
CEJOR (2018) 26:357–371
https://doi.org/10.1007/s10100-017-0503-x

ORIGINAL PAPER

Exact solutions for the collaborative pickup and
delivery problem

Margaretha Gansterer1 · Richard F. Hartl1 ·
Philipp E. H. Salzmann1

Published online: 15 November 2017
© The Author(s) 2017. This article is an open access publication

Abstract In this study we investigate the decision problem of a central authority in
pickup and delivery carrier collaborations. Customer requests are to be redistributed
among participants, such that the total cost is minimized. We formulate the problem
as multi-depot traveling salesman problem with pickups and deliveries. We apply
three well-established exact solution approaches and compare their performance in
terms of computational time. To avoid unrealistic solutions with unevenly distributed
workload, we extend the problem by introducing minimum workload constraints. Our
computational results show that,while for the original problemBenders decomposition
is the method of choice, for the newly formulated problem this method is clearly
dominated by the proposed column generation approach. The obtained results can be
used as benchmarks for decentralizedmechanisms in collaborative pickup and delivery
problems.

Keywords Collaborations · Vehicle routing · Traveling salesman problem · Exact
solutions

1 Introduction

Horizontal collaboration is a relatively recent phenomenon, where companies at the
same level of the supply chain establish partnerships. An example of such a type of
collaboration in logistics are carriers who exchange transportation requests in order to
increase vehicle fill rates or reduce transportation costs as well as emissions of harmful
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substances (Beliën et al. 2017). Not surprisingly, collaborative vehicle routing is an
active research area of high practical importance (Gansterer and Hartl 2017).

If collaborative decisions are made by a central authority having full information,
this is referred to as centralized collaborative planning. An example for such a central
authority might be an online platform providing services for collaborative decision
making (Dai and Chen 2012). In our study, we focus on such a centralized decision
making problem occurring in the less than truckload pickup and delivery market,
where customer requests have specified origins and destinations. In this branch of
the transportation industry collaborative planning is of particular importance since
shipments from different customers can be moved on the same vehicle. This gives
carriers much flexibility to share customer requests among each other (Archetti et al.
2014; Gansterer et al. 2016). In Fig. 1 we illustrate the investigated setting with three
carriers.

We assume a central authority having full information, aiming at an efficient distri-
bution of customer requests to carriers. The problem has been introduced by Berger
and Bierwirth (2010), but no efficient solution techniques have been presented so
far. Furthermore, a natural assumption is that carriers are not willing to share all
their customers. In real-world applications a reasonably even distribution of workload
among carriers is a minimum requirement to make collaborative solutions accept-
able for competing carriers. Thus, we extend the problem by constraints ensuring that
each carrier is assigned a minimum number of customers. We refer to this problem as
multi-depot traveling salesman problemwith pickups and deliveries (MDTSPPD). For
both problem variants (with and without minimum workload constraints), we apply
three well-known exact solution methods and compare their performance against a
commercial solver. Our computational study shows that Benders decomposition is
the method of choice for the original problem formulation. However, if minimum
workload constraints are considered, column generation clearly dominates all other
solution techniques.

The remainder of the paper is organized as follows. Section 2 provides a literature
review. Mathematical models are presented in Sect. 3. We discuss the applied solu-
tion methods in Sect. 4. Details on the computational study are presented in Sect. 5.
Conclusions and further research are summed up in Sect. 6.

2 Literature review

The first studies to systematically assess the potentials of collaborative vehicle routing
were presented by Krajewska and Kopfer (2006) and Cruijssen et al. (2007).

A real-world setting of a local courier service of a multi-national logistics company
is investigated by Lin (2008). Joint route planning of cooperative carriers is researched
by, e.g., Dai and Chen (2012), Buijs et al. (2016), Liu et al. (2010), while Adenso-
Díaz et al. (2014), Ergun Ö et al. (2007), Kuyzu (2017) focus on shippers, who want to
merge full truckload lanes. The full truckload multi-depot capacitated vehicle routing
problem (VRP) in carrier collaboration is presented in Liu et al. (2010).
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Fig. 1 The collaborative pickup and delivery problem of 3 carries (a, b, c). The upper part shows the
pre-collaborative setting. An efficient redistribution of customer requests to carriers is shown in the lower
part (Gansterer and Hartl 2017)

Several recent studies focus on ecological aspects, like reduced road congestion,
noise pollution, and emissions of harmful substances (Montoya-Torres et al. 2016;
Pérez-Bernabeu et al. 2015; Sanchez et al. 2016).

In order to approximate optimal solutions even for large real world collaboration
problems, many authors propose decomposition strategies. Dai and Chen (2012) use
such an approach for a carriers collaborative less than truckload transportation plan-
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ning problem with pickups and deliveries. Their method consists of two steps. First,
a mixed integer programming model, which is a generalization of the lane covering
problem, is proposed. Secondly, a set of feasible vehicle tours is constructed. Nadara-
jah and Bookbinder (2013) also present a two stage framework for less than truckload
carrier collaborations. The first stage refers to collaboration between multiple carriers
at the entrance to a city, which can be formulated as a VRP with time windows. The
second stage involves collaboration between carriers at transshipment facilities. Buijs
et al. (2016) study the collaboration between two business units of Fritom, a Dutch
logistics service provider, and propose alternatives to improve its collaborative trans-
port planning. They introduce the generalized pickup and delivery problem (PDP),
which relaxes the common constraints that a load must be transported from its ori-
gin to its destination using one vehicle within a single planning period. The authors
show different decomposition approaches, which are necessary to solve the real-world
instances.

Wang et al. (2014) present a combination of horizontal and vertical carrier collab-
oration, where both subcontracting and collaborative request exchange are taken into
account. Literature reviews on collaborative vehicle routing are presented byVerdonck
et al. (2013) and Gansterer and Hartl (2017).

Berger and Bierwirth (2010) introduce the collaborative carrier routing problem,
which assigns transportation requests to carriers. The authors come up with two
decentralized solution approaches, but no efficient solution method for the central-
ized problem is presented. Gansterer and Hartl (2016) show that these decentralized
mechanisms are particularly powerful if carriers select request based on geographical
information. The multiple vehicle VRP in a non-collaborative setting is researched by
Lu and Dessouky (2004). As a matter of fact, the authors do not consider workload
constraints.

Multi-depot VRP in general are investigated by, e.g., Polacek et al. (2008), Dondo
and Cerdá (2007) and Currie and Salhi (2003), while multiple depots and backhaul
customers are researched in Salhi and Nagy (1999) and Min et al. (1992). PDP with
heterogeneous vehicles are tackled by Irnich (2000). Nagy and Salhi (2005) look at
a multi-depot VRP with mixed backhauls and simultaneous pickups and deliveries
where a customer can both receive and send goods at the same time. A multi-depot
heterogeneous PDP with soft time windows is presented by Bettinelli et al. (2014).
Detti et al. (2017) present a multi-depot dial-a-ride problem with heterogeneous vehi-
cles. A survey and typology on multi-depot PDP in multiple regions is provided by
Dragomir et al. (2017).

Surveys on pickup and delivery problems are presented by Parragh et al. (2008),
Berbeglia et al. (2007), and Berbeglia et al. (2010). Various exact solution methods
are applied to this problem class. A branch-and-cut-and-price algorithm for the PDP
with shuttle routes is developed by Masson et al. (2014). An extended branch-and-
bound algorithm is presented by Kalantari et al. (1985). The PDP with time windows
is solved with a column generation scheme by Dumas et al. (1991), a banch-and-
cut algorithm by Ropke et al. (2007), and a branch-and-cut-and-price approach by
Ropke and Cordeau (2009) and Baldacci et al. (2011). Cherkesly et al. (2016) extend
the problem by multiple stacks and solve it using branch-and-price-and-cut, while
Cordeau et al. (2010) solve the problem with loading constraints using branch-and-
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cut. Branch-and-cut as well as branch-and-price are applied by Xue et al. (2016) to the
PDP with loading cost. The multiple vehicle PDP is solved using an branch-and-cut
algorithm by Lu and Dessouky (2004).

To the best of our knowledge, we are the first to compare different exact solution
techniques for theMDTSPPD, and to extend it by the realistic assumption ofminimum
workload constraints.

3 Problem description

The MDTSPPD can be formulated as a routing problem with multiple depots, each
used by a single vehicle, i.e. a carrier. The customer requests are paired pickup and
delivery requests, meaning that each request is associated with a prespecified origin
and destination. The problem belongs to the class of traveling salesman problems with
precedence constraints (TSPPC). At each depot, we face the single vehicle case of the
VRPwith pickups and deliveries (SPDP),which are, according to Parragh et al. (2008),
a subclass of VRP with pickups and deliveries (VRPPD). It is classified by Berbeglia
et al. (2007) as one-to-one pickup and delivery problem. For the mathematical model
we use a Hamiltonian tour formulation as suggested by Lu and Dessouky (2004),
where the destination depot of one vehicle is the departure depot of the next vehicle.
The model is based on formulations presented in Lu and Dessouky (2004), Gansterer
and Hartl (2016) and Berger and Bierwirth (2010):

n number of customers
m number of depots
P set of pickup vertices, P = {1, . . . , n}
D set of delivery vertices, D = {n + 1, . . . , 2n}
W set of depot vertices, W = {2n + 1, . . . , 2n + m + 1}
N set of all vertices, N = P ∪ D ∪ W {1, . . . , 2n + m + 1}
A set of all arcs i j , A = N × N
ci j transportation cost when traveling from i to j
xi j decision variable indicating whether arc i j is used or not
bi j decision variable indicating whether vertex i is visited before vertex j

min
∑

i j∈A

xi j ci j (1)

∑

i∈N
xi j = 1 ∀ j ∈ N (2)

∑

j∈N
xi j = 1 ∀i ∈ N (3)

bki ≤ bkj + (1 − xi j ) ∀i j ∈ A \ {2n + m + 1, 2n + 1}, k ∈ N\{i} (4)

bkj ≤ bki + (1 − xi j ) ∀i j ∈ A \ {2n + m + 1, 2n + 1}, k ∈ N\{i} (5)

xi j ≤ bi j ∀i j ∈ A (6)

bii = 0 ∀i ∈ N (7)

bn+i,i = 0 ∀i ∈ P (8)
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bi,i+n = 1 ∀i ∈ P (9)

bi j = bn+i, j ∀i ∈ P, j ∈ W (10)

bi,2n+1 = 0 ∀i ∈ N (11)

bi j = 1 ∀i, j ∈ W | i < j (12)

b ji = 0 ∀i, j ∈ W | i < j (13)

bi,2n+m+1 = 1 ∀i ∈ N\{2n + m + 1} (14)

xi j ∈ {0, 1} ∀i, j ∈ N (15)

bi j ∈ {0, 1} ∀i, j ∈ N (16)

The objective function (1) minimizes the total travel cost. Each vertex has to be
entered and left exactly once. This is ensured by constraints (2) and (3). In constraints
(4)–(6) we copy the values of the routing decision variables to the precedence decision
variables (Lu and Dessouky 2004). Precedences among depots and customers are met
by (7)–(14), where constrain (7)–(10) ensure that each pickup node is visited before
its associated delivery node, and that customers being assigned to the same depot are
served by the same vehicle. In constraint (11) we ensure that no node is visited prior
to the first depot. The sequence of depots is determined by constraints (12) and (13).
Constraint (14) ensures that the depot (2n+m+1) is the last node in the Hamiltonian
tour. While it is necessary to ensure that the routing decision variable xi j is binary, Lu
and Dessouky (2004) show that constraint (16) can be relaxed. Subtours are implicitly
eliminated by constraints (4)–(6).
Workload constraints

In order use the model in the setting of collaborative carriers, it is necessary to
include workload limitations. These limitations might be loading quantities or number
of customers visited along a tour.Otherwise, in a feasible solution, all requestsmight be
assigned to one single carrier, which will probably not be accepted by the competitors.
Thus, we introduce an additional sets of parameters and decision variables:

εi workload available at customer i (εi > 0 at pickup nodes, and εi < 0 at delivery
nodes)

Ri maximum workload for tours at depot i
Ri minimum workload for tours at depot i
qi workload when arriving at customer i

q j ≤ qi + εi + M(1 − xi j ) ∀i ∈ N\{2n + m + 1}, j ∈ N (17)

q j ≥ qi + εi − M(1 − xi j ) ∀i ∈ N\{2n + m + 1}, j ∈ N (18)

qi − qi−1 ≤ Ri ∀i ∈ W | i > 2n + 1 (19)

qi − qi−1 ≥ Ri ∀i ∈ W | i > 2n + 1 (20)

qi ≥ 0 ∀i ∈ N (21)

Constraints (17) and (18) are required to determine the workload along the route.
In the following two constraints, we ensure that a maximum (19) or minimum (20)
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workload is not violated. If the workload constraint refers to a number of customers
that have to be assigned to a depot, εi is set to 1 for all pickup nodes i, i ∈ P .
Nonnegativity of decision variables qi is defined by (21).

4 Solution methods

In this study, we assess the performance of three different exact approaches, being
applied to the MDTSPPD. These approaches are (i) branch-and-cut, (ii) benders
decomposition, and (iii) column generation. Benchmark results are generated using a
standard optimization software (CPLEX Optimizer 12.7).1

4.1 Branch-and-cut

The branch-and-cut algorithm is an extension of the well known branch-and-bound
approach. The main difference is the way solutions on nodes of the search tree are
processed. In a branch-and-cut algorithm, additional constraints are used to strengthen
the linear programming relaxation if required. These cuts do not exist in the original
problem definition. A similar approach are lazy constraints. Lazy constraints are part
of the problem definition, but in the branch-and-cut search, they are only added if
required. If a candidate solution is found, the algorithm checks if it is feasible with
respect to the lazy constraints. A violated constraint is added, and the solution gets
re-evaluated. We use the procedure proposed by Lu and Dessouky (2004), including
the following cuts (Lu and Dessouky 2004; Ropke and Cordeau 2009):

Transfer constraints The following valid inequalities hold for an arbitrary collection
of nodes (h1, . . . , hk) ∈ N\{i, 2n + m + 1}, 1 ≤ k ≤ |N | − 2 (Lu and Dessouky
2004):

bn+i,h1 +
k−1∑

j=1

bh j ,h j+1 + bhk ,i ≤ k (22)

Adjacent constraints These valid inequalities strengthen the precedence constraints
by checking the requirements for pairs of directly connected nodes (Lu and Dessouky
2004). Whenever a pickup node i is visited before some node k, the corresponding
delivery node (i + n) has to be visited after k.

bki + bk,i+n ≥ xi,k + xk,i ∀i ∈ P, k ∈ N\{i, i + n} (23)

bik + bi+n,k ≥ xi+n,k + xk,i+n ∀i ∈ P, k ∈ N\{i, i + n} (24)

Pairing constraints A delivery node has to have more preceding nodes than its asso-
ciated pickup node (Lu and Dessouky 2004):

∑

k∈N
bki + 1 ≥

∑

k∈N
bk,i+n ∀i ∈ P (25)

1 https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

123

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.


364 M. Gansterer et al.

Demand constraints In paired PDP it can be assumed that the demand at the delivery
node is equal to the supply at the pickup node. Making use of this characteristic, Lu
and Dessouky (2004) present a cut that can be used even if the real demand values are
not known. The idea is that only very few combinations will sum up to zero (which
is always the case for a specific pickup and delivery pair). Thus, if demands are not
known, an artificial demand is assigned to each of the customers. This demand has to
be unique and benefits from being not constructable from other demands. The easiest
way to determine such sets of demands is to use prime numbers. For cutting, we sum
up all demands served by a given depot:

∑

k∈N
bki dk = 0 ∀i ∈ W, (26)

where dk is the demand of customer k (it is assumed that dk > 0 if k is a pickup node,
and dk < 0 if k is a delivery node).
In the proposed branch-and-cut approach, precedence constraints (4)–(6) are used as
lazy constraints. Since in the problem formulation, precedence constraints are implic-
itly used to eliminate subtours, it seems to be beneficial to use additional subtour
elimination constraints as lazy constraints (S ⊆ N , ∅ 	= S 	= N ):

∑

e∈E(S)

xe ≤ |S| − 1, (27)

where E(s) := {e ∈ E : |e ∩ S| = 2}. These lazy constraints will enforce that the sum
of connections within each subset of nodes S is smaller than the size of the subset.

4.2 Benders decomposition

As a second approach, we embed Benders Decomposition (Benders 1962) into the
branch-and-cut procedure. This approach is described in, e.g., Sridhar and Park (2000).
In each node of the branch-and-cut tree, Benders Decomposition is applied to the
linear relaxations. The general concept is to decompose the problem into smaller
subproblems, called stages. Each stage contains a set of variables and constraints of
the original problem. The stages are solved iteratively. Once a solution of the first stage
is determined, the second stage is solved using the solution of the first stage. As long
as the first stage solution leads to an infeasible second stage solution, new constraints
are added to the first stage master problem. These iteratively added constraints are
called Benders feasibility cuts. The optimal solution is found, if the first stage solution
leads to a valid second stage solution and no further cuts are required.

The original problem (see Sect. 3) has two types of decision variables: one for the
routing decisions and one for the precedence relations. Since the latter restricts the
routing decisions, it seems reasonable to use them for the second stage problem, while
the first stage generates candidate solutions. However, these routes do not incorporate
the precedence constraints (6)–(14), since these are in the second stage, and may
therefore contain subtours. Therefore, the second stage ensures that solutions that

123



Exact solutions for the collaborative pickup and… 365

contain subtours and violate precedence constraints are withdrawn from the solution
space (cf. Sexton and Bodin 1985a, b; Contardo and Martinelli 2014). The constraints
of the proposed model extensions (see Sect. 3) are added to the first stage.

4.3 Column generation

In column generation, the decision problem is decomposed into a master- and a sub-
problem. While the number of constraints is fixed, the number of decision variables
(columns) increases over time. For the MDTSPPD, we separate the routing decision
(subproblem) from the route selection (master problem), which is a linear relaxation
of the following set partitioning problem:

γ set of valid routes (according to the problem definition in Sect. 3)
cγ,d the costs of route γ when serviced by depot d
αi,γ a constant indicating if customer i is on route γ

yγ,d decision variable indicating if route γ is in the solution and if depot d is used
to service the route

min
∑

γ∈�,d∈W
yγ,dcγ,d (28)

∑

γ∈�,d∈D
yγ,dαi,γ = 1 ∀i ∈ N \ W (29)

∑

γ∈�

yγ,d = 1 ∀d ∈ W (30)

yγ,d ∈ {0, 1} ∀γ ∈ �, d ∈ W (31)

The objective function (28) minimizes the total routing costs, while constraint (29)
ensures that each request is serviced by a route. Each depot has to be assigned to at
least one route (30). The binary property of the decision variables are defined in (31).

As part of an iterative process, the proposed set partitioning formulation (master
problem) will serve two purposes: (i) selecting a set of routes that ensure that every
request is serviced, and (ii) updating the dual costs of each request and depot. A short-
est path problem based on the properties of the vehicle flow formulation (Sect. 3)
generates new promising routes based on the updated dual information provided by
the master problem. This iterative process is performed until the subproblem is not
able to identify additional routes that could reduce the objective function of the mas-
ter problem. Dominance rules can be used to decrease the number of routes in the
subproblem.

For the subproblem, we apply a labeling algorithm, where we start from a depot and
gradually expand the route by a new node or customer. Every time doing so we have
to check the feasibility (i.e. capacity restrictions) of the newly created route. Every
time a route gets extended the new and the existing routes are compared based on the
dominance rules (see below). Dominated routes get discarded. In our algorithm, we
deal with all depots at once. By introducing an artificial depot with a distance of zero
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to each of the customers, the shortest path problem with pickup and delivery can be
used (e.g. Desrosiers and Dumas 1988). Every route that gets extended to a depot, has
to be extended to each of the depots, and after being checked for dominance, added to
the master problem.

We apply dominance rules proposed by Ropke and Cordeau (2009), and Contardo
and Martinelli (2014) for multi-depot VRP:

x .costs ≤ y.costs (32)

x .nodesVisited ⊇ y.nodesVisited (33)

x .openRequests ⊆ y.openRequests (34)

x .lastNodeOfTour = y.lastNodeofTour (35)

x .depotUsed = y.depotUsed (36)

A route x dominates a route y if it is cheaper, and visits at least the same nodes.
Furthermore, we use open requests, i.e requests where the pickup but not the delivery
node is visited, as additional dominance criterion. All criteria have to be met for a pair
of routes having the same starting and ending node.

5 Computational results

For our computational study we use data developed by Berger and Bierwirth (2010).
The authors present three instance sets which refer to different degrees of competition
between the carriers: (i) adjacent (ii) overlapping, and (iii) identical customer regions.
For each scenario (A, O, and I), there are 30 instances, with 3 depots and 9 transporta-
tion requests. For all computational experiments, we limit the runtime to 30min. The
algorithms are run single-threaded on an Intel Xeon CPU with 2.50 GHz. It should
be noted that Berger and Bierwirth (2010) set their time limit to 120min on a PC P4
with 2800MHz.

5.1 Original problem

In the first part of our computational study, we assess the solution methods being
applied to the original problem, i.e. without the additional constraints (see Sect. 3) on
minimum workload.

In Sect. 4, we presented three variants of the Branch-and-cut algorithm, which
are (i) with lazy constraints (LC), (ii) with lazy constraints and subtour elimination
(LS&SE), (iii) without lazy constraints (woLC). As a first step, we want to investigate
the necessity of including the proposed lazy constraints. The results are presented in
Table 1.

From the average runtimes we see that variant woLC outperforms the other two.
For all three scenarios, this methods requires the minimum average runtime, and is
able to solve the maximum number of instances. The reason for this is that the lazy
constraints are rarely binding constraints. Thus, for all remaining tests, we only use
the woLC configuration for the branch-and-cut algorithm. Not surprisingly, instances
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Table 1 Average runtimes (in s)
of CPLEX and of the 3 proposed
branch-and-cut variants being
applied to test instances A, I,
and O

Instance CPLEX LC LC&SE woLC

A 257.04 341.93 332.73 100.28

I 434.36 599.67 599.14 183.73

O 677.86 850.27 747.19 661.71

Average 456.42 597.29 559.69 315.24

#Unsolved 11 16 15 11

Table 2 Average runtimes (in s) of CPLEX and of Branch-and-cut (Bac), Benders decomposition (BD),
and column generation (CG) for test instances A, I, and O

Instance CPLEX Bac BD CG

A 257.04 100.28 27.35 >1800

I 434.36 183.73 179.42 >1800

O 677.86 661.71 434.02 >1800

Average 456.42 315.24 213.60 > 1800

#Unsolved 11 11 4 90

The last line reports the number of instances that could not be solved within the given time limit of 30min

O require the longest runtimes, since the solution space increases with the degree of
competition.

In Table 2 we compare Branch-and-cut, Benders decomposition, and column gen-
eration against CPLEX.

The results show that Benders decomposition outperforms all other approaches.
For each of the test scenarios, this methods needs the lowest computational time to
reach the optimal solution, while there are only 4 instances (out of 90) that could not
be solved within the given time limit of 30min. It should be noted that the proposed
column generation approach cannot solve any of the instances within the time limit
of 30min. This can be explained by the scarcely constrained solution space, which
is disadvantageous for column generation-based methods. In the second part of our
computational study (see Sect. 5.2), we see that additional constraints are a boost for
the column generation approach.

5.2 Workload constraints

In the second part of our computational study, we use the extended model presented
in Sect. 3, where each carrier requires a minimum workload. In Table 3 we show the
increase in total cost, depending on the degree of required workload.

The results show that the inclusion of aminimumworkload constraint of 1 customer
increases the total costs on average by 18.32%. If each carrier has to keep at least 2
of the initial customers, the average cost increase is more than 30%. This is in line
with the literature on collaborative vehicle routing, where several studies show that
centralized solutions yield up to 30% higher collaboration profits than decentralized
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Table 3 Total costs (optimal solution) with different limits on the required workload per carrier: no limit
(no), each carriers has to keep 1 customer (1cust), each carrier has to keep 2 customers (2cust)

Instance no 1cust (%) 2cust (%)

A 270.49 12.64 21.87

I 263.00 17.41 28.49

O 267.49 24.91 45.52

Average 267.00 18.32 31.96

For cust1 and cust2 we report the percentage increase compared to no

Table 4 The upper part reports the average runtimes for each method, i.e. CPLEX, Branch-and-cut (Bac),
Benders decomposition (BD), and column generation (CG), needed to solve the problem with 3 variants of
workload constraints: no limit (no), each carriers has to keep 1 customer (1cust), each carrier has to keep
2 customers (2cust)

Workload CPLEX Bac BD CG

Runtimes

No 456.04 315.24 213.60 > 1800

1cust 1286.44 1023.72 432.72 > 1800

2cust 1689.62 1023.00 1056.87 566.55

#unsolved

No 11 11 4 90

1cust 51 40 12 90

2cust 80 41 43 0

The lower part lists the number of instances that could not be solved within the given time limit (30 min)

solutions (Gansterer andHartl 2017; Cruijssen et al. 2007;Montoya-Torres et al. 2016;
Lin 2008).

In Table 4 we present the average runtimes needed to solve the problem with
workload constraints.

In case of low or no workload limits, Benders decomposition is still the method of
choice. However, if carriers have to keep more than one of their customers, column
generation finds the optimal solutions much faster. Also the number of instances that
could not be solved within the given time limit of 30min, clearly depends on the
workload constraint. If there is a strong restriction on the number of customers each
carrier has to keep, column generation finds all optimal solutions within very short
amount of time, while Benders decomposition fails in 43 (out of 90) instances. In
Table 5 we provide more detailed results on the setting, where carriers have to keep 2
of their customers (2cust).

We see that column generation shows a very strong performance for instance sets
with a high degree of competition (I and O). For these instances, this method finds
the optimal solutions about 3 times as fast as the second best method. This is not very
surprising, since it is well-known that column generation takes advantage of solution
spaces with few valid solutions. However, it is remarkable that even instance set O
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Table 5 Average runtimes for
each method, i.e. CPLEX,
branch-and-cut (Bac), benders
decomposition (BD), and
column generation (CG), needed
to solve problem variant 2cust,
where each carrier has to keep 2
customers

Instance CPLEX Bac BD CG

A 1494.48 382.74 484.66 596.05

I 1793.03 1256.32 1099.21 593.51

O 1781.33 1429.95 1586.76 510.09

Average 1689.62 1023.00 1056.87 566.55

can be solved without any loss in performance. This makes column generation a very
powerful method for problems with a high degree of competition.

Hence, we can conclude that for the original problem proposed by Berger and
Bierwirth (2010), Benders decomposition is the method of choice, while for the newly
introduced setting, column generation should be preferred.

6 Conclusion

In this study we investigated a decision problem faced by a centralized decision maker
in carrier collaborations. Pickup and delivery requests are to be redistributed among
participants, such that the total cost is minimized. This problem was formulated as
MDTSPPD. Three well-established exact solutions approaches were compared in
terms of their computational performance.

To avoid unrealistic solutions with unevenly distributed workload, we extend the
problem by minimum workload constraints. Our computational results show that,
while for the original problem Benders decomposition is the method of choice, for the
newly formulated problem this method is clearly dominated by the proposed column
generation approach.

We showed that the proposed minimum workload constraints have a surprisingly
strong impact on the total costs. If carriers want to keep a minimum workload of at
least 30% of their initial one, the total costs increase on average by 18.32%. If 60% of
the initial customers have to remain unchanged, the average cost go up by more than
30%.

The results of the computational study can be used as benchmarks for decentralized
mechanisms in collaborative PDP problems. The insights on the performance of the
investigated methods are useful for generating results for similar test cases.
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