graph Gk is complete and the computed
KKT point is not necessarily interior of a face, so evaluation is not necessary. The
occurrence of monotonicity is far bigger for these random instances than for the max-
clique instances, leading to less computation time (fewer faces are evaluated) for the
same dimension. For those instances, we also evaluated the effect of using Corollary 2
by changing Ai j into Ãi j when f is concave over edge ei , e j . This appeared not to
make any difference for the matrices with the highest density convexity graph, as
concavity hardly occurs. However, for lower density, using Ã instead of A appears to
increase the effectiveness of the monotonicity check drastically.

The top-down traversal algorithms profit from an increasing density. They have
to check more the PSD of Hk with higher density as can be observed from Table 4.
However, they make use of monotonicity in order not to check the complete face
graph. What is typical for those instances is that the level-wise traversal of TDown,
which looked hopeless for the largest DIMACS instance due to list management, is
now faster because it does amore systematic elimination ofmonotone faces. Basically,
the number of checked faces decreases drastically. Checking the faces in index order
TDk from top to down leads to less efficiency in concluding on the monotonicity than
the TDown traversal. Moreover, as can be observed, this is helped by using matrix Ã
instead of A.

For the bottom-up traversalTUp, thework starts to beharderwith increasingdensity,
as more faces are kept on the list as their convexity graphGk is complete. In computing
time, the bottom-up approach gets slower than the top-down traversal variants for the
denser instances. For the instances where the optimum is at a relatively low level,
the TDown traversal is harder and costs more time. Moreover, the computing time
depends a lot on how well the management of the lists is organized. We can observe,
that TDown and also TUp require far more time if the number of faces to be evaluated
increases.
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5 Conclusions

This paper derives several properties on themonotonicity and convexity of the standard
quadratic function f over faces and subsets of the standard simplex. It illustrates that
monotonicity can be applied in face-based copositivity detection algorithms which
traverse the face graph of the standard simplex top-down. We found that randomly
generated instances provide a different characteristic in terms of monotonicity and
convexity than maximum clique based instances. The latter have a lot of symmetry
and no edges on which f is concave.

We show that the success of a top-down or bottom-up traversal of the face graph
depends not only on the density of the convexity graph, but also on the level on
which strictly convex faces can be discovered and on how well the list management
overhead can be reduced by efficient implementations. A level-wise implementation
looked hopeless for the larger symmetric maximum clique based instances due to list
management overhead, but appeared a very systematic and efficient approach for the
randomly generated instances. A transformation of the matrix of the StQP towards a
linearization over edges on which f is concave, helped a lot in the monotonicity tests
and reduces the number of faces to be investigated and the total computational time.

The implementations of the algorithms used for the illustration are based on easily
available matrix subroutines such as the Cholesky decomposition, but do not exploit
a lot the management of lists. The monotonicity considerations reduce the number of
Cholesky calls drastically. From a computer science perspective there is still ample
opportunities to improve the implementation of the algorithms to obtain a computing
time comparable to earlier published results. From this perspective, we are looking
into the parallelization of the face-based algorithms.
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appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
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by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Matrix instances from literature

Example 1 Horn matrix, n = 5 from Hall and Newman (1963).

A :=

⎛
⎜⎜⎜⎜⎝

1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1

⎞
⎟⎟⎟⎟⎠
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Example 2 Brock14, n = 14 from The Second DIMACS Implementation Challenge.
Generated with grahgen -g14 -c5 -p0.5 -d0 -s0.

AG :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 1 1 0 1 0 1 0 1 0 1
1 0 1 1 1 0 0 1 0 1 0 1 0 0
1 1 0 0 1 1 0 0 1 0 1 1 1 1
0 1 0 0 1 0 1 0 0 1 1 1 0 1
1 1 1 1 0 1 1 1 1 0 0 0 1 0
1 0 1 0 1 0 1 1 0 1 0 1 1 1
0 0 0 1 1 1 0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0 0 0 1 0 1 1
0 0 1 0 1 0 1 0 0 1 1 0 1 1
1 1 0 1 0 1 1 0 1 0 1 0 1 1
0 0 1 1 0 0 0 1 1 1 0 1 0 0
1 1 1 1 0 1 0 0 0 0 1 0 0 1
0 0 1 0 1 1 1 1 1 1 0 0 0 1
1 0 1 1 0 1 1 1 1 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A := (t − 1)11T − t AG is copositive for t = 5.

Example 3 1tc.16.clique, n = 16 from oeis.org/A265032/a265032.html.

AG :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1
1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1
1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1
1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1
1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1
1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1
1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1
1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1
1 1 1 1 1 0 0 1 1 0 0 1 0 1 1 1
1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1
1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1
1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A = (t − 1)11T − t AG is copositive for t = 8.
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B Variable density matrices

Example 4 Ivo-n10-dens0.75-dvert20, n = 11 from Nowak (1999).

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.49 9.56 8.31 13.41 3.06 1.32 7.44 9.93 3.35 −2.75 11.72
9.56 4.51 4.76 −2.24 5.72 6.46 14.40 −3.11 5.64 2.84 12.22
8.31 4.76 12.18 11.51 10.16 10.82 17.88 3.92 11.68 0.32 16.06
13.41 −2.24 11.51 9.61 7.32 7.97 8.34 −0.43 6.84 2.31 14.77
3.06 5.72 10.16 7.32 18.02 11.87 12.42 15.59 5.29 5.12 18.98
1.32 6.46 10.82 7.97 11.87 14.83 7.11 6.85 9.68 10.04 17.38
7.44 14.40 17.88 8.34 12.42 7.11 17.42 15.64 4.16 9.59 18.68
9.93 −3.11 3.92 −0.43 15.59 6.85 15.64 8.59 6.11 1.47 14.26
3.35 5.64 11.68 6.84 5.29 9.68 4.16 6.11 8.53 4.97 14.23

−2.75 2.84 0.32 2.31 5.12 10.04 9.59 1.47 4.97 7.52 13.73
11.72 12.22 16.06 14.77 18.98 17.38 18.68 14.26 14.23 13.73 19.94

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Density = 0.746, max-clique = 6 of convexity graph, minimum at level � = 3 of
f ∗ = 0.85

Example 5 Ivo-n10-dens0.95-dvert20, n = 11 from Nowak (1999).

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.49 −0.44 8.31 3.41 3.06 1.32 7.44 −0.07 3.35 −2.75 11.72
−0.44 4.51 4.76 −2.24 5.72 6.46 14.40 −3.11 5.64 2.84 12.22
8.31 4.76 12.18 11.51 10.16 10.82 7.88 3.92 1.68 0.32 16.06
3.41 −2.24 11.51 9.61 7.32 7.97 8.34 −0.43 6.84 2.31 14.77
3.06 5.72 10.16 7.32 18.02 11.87 12.42 5.59 5.29 5.12 18.98
1.32 6.46 10.82 7.97 11.87 14.83 7.11 6.85 9.68 10.04 17.38
7.44 14.40 7.88 8.34 12.42 7.11 17.42 15.64 4.16 9.59 18.68

−0.07 −3.11 3.92 −0.43 5.59 6.85 15.64 8.59 6.11 1.47 14.26
3.35 5.64 1.68 6.84 5.29 9.68 4.16 6.11 8.53 4.97 14.23

−2.75 2.84 0.32 2.31 5.12 10.04 9.59 1.47 4.97 7.52 13.73
11.72 12.22 16.06 14.77 18.98 17.38 18.68 14.26 14.23 13.73 19.94

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Density = 0.855, max-clique = 8 of convexity graph, minimum at level � = 4 of
f ∗ = 0.80
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Example 6 Ivo-n10-dens1-dvert20, n = 11 from Nowak (1999).

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.49 −0.44 −1.69 3.41 3.06 1.32 7.44 −0.07 3.35 −2.75 11.72
−0.44 4.51 4.76 −2.24 5.72 6.46 4.40 −3.11 5.64 2.84 12.22
−1.69 4.76 12.18 1.51 10.16 10.82 7.88 3.92 1.68 0.32 16.06
3.41 −2.24 1.51 9.61 7.32 7.97 8.34 −0.43 6.84 2.31 14.77
3.06 5.72 10.16 7.32 18.02 11.87 12.42 5.59 5.29 5.12 18.98
1.32 6.46 10.82 7.97 11.87 14.83 7.11 6.85 9.68 10.04 17.38
7.44 4.40 7.88 8.34 12.42 7.11 17.42 5.64 4.16 9.59 18.68

−0.07 −3.11 3.92 −0.43 5.59 6.85 5.64 8.59 6.11 1.47 14.26
3.35 5.64 1.68 6.84 5.29 9.68 4.16 6.11 8.53 4.97 14.23

−2.75 2.84 0.32 2.31 5.12 10.04 9.59 1.47 4.97 7.52 13.73
11.72 12.22 16.06 14.77 18.98 17.38 18.68 14.26 14.23 13.73 19.94

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Density = 0.927, max-clique = 10 of convexity graph, minimum at level � = 4 of
f ∗ = 0.8

Example 7 Ivo-n15-dens0.75-dvert20, n = 16 from Nowak (1999).

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12.12 17.40 10.93 16.98 7.06 2.57 10.71 13.14 11.83 6.03 7.51 4.99 9.58 4.35 15.00 15.86
17.40 11.55 0.53 8.96 11.30 10.74 8.52 6.29 17.28 7.54 12.13 4.47 8.35 3.02 6.11 15.57
10.93 0.53 8.81 −1.06 10.88 2.50 7.54 2.30 15.12 4.65 1.79 3.61 8.62 3.90 8.78 14.20
16.98 8.96 −1.06 8.12 15.39 −0.41 8.85 4.80 5.90 9.24 6.83 7.48 15.71 11.26 5.81 13.86
7.06 11.30 10.88 15.39 17.41 20.84 16.23 14.34 9.05 12.50 4.12 25.79 19.86 8.17 14.06 18.50
2.57 10.74 2.50 −0.41 20.84 8.69 10.40 4.52 11.41 11.92 0.52 7.42 3.86 6.32 8.88 14.14

10.71 8.52 7.54 8.85 16.23 10.40 15.36 17.74 16.62 16.20 13.28 8.12 21.88 15.49 9.31 17.48
13.14 6.29 2.30 4.80 14.34 4.52 17.74 6.38 4.64 6.26 9.76 4.08 11.65 4.07 18.14 12.99
11.83 17.28 15.12 5.90 9.05 11.41 16.62 4.64 16.85 15.60 7.85 9.39 16.41 10.34 13.01 18.22
6.03 7.54 4.65 9.24 12.50 11.92 16.20 6.26 15.60 16.45 11.35 15.85 11.54 7.16 6.60 18.02
7.51 12.13 1.79 6.83 4.12 0.52 13.28 9.76 7.85 11.35 10.05 8.99 18.42 −2.02 4.20 14.82
4.99 4.47 3.61 7.48 25.79 7.42 8.12 4.08 9.39 15.85 8.99 16.45 20.58 6.00 19.81 18.02
9.58 8.35 8.62 15.71 19.86 3.86 21.88 11.65 16.41 11.54 18.42 20.58 18.13 1.89 7.41 18.87
4.35 3.02 3.90 11.26 8.17 6.32 15.49 4.07 10.34 7.16 −2.02 6.00 1.89 2.99 −0.57 11.30

15.00 6.11 8.78 5.81 14.06 8.88 9.31 18.14 13.01 6.60 4.20 19.81 7.41 −0.57 11.02 15.31
15.86 15.57 14.20 13.86 18.50 14.14 17.48 12.99 18.22 18.02 14.82 18.02 18.87 11.30 15.31 19.60

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Density = 0.7, max-clique = 6 of convexity graph, minimum at level � = 4 of
f ∗ = 1.47
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Example 8 Ivo-n15-dens0.95-dvert20, n = 16 from Nowak (1999).

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12.12 7.40 10.93 6.98 7.06 2.57 10.71 3.14 11.83 6.03 7.51 4.99 9.58 4.35 15.00 15.86
7.40 11.55 0.53 8.96 11.30 10.74 8.52 6.29 7.28 7.54 2.13 4.47 8.35 3.02 6.11 15.57
10.93 0.53 8.81 −1.06 10.88 2.50 7.54 2.30 5.12 4.65 1.79 3.61 8.62 3.90 8.78 14.20
6.98 8.96 −1.06 8.12 15.39 −0.41 8.85 4.80 5.90 9.24 6.83 7.48 5.71 1.26 5.81 13.86
7.06 11.30 10.88 15.39 17.41 20.84 16.23 14.34 9.05 12.50 4.12 15.79 9.86 8.17 14.06 18.50
2.57 10.74 2.50 −0.41 20.84 8.69 10.40 4.52 11.41 11.92 0.52 7.42 3.86 −3.68 8.88 14.14

10.71 8.52 7.54 8.85 16.23 10.40 15.36 17.74 6.62 6.20 13.28 8.12 21.88 15.49 9.31 17.48
3.14 6.29 2.30 4.80 14.34 4.52 17.74 6.38 4.64 6.26 −0.24 4.08 11.65 4.07 8.14 12.99
11.83 7.28 5.12 5.90 9.05 11.41 6.62 4.64 16.85 15.60 7.85 9.39 16.41 10.34 13.01 18.22
6.03 7.54 4.65 9.24 12.50 11.92 6.20 6.26 15.60 16.45 11.35 15.85 11.54 7.16 6.60 18.02
7.51 2.13 1.79 6.83 4.12 0.52 13.28 −0.24 7.85 11.35 10.05 8.99 8.42 −2.02 4.20 14.82
4.99 4.47 3.61 7.48 15.79 7.42 8.12 4.08 9.39 15.85 8.99 16.45 10.58 6.00 19.81 18.02
9.58 8.35 8.62 5.71 9.86 3.86 21.88 11.65 16.41 11.54 8.42 10.58 18.13 1.89 7.41 18.87
4.35 3.02 3.90 1.26 8.17 −3.68 15.49 4.07 10.34 7.16 −2.02 6.00 1.89 2.99 −0.57 11.30

15.00 6.11 8.78 5.81 14.06 8.88 9.31 8.14 13.01 6.60 4.20 19.81 7.41 −0.57 11.02 15.31
15.86 15.57 14.20 13.86 18.50 14.14 17.48 12.99 18.22 18.02 14.82 18.02 18.87 11.30 15.31 19.60

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Density = 0.842, max-clique = 9 of convexity graph, minimum at level � = 4 of
f ∗ = 0.401

Example 9 Ivo-n15-dens1-dvert20, n = 16 from Nowak (1999).

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12.12 7.40 0.93 6.98 7.06 2.57 10.71 3.14 11.83 6.03 7.51 4.99 9.58 4.35 5.00 15.86
7.40 11.55 0.53 8.96 11.30 0.74 8.52 6.29 7.28 7.54 2.13 4.47 8.35 3.02 6.11 15.57
0.93 0.53 8.81 −1.06 10.88 2.50 7.54 2.30 5.12 4.65 1.79 3.61 8.62 3.90 8.78 14.20
6.98 8.96 −1.06 8.12 5.39 −0.41 8.85 4.80 5.90 9.24 6.83 7.48 5.71 1.26 5.81 13.86
7.06 11.30 10.88 5.39 17.41 10.84 16.23 4.34 9.05 12.50 4.12 15.79 9.86 8.17 14.06 18.50
2.57 0.74 2.50 −0.41 10.84 8.69 10.40 4.52 11.41 11.92 0.52 7.42 3.86 −3.68 8.88 14.14

10.71 8.52 7.54 8.85 16.23 10.40 15.36 7.74 6.62 6.20 3.28 8.12 11.88 5.49 9.31 17.48
3.14 6.29 2.30 4.80 4.34 4.52 7.74 6.38 4.64 6.26 −0.24 4.08 11.65 4.07 8.14 12.99
11.83 7.28 5.12 5.90 9.05 11.41 6.62 4.64 16.85 15.60 7.85 9.39 16.41 0.34 13.01 18.22
6.03 7.54 4.65 9.24 12.50 11.92 6.20 6.26 15.60 16.45 11.35 15.85 11.54 7.16 6.60 18.02
7.51 2.13 1.79 6.83 4.12 0.52 3.28 −0.24 7.85 11.35 10.05 8.99 8.42 −2.02 4.20 14.82
4.99 4.47 3.61 7.48 15.79 7.42 8.12 4.08 9.39 15.85 8.99 16.45 10.58 6.00 9.81 18.02
9.58 8.35 8.62 5.71 9.86 3.86 11.88 11.65 16.41 11.54 8.42 10.58 18.13 1.89 7.41 18.87
4.35 3.02 3.90 1.26 8.17 −3.68 5.49 4.07 0.34 7.16 −2.02 6.00 1.89 2.99 −0.57 11.30
5.00 6.11 8.78 5.81 14.06 8.88 9.31 8.14 13.01 6.60 4.20 9.81 7.41 −0.57 11.02 15.31
15.86 15.57 14.20 13.86 18.50 14.14 17.48 12.99 18.22 18.02 14.82 18.02 18.87 11.30 15.31 19.60

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Density = 0.943, max-clique = 15 of convexity graph, minimum at level � = 5 of
f ∗ = 0.401
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