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Abstract An uncertain version of the permutation flow-shop with unlimited buffers
and the makespan as a criterion is considered. The investigated parametric uncertainty
is represented by given interval-valued processing times. The maximum regret is used
for the evaluation of uncertainty. Consequently, the minmax regret discrete optimiza-
tion problem is solved. Due to its high complexity, two relaxations are applied to
simplify the optimization procedure. First of all, a greedy procedure is used for calcu-
lating the criterion’s value, as such calculation is NP-hard problem itself. Moreover,
the lower bound is used instead of solving the internal deterministic flow-shop. The
constructive heuristic algorithm is applied for the relaxed optimization problem. The
algorithm is compared with previously elaborated other heuristic algorithms basing
on the evolutionary and the middle interval approaches. The conducted computational
experiments showed the advantage of the constructive heuristic algorithmwith regards
to both the criterion and the time of computations. TheWilcoxon paired-rank statistical
test confirmed this conclusion.
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1 Introduction

The paper develops a minmax regret approach as a special case of uncertain (non-
deterministic) discrete optimization with reference to selected flow-shop problem
when processing times are given in the form of intervals. The contribution and signifi-
cance of results can be considered both from the minmax regret discrete optimization
and from flow-shop problems points of view. In general, dealing with any non-
deterministic discrete optimization has to be focused on three fundamental issues:
the representation of uncertainty, the evaluation of feasible solutions (optimization
variables) and the development of solution algorithms [see Kouvelis and Yu (1997),
Kasperski (2008), and Józefczyk and Ćwik (2016) for more detailed discussion]. A
particular fusion of selected options from all the issues constitutes a problem investi-
gated in the paper.

Namely, the interval representation of problem’s uncertain parameters is assumed;
the parametric uncertainty is only considered in the paper. Such a choice, which
abandons other more popular representations like probabilistic, possibilistic, fuzzy,
uncertain variables-based, refers to prospective real-world applications when empiri-
cal data, as well as experts’ knowledge, are not available, e.g. for one-off processes.
A detailed description of different approaches for the representation of uncertainty
and their applications can be found e.g. in: Hirshleifer and Riley (1979), Bubnicki
(2004), Aissi et al. (2009), Klir (2006), Aayyub and Klir (2006), and Liu (2010). It
is worth mentioning that the probabilistic representation is the most popular. Then,
it is assumed that a parameter’s value is the realization of a random variable char-
acterized by the probability distribution function or the density function being the
probabilistic representations of an uncertain parameter. It is the objective representa-
tion of uncertainty as it is potentially possible to estimate the probability distribution
using real-world data on an uncertain parameter. Such possibility makes this represen-
tation very sound admittedly, but it is connected with its weakness when real-world
data on the parameter do not exist, or they are not available, and, in consequence,
it is impossible to obtain reliable probability distribution. The lack of the real-world
data can be replaced by an expert who is assumed as a source of knowledge on uncer-
tain parameters. Such an approach is proposed in fuzzy based representations and
its derivative versions. The degree of truth as a number from the interval [0, 1] is
expressed by an expert that a parameter takes a given value. Expert’s opinion for all
possible values of a parameter is called the membership function. This representation
is the subjective one as it reflects an individual opinion on a value of a parameter,
and it does not have to be connected with parameter’s real-world values. In conse-
quence, the final result of the decision making, in general, and the determination of
a schedule, in particular, strongly depends on the credibility (quality) of an expert.
The case considered by many researchers omitting the drawbacks of both previously
mentioned representations assumes that set of feasible values is the only information
on an uncertain parameter. The interval representation discussed in this paper is an
important example of this case.

The second issue deals with a criterion. The substantiation (aggregation, deter-
minization) of parameters’ uncertainty by an adequate operator is an indispensable
condition for having a unique solution for an uncertain problem. The majority of
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investigated uncertain discrete optimization cases are based on such an approach, e.g.
Yager (1988), and Kasperski and Zieliński (2013). Among many possibilities, the
minmax regret approach has been selected and applied in the paper. It is based on the
notion ‘regret’ introduced in Savage (1951) and then developed by other authors for
discrete optimization, e.g. Kouvelis and Yu (1997), Aissi et al. (2009), Mulvey et al.
(1994), and Kasperski (2008). The direction launched by Kouvelis and Yu is the basis
for further considerations. The regret is a function founded on a criterion for a deter-
ministic counterpart of the considered uncertain optimization. Its value, which can be
calculated for every instance of optimization variables as well as for every realization
(scenario) of uncertain parameters, evaluates the loss caused by a lack of knowledge of
the uncertain parameters’ values. The substantiation by means of the operator ‘maxi-
mum’ applied for the regret implies theminmax regret uncertain discrete optimization.
The resulted deterministic criterion evaluates optimization variables giving the assess-
ment of regret the worst with respect to all possible scenarios of uncertain parameters.
It is necessary to point out that such an evaluation when the robust paradigm, as well
as the unique solution of the uncertain problem, are required should be considered as
the selected approach taken from a variety of possibilities reported in the literature.
Let us briefly mention other selected options. The way of evaluation strongly depends
on the form of parameter uncertainty representation. Essentially, criteria relevant for
deterministic problems or their functions, like the regret in this paper, are the basis for
evaluation of the problems’ uncertain counterparts. They can be further transformed
using a selected aggregation operator with ‘maximum’, ‘minimum’ or ‘average’ as
the most popular ones. The expected value as an example of ‘average’ operator is
very often used for the probabilistic representation, e.g. Sotskov and Werner (2014),
and Pinedo and Schrage (1982). Uncertain problems with fuzzy representation are
usually considered in the setting of possibility theory where the evaluation of solu-
tions is expressed by the degrees of possibility and necessity, e.g. Kasperski (2008),
and Słowinski and Hapke (1999). Irrespective of the form of parameter uncertainty
representation, two general cases can be distinguished: the determination of a unique
solution or a set of solutions. The former case is considered in this paper. It is also a typ-
ical for probabilistic or fuzzy representationswhenwe search for solutionsminimizing
the expected value or the possibility-based criterion, respectively. The latter case usu-
ally imposes weaker requirements on the criteria, and, as a consequence, enables us
to have a set of feasible solutions instead of a single one. Three measures adequate for
the determination of sets of feasible solutions and suitable for the interval represen-
tation can be mentioned as the example: (b, w)-robustness (Roy 2010), p-robustness
(Kouvelis et al. 1992), and lexicographic α-robustness (Kalai et al. 2012). See also
the survey (Goerigk and Schöbel 2016) for more details. The outcome in the form of
a set of feasible solutions conforming given a priori requirements is reasonable due to
the existence of uncertainty in the values of parameters. The rule ‘less certain a priori
information on parameters less precise solution’ is sound. However, the existence and
the form of the final solution substantially depend on the numerical values of param-
eters, b, w, p, and α. The idea of searching for the set of solutions rather than for an
individual solution has also been employed by so-called stability approach (Sotskov
and Werner 2014; Lai et al. 1997). It makes possible to derive a minimal dominant
set of solutions such that at least one of them is optimal for any fixed realization of
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uncertain parameters. The method uses a stability analysis to assess such changes of
the parameters’ values which do not lose the optimality in solutions. This method has
also been applied for two-machine flow-shop with interval processing times and the
makespan as a criterion (Allahverdi et al. 2003; Matsveichuk et al. 2009; Ng et al.
2009). The authors additionally propose for this application of the stability approach
two phases in the scheduling process: the off-line phase for the schedule planning and
the on-line phase when the schedule is executed taking into account current additional
information on the previously uncertain processing times’ values.

The thirdmentioned issue regarding solution algorithms for such optimization prob-
lems is the most important and challenging. Unfortunately, apart from single cases,
the majority of minmax regret discrete optimization problems are at least NP-hard.
Their time complexity strongly depends on this property for deterministic counterparts.
Some interesting results have been attained for problemswith easy deterministic coun-
terparts where polynomial algorithms are known. Then, despite the NP-hardness of
uncertain counterparts, it was able to propose approximate algorithms. For example,
it concerns general problems, e.g. Conde (2010) as well as particular problems like:
shortest path (Aissi et al. 2005b), assignment (Aissi et al. 2005) or elementary task
scheduling e.g. Kasperski and Zieliński (2008), and Józefczyk and Siepak (2014).
Unfortunately, no approximation algorithms can exist for uncertain problems with at
least NP-hard deterministic counterparts. Then, heuristic algorithms are a reasonable
way to have solutions in the acceptable time. It is essential for practical usage of the
considered uncertain discrete optimization. The development of such algorithms is an
important research challenge. First attempts of this research direction can be found in
Kasperski et al. (2012), and Averbakh and Pereira (2011) for minimum spanning tree
and assignment problems, respectively. The application of scatter search based meth-
ods for minmax regret task scheduling is presented in Siepak (2013), Józefczyk and
Siepak (2013), and Józefczyk and Siepak (2014). Following these works, the paper
contributes to heuristic methods as tools for solving minmax regret optimization prob-
lems with the interval parametric uncertainty.

In the paper, the considerations are confined to selected flow-shop problem, and the
most important presented results regard this area. The permutation version of flow-
shop with unlimited buffers and the makespan as a criterion is considered, e.g. Pinedo
(2008), Błażewicz et al. (2007), and Chakrraborty (2009). It is the important task
scheduling problem with many important applications, in particular in management
and manufacturing, e.g. Hajba and Horvath (2015). The deterministic version of flow-
shop for twomachines is easy, and the polynomial algorithm exists (Garey et al. 1976).
For a bigger number of machines, the problem becomes NP-hard. The minmax regret
with interval uncertainty version of the considered flow-shop was also investigated for
some cases. Namely, the proof of its NP-hardness is given in Daniels et al. (2000), the
problem with two jobs is studied by Averbakh (2006), the problem with two machines
and discrete scenarios is discussed in Kasperski et al. (2012) where 2-approximation
algorithm is also given, while the 2-machine problem is dealt with by Daniels et al.
(2000). All these works show that the interval minmax regret flow-shop is at least
NP-hard even for simple special cases e.g. for the number of machines limited to two.

The continuation of previous preliminary studies given in Ćwik and Józefczyk
(2015) is proposed where the evolutionary algorithm has been presented for only
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three machines and the exact evaluation of the maximum regret as the criterion. Such
a way of the criterion evaluation turned out impossible for more machines due to the
time complexity. Therefore, another approach for the calculation of maximum regret
has been applied and firstly announced in the conference presentation (Józefczyk and
Ćwik 2016). The main contribution of this paper consists in the elaboration of a new
constructive algorithm useful also for more than three machines, which outperforms
the previously developed evolutionary algorithm. To our best knowledge, there are no
other works in the literature on heuristic algorithms for the minmax regret flow-shop
with interval parameters. The paper attempts to fill this research gap studying selected
heuristic approaches for the flow-shop and referring to similar works for other minmax
regret problems with interval parameters.

The reminder of this paper is organized as follows. Section 2 gives the problem
formulation which then is analyzed and relaxed for its simpler version. Three heuristic
algorithms are presented in Sect. 3: first of all, a constructive algorithm referring to
known NEH heuristic, an evolutionary algorithm, and a simple middle interval-based
algorithm. Described more briefly two latter algorithms serve as a comparison for the
former one. Section 4 is devoted to the presentation of results of the computational
experiments which affirmed the applicability of the constructive and evolutionary
algorithms for real-world instances with the significant advantage of the first one.
Section 5 contains conclusions and directions for further research.

2 Problem statement

In this section, we provide formal definitions for both deterministic and uncertain
permutation flow shop problems.

2.1 Deterministic case

Let us consider a set J = {J1, J2, . . . , J j , . . . , Jn} of n jobswhich need to be scheduled
for processing on m machines from a set M = {M1, M2, . . . , Mi , . . . , Mm}. Each
job J j = (O1 j , O2 j , . . . , Oi j , . . . , Omj ) consists of m operations which must be
processed sequentially on allmachines in the order indicated by themachines’ indexes.
No job can be processed by more than one machine at the same time. Similarly, no
machine is allowed to process more than one job at a given moment of time. The
existence of unlimited buffers is assumed that enables every machine to process the
next job just after processing of the previous one. If the next machine is unavailable,
the job can wait for processing in the buffer without occupying any of the machines.
The buffers can contain any number of jobs. Moreover, the permutation version of the
problem is investigated which means that all machines have to process the jobs in the
same order. Then the schedule being the solution to the problem can be represented
by a permutation π = (π j ) j=1,n ∈ � where π j ∈ {1, 2, . . . , n} is the index of a
job processed as the j th in turn, and � is the set of all n! feasible permutations, i.e.
� = {π : π j �= πk, j, k ∈ {1, 2, . . . , n}, j �= k}. Processing times pi j of operations
Oi j form the matrix p = [pi j ]i=1,m

j=1,n

. The makespan Cmax(π, p), as the completion

time of the last operation executed by the machine Mm , serves as a criterion. It can be
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recursively calculated [see e.g. in Pinedo (2008), and Ćwik and Józefczyk (2015) for
details]. The optimal schedule π ′ is sought, i.e. minπ∈� Cmax(π, p) = Cmax(π

′, p) �
C ′
max(p).

2.2 Uncertain case

It is assumed for the considered uncertain version that every processing time belongs
to the closed interval of known and given bounds, i.e.:

pi j ∈
[
p
i j

, p̄i j
]
, p

i j
≤ p̄i j (1)

unlike the deterministic version when pi j are crisp values. The Cartesian product of
all mn intervals constitutes a set P of all possible scenarios. A scenario is a unique set
of processing times of all operations which can be considered as an instance of the
deterministic problem, i.e. the matrix p:

p ∈ P =
[
p
11

, p̄11
]

× · · · ×
[
p
mn

, p̄mn

]
. (2)

The minmax regret approach is applied to evaluate the interval uncertainty (Kouvelis
and Yu 1997).

The regret Cmax(π, p) − C ′
max(p) is defined for every schedule π and scenario

p. The scenario pπ maximizing the regret for fixed schedule π is called a worst-
case scenario. The regret associated with π and pπ referred to as maximum regret
constitutes the criterion z for the interval data counterpart of the permutation flow-shop
problem:

z(π) = Cmax(π, pπ ) − C ′
max(p

π ) = max
p∈P

[
Cmax(π, p) − min

σ∈�
Cmax(σ, p)

]
. (3)

Consequently, the uncertain (interval) minmax regret permutation flow shop problem
considered in the paper deals with the minimization of (3) over π ∈ �. This problem
has been already proven to beNP-hard (Daniels et al. 2000) even form = 2.Moreover,
there exists 2-approximate algorithm when m = 2 as shown in Siepak (2013), Obvi-
ously, such approximation is not valid for larger values of m due to the NP-hardness
of the deterministic counterpart. The existence of the approximate algorithm for the
uncertain version would induce its validity for the deterministic instance as the special
case for all processing times with the same lower and upper bounds of intervals, which
is not true unless P = NP.

In fact, the minimization of (3) consists of three nested optimizations (sub-
problems) called SP1, SP2, and SP3 (Józefczyk and Ćwik 2016). The sub-problem
SP1: minσ∈� Cmax(σ, p) is simply the deterministic flow shop. The next sub-problem
SP2: maxp∈P[Cmax(π, p) −C ′

max(p)] deals with finding the worst-case scenario pπ ,
and, at the same time, calculating of the value of criterion z(π) for fixed schedule
π . The outer minimization minπ∈� z(π) = minπ∈�[Cmax(π, pπ ) − C ′

max(p
π )], i.e.

the sub-problem SP3 completes this complex optimization task. All the sub-problems
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are difficult optimization points. SP1 is NP-hard for m > 2 (Pinedo 2008). Searching
for the worst-case scenario in SP2 can be limited to the consideration of the bounds
of intervals referred to as extreme-points scenarios, i.e. pπ

i j ∈ {p
i j

, p̄i j }. It is the
known result for a broad class of minmax regret problems valid also for the inves-
tigated case. It is easy to see that both elements of the difference to be maximized
Cmax(π, p) −C ′

max(p) refer to different feasible solutions. Every such element as the
makespan is the sum of some processing times pi j . To maximize the difference, it is
necessary to have the maximum and the minimum value of the first and the second
sum, respectively. It is straightforwardly ensured by the extreme-points scenarios. As a
consequence, 2nm possible scenarios remain still as candidates for the worst-case one
pπ . The minimization in SP3 can be considered as a harder task than the deterministic
flow-shop. Indeed, the regret Cmax(π, pπ ) − C ′

max(p
π ) undergoes the minimization

with respect to π ∈ � in SP3 while the minimization of Cmax(π, pπ ) would be only
required for the deterministic case. Obviously, SP3 is also NP-hard for m > 2.

3 Heuristic solution algorithms

We have considered during hitherto investigations two algorithms for solving SP3: the
application of the evolutionary approach, and the elaboration of a constructive heuristic
algorithm referring to the NEH heuristic known for the deterministic case (Enscore
et al. 1983). The former one has been presented in Ćwik and Józefczyk (2015) and
Józefczyk and Ćwik (2016) for the first time while the latter one together with the
improved version of the evolutionary approach is given in this paper. Both algorithms
are accompanied with procedures (auxiliary algorithms) responsible for solving SP1
and SP2. All the algorithms are presented in the consecutive sub-sections starting
from the heuristic procedure enabling the determination of the worst-scenario in SP2.
Additionally, a middle interval heuristic is given which together with the evolutionary
algorithm serves for the evaluation of the constructive algorithm.

3.1 Calculation of the worst-case scenario

Firstly, instead of calculating the exact value of C ′
max(p) as the result of minimization

in SP1, the lower bound C ′
max,LB(p) is applied which is the maximum sum of a single

job processing times:

C ′
max,LB(p) = max

j=1,n

∑m

i=1
pi j . (4)

The determination of theworst-case scenario pπ can be replaced by a path in a directed
acyclic graph constructed using a feasible solution π . It refers to the known represen-
tation of selected task scheduling problems in the form of disjunctive graph (Pinedo
2008; Błażewicz et al. 2007). The number of disjunctive graph vertexes is mn (each
vertex represents a single operation of the problem). Let us assume that the ver-
tices are indexed in the same manner as operations, so vertex vi j is associated with
operation Oi,π j . The set of arcs is defined by the precedence constraints deduced
from the schedule. There exists an edge between all pairs of vertexes that have a
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form of (vi j , vi+1, j ) or (vi j , vi, j+1). From each of (n + m − 2)!/[(n − 1)!(m − 1)!]
possible paths, a scenario is created by choosing maximum processing times for oper-
ations associated with vertexes belonging to the path and minimum processing times
for other operations. Although the number of paths is significantly smaller than the
number of possible extreme-point scenarios which equals to 2mn , it is too big to
check all paths in a reasonable time. Thus, an approximation of pπ is obtained by a
heuristic construction of a path in the above-introduced directed graph. The algo-
rithm determines a partial path for each vertex in the directed graph and returns
the path determined for the vertex vmn . Each partial path is created by choosing
one of two candidate paths. The candidate paths are generated by adding currently
investigated vertex vi j to the previously determined paths for vertexes vi−1, j and
vi, j−1. Each candidate path is then transformed to a partial scenario with j jobs and
i machines, which is evaluated by the simplified regret function using C ′

max,LB(p)
instead of C ′

max(p). The path generating of the scenario with a greater value of
the regret is chosen as the partial path for the investigated vertex. It can be easily
observed that for each pair of vertexes vi,1 and v1, j there exists only one path that
ends in them. Therefore, the determination of those paths is the first step of the algo-
rithm. Let us additionally introduce the matrix pp = [ppi j ]i=1,m j=1,n

which elements

contain the partial paths created for each operation. Then, the auxiliary algorithm
referred to as Algorithm 1 for creating of the path in directed graph and of the relaxed
worst-case scenario p̃π can be equivalently presented in the form of following pseu-
docode.

Algorithm 1 Auxiliary algorithm (AA)
Require: Bounds of all intervals },{ ijij

pp and sets J, M.

Ensure: Element mnpp of matrix pp equivalent to πp~ .
1: for mi ...,,1= do
2: Set 1ipp as the only possible path.
3: end for
4: for nj ...,,1= do
5: Set jpp 1 as the only possible path.
6: end for
7: for mi ...,,2= do
8: for nj ...,,2= do
9: Obtain 1c as the result of adding vertex ijv to the path jipp ,1− ,

10: Obtain 2c as the result of adding vertex ijv to the path 1, −jipp ,

11: Choose path 1c or 2c with the bigger value of the partial regret and insert it into ijpp .
12:end for
13: end for

As a consequence, function z(π) to be minimized with respect to π in the sub-
problem SP3 takes the relaxed form

z̃(π) = Cmax(π, p̃π ) − C ′
max,LB( p̃π ). (5)
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This form of z(π) is the basis for further considerations. The separate application of
both relaxations presented above to function z given in (3) results in the following
estimations:

Cmax(π, p̃π ) − C ′
max( p̃

π ) ≤ z(π) ≤ max
p∈P

[
Cmax(π, p) − C ′

max,LB(p)
]
. (6)

It is worth noting that the relaxations of SP1 and SP2 are opposed. The application of
the lower bound in SP1 increases the value of (3):

max
p∈P

[
Cmax(π, p) − min

σ∈�
Cmax(σ, p)

]
≤ max

p∈P

[
Cmax(π, p) − C ′

max,LB(p)
]
. (7)

On theother hand, the greedy calculationof theworst-case scenario inSP2candecrease
the value of (3):

max
p∈P

[
Cmax(π, p) − C ′

max(p)
] ≥ Cmax(π, p̃π ) − C ′

max( p̃
π ). (8)

In consequence, the relation between z(π) and z̃(π) is unclear. However, the bounds
on z(π) given in (6) are also valid for z̃(π) i.e.:

Cmax(π, p̃π ) − C ′
max( p̃

π ) ≤ z̃(π) ≤ max
p∈P

[
Cmax(π, p) − C ′

max,LB(p)
]

(9)

which results from a simple comparison of both bounds with the right-hand side of (5).
The usage of lower bound in SP1 and the approximate solution of SP2 affect conversely
on the value of (3) that can be treated as the desirable feature of the proposed heuristic
approach.

3.2 Constructive algorithm (CVE)

A heuristic approach proposed in this paper is based on the constructive method of
the generation of permutations. For the considered problem, such method consists in
the iteratively repeated insertions of jobs into the best positions of the current partial
permutation until all jobs are scheduled. The idea refers to the algorithmNEH (Enscore
et al. 1983) known as the effective heuristic solution tool for the deterministic flow
shop. NEH is composed of two steps which have to be adapted for the uncertain case.
In the first step, the middle values of intervals are used to order tasks for the second
step. In the second step, the values of maximum regret z̃ are used in order to determine
the best position in the partial permutation of the inserted job, unlike NEH where the
values of makespan are simply used. The heuristic solution πCVE as well as z̃(πCVE)

are the results. The pseudocode gives more details of Algorithm 2 denoted also as
CVE.
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Algorithm 2 Constructive algorithm (CVE)
Require: Bounds of all intervals },{ ijij

pp and sets J, M.

Ensure: Heuristic schedule CVEπ and )(~ CVEπz .

1: Sort jobs in set J in the descending order according to values ∑ =
+m

i ijij
pp

1
2/)( to get the 

sequence )...,,,( 21 nπππ ′′′ .
2: Form the partial solution ),()2( 21 πππ = from two first elements of the sequence where 

)(~)(~
21 ππ zz ≤ .

3: for nl ...,,3= do
4: Form the partial solution )(lπ using )1( −lπ and )(lπ ′ inserting the latter job into 

)1( −lπ at the place giving the minimum value of ))((~ lz π .
5: end for
6: Set )(CVE nππ = and calculate )(~ CVEπz .

3.3 Other algorithms

3.3.1 Middle interval heuristic algorithm (MIH)

The midpoint approach consists in generating a deterministic instance of the problem
using middle points of all uncertainty intervals and then in solving the obtained deter-
ministic instance with an exact algorithm. For many minmax regret problems, this
algorithm has been proven to be 2-approximate, e.g. Aissi et al. (2009), and Conde
(2010). However, in this case, there is no polynomial exact algorithm available due
to NP-hardness of the deterministic version of the problem. The NEH heuristic has
been proven to be an effective method of solving permutation flow shop problems.
Therefore it is used in the second step of Algorithm 3 which generates a heuristic
solution denoted as πMIH.

Algorithm 3 Middle interval algorithm (MIH)
Require: Bounds of all intervals { , }p pij ij and sets J, M.

Ensure: Heuristic schedule MIHπ and )(~ MIHπz .

1: Set processing times of operations as 2/)( ijijij ppp += .

2: Solve the deterministic flow shop by the NEH algorithm for the entries of matrix p set in 
Step 1, and obtain MIHπ as well as )(~ MIHπz .

3.3.2 Evolutionary algorithm (EVO)

The used evolutionary algorithm can be briefly presented as the following pseudocode.
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Algorithm 4 Evolutionary algorithm (EVO)

Require: Bounds of all intervals },{ ijij
pp , sets J, M, and parameters N, cP and mP .

Ensure: Heuristic schedule EVOπ and )(~ EVOπz .

1: Create )0(G , determine )0,1()0(BEST ππ = and calculate ))0,1((~))0((~ BEST ππ zz = .
2: Set 0,0 == ksc .
3: repeat
4: Set G(k + 1) = and i = 1.
5: repeat
6: Set ),()1,( kiki ππ =+ and add it to G(k + 1) and i = i + 1.
7: until Nk+ 1.0|)1G(| ≤
8: Set i= 2.
9: repeat
10: Obtain )1,1(ˆ +kπ and )1,2(ˆ +kπ as result of crossover of ),1( kπ and ),( kiπ with

probability cP .
11: Mutate )1,1(ˆ +kπ and )1,2(ˆ +kπ with probability mP and add them to G(k+1).
12: Set i := i + 1.
13:until Nk 5.0|1)+G(| ≤
14:repeat
15: Set )()1,1(ˆ kk iππ =+ .

16: Obtain )1,2(ˆ +kπ as randomly chosen (roulette-wheel rule) element from G(k+1).
17: Obtain )1,3(ˆ +kπ and )1,4(ˆ +kπ as result of crossover of )1,1(ˆ +kπ and 

)1,2(ˆ +kπ with probability cP .

18: Mutate )1,3(ˆ +kπ and )1,4(ˆ +kπ with probability mP and add them to G(k+1).
19:until Nk 9.0|1)+G(| ≤
20:repeat
21: Add a random permutation of numbers 1 to n to G(k+1).
22:until Nk ≤|1)+G(|

23:Determine )1(EST +kBπ and calculate ))1((~ BEST +kz π .

24:if ))((~))1((~ BESTBEST kzkz ππ ≥+ set 1: += scsc else set 0=sc
25:end if
26:Set 1: += kk .
27: until 20≤sc

28: Set )1(BESTEVO −= kππ and calculate )(~ EVOπz .

The permutation π as a sequence of integer numbers from 1 to n is directly used
as a chromosome, as well as z̃ serves as the fitness function. The standard ordered-
crossover operator (OX) has been applied. Themutation consists of choosing randomly
two positions in the permutation and swapping numbers occupying both positions.
The full description of EVO can be found in Ćwik and Józefczyk (2015). Now, two
improvements have been proposed in comparison with the presented there version.
First of all, the method of generating new populations has been redesigned to provide
more random populations avoiding too fast convergence to local minima.
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The initial population G(0) = {π(1, 0), π(2, 0), . . . , π(N , 0)} consisting of N
elements has the diverse structure. Namely, 90% of its elements are randomly gen-
erated according to the uniform distribution. The permutation πMIH determined by
the MIH heuristic as well as its different mutations constitute the rest of G(0). The
operator of mutation being the part of described evolutionary algorithm has been used
to generate the mutated permutations of πMIH. The generation of current population
G(k + 1) = {π(1, k + 1), π(2, k + 1), . . . , π(N , k + 1)}, on the basis of the pre-
vious one G(k) has a more complex structure, where index k is incremented from 0
until the stop condition is fulfilled. The latter population is firstly evaluated accord-
ing to the fitness function and sorted in the non-decreasing order to have a sequence
Ḡ(k) = (π̄(1, k), π̄(2, k), . . . , π̄(N , k)) where z̃(π̄(l, k)) ≤ z̃(π̄(l + 1, k)), l =
1, 2, . . . , N −1. The best 10% of such ordered elements (feasible solutions) are trans-
ferred to the current population G(k + 1) without any changes. After that, the best
solution π̄(1, k) is crossed with subsequent solutions from Ḡ(k). The resulted off-
springs undergo the mutation and are added to the created population. This combined
process of crossover and mutation is repeated until 50% of the population size N is
obtained. The next 40% of population elements are formed as results of the mutation
which follows the crossover between the best solution π̄(1, k) and a solution ran-
domly found in G(k) by the roulette-wheel selection mechanism. The remaining 10%
of G(k + 1) is the outcome of a random generation of feasible solutions, which is
to prevent too soon convergence of the algorithm to a local optimum. Moreover, the
stop condition has been changed, i.e. the number of iterations without improvement
sc has been changed from 5 to 20. The value of the best current solution πBEST(k+1)
is calculated for every population (the iteration of the algorithm). If no improvement
is observed in twenty consecutive iterations, the algorithm terminates and the best
solution of the last iteration is returned as the final heuristic solution πEVO together
with z̃(πEVO).

As the result of performed tuning, the values of the algorithm’s parameters have
been determined as: the size of population N = 60, the probability of crossover
Pc = 0.95 and the probability of mutation Pm = 0.05.

4 Computational results

This section covers the algorithms’ experimental evaluation and their statistical analy-
sis.All computations have beenperformedusing aPCwith IntelCore i5CPUprocessor
of 2.53 GHz with 4GB of RAM.

4.1 Generation of problem instances

For the deterministic flow shop, there are in the literature known benchmark problems
(Taillard 1993; Demirkol et al. 1998). It is admittedly possible to generalize those
known problems to represent the case of interval processing times, e.g. by combin-
ing two problems separately for lower and upper bounds of the intervals. However, it
would not be good benchmarks for the considered uncertain flow-shop as it would be
impossible to have the values of maximum regret. Consequently, there are no known
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benchmarks available in the literature for the minmax regret permutation flow shop
problem with interval processing times. So, we propose to generate random instances
driven by integer numbers C and K . The lower and upper bounds of intervals are
randomly chosen according to the discrete uniform distribution from intervals [1, K ]
and [p

i j
, p

i j
+ C], respectively where p

i j
is the result of the first generation. Hence,

p
i j

∈ [1, K ] and p̄i j ∈ [p
i j

, p
i j

+C]. The ratio C/K represents the degree of uncer-
tainty as the less is its value the less is the uncertainty’s significance. The abovemethod
is applied to all uncertainty intervals of the problem, thus, to obtain a new random
problem instance, four parameters are required; n,m, K , and C . Whenever a random
problem instance is referred to, it is denoted by a 4-tuple in the form {n, m, K, C}. If
any element of the tuple needs to be randomized, it is generated according to the dis-
crete uniform distribution from a set of integers denoted in braces or from an interval
of integers denoted in brackets. For example, {20, {3,5}, 100, [10,100]} describes an
instance with 20 jobs, random number of machines from the set {3,5} where K = 100
and C is randomly selected integer from the interval [10,100].

4.2 Experimental comparison and evaluation of the algorithms

In order to compare the algorithms over quality of generated solutions, performance
indices are used for EVO and MIH algorithms

δEVO = z̃(πEVO)

z̃(πCVE)
, δMIH = z̃(πMIH)

z̃(πCVE)
. (10)

The values of performance indices express the relative disadvantage of EVO andMIH
with respect to CVE. The greater are values of δEVO and δMIH the better is CVE. The
algorithms have been compared for instances {n,m, 100, 50} where m ∈ {3, 4, 5}
and n ∈ {5, 10, 15, . . . , 100}. Ten independent random instances have been generated
for each {n,m, 100, 50}, and corresponding values of both performance indices (10)
have been calculated. The results for differentm in the form of average δ

(·)
avg, minimum

δ
(·)
min, and maximum δ

(·)
max values are presented in Tables 1, 2, and 3 as well as in Figs. 1,

2, and 3 by markers, bars of lower whiskers and bars of upper whiskers, respectively.
This experiment confirmed the supremacy of CVE which can return better results

than EVO and MIH in average up to respectively 8 and 16 times (m = 3, n = 100).
The advantage of CVE increases with the growth of n for allm, however, the difference
between the algorithms is themost noticeable form = 3, and it decreases for the greater
values of m. There are only two instances, i.e. m = 3, n = 10 and m = 4, n = 10
where EVO slightly outperforms CVE. MIH turned out absolutely the worst on the
quality.

The second experiment has been conducted to make the experimental evalua-
tion of the algorithms more versatile. Now, a single randomly generated instance
{50, 3, 100, 5} is the basis for all performed calculations, unlike the previous case
when every instance was generated independently. The sub-instance {n, 3, 100, 5}
was created by taking numerical data from fixed {50, 3, 100, 5} for n = 5, 6, . . . , 50.
All the algorithms have been launched for such sub-instances, and both values of z̃
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Table 1 Values of performance
indices (10) for different n and
m = 3

n δEVOmin δEVOavg δEVOmax δMIH
min δMIH

avg δMIH
max

5 0.89 1.19 1.78 0.89 1.01 1.08

10 0.57 0.98 1.29 0.76 1.4 2.17

15 0.77 1.1 1.54 1.01 1.57 2.47

20 0.67 1.27 2.09 1.34 2.25 3.59

25 0.85 1.16 1.61 1.12 2.23 3.27

30 1.11 2.32 4.22 1.84 4.08 8.98

35 1.63 2.74 3.74 2.43 4.53 6.96

40 1.11 4.43 16.36 3.7 7.98 17.12

45 0.88 2.62 5.24 1.41 6.53 14.59

50 1.44 3.92 9.55 3.56 8.94 28.64

55 0.99 2.85 5.31 2.39 5.95 12.42

60 1.49 4.12 6.2 2.67 7.71 12.28

65 1.25 4.86 11.22 3.39 11.03 29.22

70 0.95 4.69 8.58 2.04 8.42 15.37

75 1.3 4.05 9.97 1.95 7.83 17.17

80 1.97 5.63 8.51 4.64 13 26.66

85 1.77 5.24 9.2 1.98 10.8 22.74

90 1.06 6.14 13.42 2.4 10.65 18.27

95 2.14 5.14 8.1 3.06 13.76 23.93

100 1.94 8.26 18.59 4.47 16.78 55.59

and computational times T in seconds have been returned. The algorithm EVO has
been executed five times due to its probabilistic operation and averaged values are
presented. The results are given in Table 4 and Figs. 4 and 5.

The results confirm the previous observation that CVE is undoubtedly better than
EVO regarding z̃ for bigger n(n > 20). The difference is not visible for n < 20. CVE
is also better than MIH. On the other hand, CVE cannot compete with MIH regarding
the computational time T , but it needs substantially less time than EVO. It takes less
than 24 s. for n = 50 that seems to be a good result.

The similar experiment has been performed for another random instance {50, 3, 100,
50} and its resulting sub-instances. The objective of this experiment was to learn
about the estimated relation among values of (3) for schedules obtained by all three
algorithms. As the precise calculation of (3) is not possible due to its complexity, its
lower bound zLB(π) and upper bound zUB(π) can be determined, where:

zLB(π) = max
p∈p

(
Cmax(π, p) − Cmax(π

NEH(p), p)
)

, (11)

zUB(π) = max
p∈p

(
Cmax(π, p) − C ′

max,LB(p)
)
, (12)

and πNEH(p), is calculated by NEH for fixed p while C ′
max,LB(p) is given by (4). The

values presented in Table 5 and depicted in Fig. 6 enable us for more exact evaluation
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Table 2 Values of performance
indices (10) for different n and
m = 4

n δEVOmin δEVOavg δEVOmax δMIH
min δMIH

avg δMIH
max

5 0.93 1.11 1.54 1 1.09 1.23

10 0.82 0.99 1.38 0.88 1.27 1.53

15 0.72 1.02 1.51 1.06 1.42 2.62

20 0.93 1.16 1.69 1.09 1.58 2.58

25 0.8 1.3 2.5 1.11 1.68 2.28

30 0.78 1.3 1.91 1.35 2.02 3.14

35 1.11 1.92 3.38 1.62 2.95 4.84

40 0.97 1.56 2.33 0.79 2.47 4.01

45 1.19 2.32 4.6 2.22 3.19 4.78

50 1.09 1.6 2.07 1.84 3 4.46

55 1.03 2.09 3.66 1.8 3.84 6.43

60 1.48 2.95 6.51 2.16 3.89 7.56

65 0.88 2.18 4.02 1.79 3.56 7.09

70 1.34 2.31 5.23 1.23 4.37 12.3

75 1.32 2.96 5.01 2.3 5.57 11.53

80 1.07 2.26 3.91 1.23 3.87 9.11

85 1.25 2.82 4.95 1.76 5.95 13.32

90 1.43 2.77 5.53 2.41 5.94 17.74

95 1.51 2.32 3.98 2.36 4.3 7.67

100 1.69 3.69 5.4 2.38 7.33 13.43

of these three schedules as the relaxation of SP2 is not applied, and the worst-case
scenarios have been directly calculated. The real value of (3) always lies in the belts
boundedby zLB(π) and zUB(π). The locations of belts indicate the previous conclusion
about the advantage of CVEwith respect to EVO andMIH and the supremacy of CVE.

To sum up, the experiments indicated the relationship among all three algorithms
with respect to z̃; CVE turned out to be the best algorithm for the essential majority of
checked instances. The execution times additionally asserted the usefulness of CVE
which cannot compete with MIH, but it is substantially faster than EVO algorithm
especially for the greater values of n. All experiments showed the supremacy of CVE
with respect to z̃ less evident for small values of n or high values of m. In the next
sub-section, this observation is undergone a more comprehensive statistical analysis
to avoid the possible interpretation on its accidental character.

The last experiment that has been conducted aimed to verify how the algo-
rithms’ quality behaves for less uncertain data that is for smaller values of ratio
C /K . The instances {20, 3, 100, C} have been taken into account. Ten indepen-
dent instances of the problem have been randomly generated for every value of
C from the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50}.
Each instance has been solved with all three algorithms, and averaged values of (10)
have been calculated. The results are presented in Fig. 7.

No significant influence of C on δEVOavg and δMIH
avg has been observed for C > 20.

Then, CVE outperforms EVO and MIH. For smaller values of C, δMIH converges
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Table 3 Values of performance
indices (10) for different n and
m = 5

n δEVOmin δEVOavg δEVOmax δMIH
min δMIH

avg δMIH
max

5 0.87 1.05 1.28 0.87 1 1.13

10 0.78 1.11 1.59 1.04 1.14 1.37

15 0.8 1.06 1.58 0.86 1.22 1.38

20 0.9 1.25 2.13 1.07 1.38 1.69

25 1 1.19 1.56 1.15 1.57 1.89

30 0.67 1.29 2.23 1.26 1.69 2.55

35 0.98 1.56 2.12 1.33 1.97 2.65

40 0.99 1.53 2.42 1.53 1.93 2.85

45 1.02 1.42 2.01 1.41 1.86 3.06

50 1 1.5 2.46 1.72 2.24 3.21

55 1 1.46 1.81 1.71 2.11 2.46

60 1.07 1.9 3.41 1.65 2.54 4.06

65 1.05 1.68 2.31 1.62 2.62 4.22

70 0.94 1.7 2.3 1.68 2.63 5.15

75 1.41 1.84 3.06 1.9 2.88 5.33

80 1.07 1.73 2.53 1.59 2.64 4.36

85 1.29 2.38 4.29 1.86 3.86 7.87

90 1.17 1.61 2.22 1.72 2.86 4.38

95 1.1 2.12 4.03 1.57 3.87 6.58

100 1.47 1.97 2.64 1.97 3.63 6.34
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Fig. 1 Dependence of δEVOavg , δEVOmin , δEVOmax (triangles) and δMIH
avg , δMIH

min , δMIH
max (squares) on n for m = 3

towards 1. This observation has been expected because decreasing of the level
of problem uncertainty implies the larger similarity between algorithms CVE and
MIH.
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Fig. 2 Dependence of δEVOavg δEVOmin , δEVOmax (triangles) and δMIH
avg , δMIH

min , δMIH
max (squares) on n for m = 4
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Fig. 3 Dependence of δEVOavg , δEVOmin , δEVOmax (triangles) and δMIH
avg , δMIH

min , δMIH
max (squares) on n for m = 5

4.3 Statistical analysis

The results of performed experiments enable us to put forward a hypothesis on the
comparison of algorithms in terms of the criterion (5). The following inequalities hold
for the majority part of experiments

z̃
(
πCVE

)
< z̃

(
πEVO

)
< z̃

(
πMIH

)
. (13)

To show that there is a significant statistical difference among the algorithms
independent of the problem size or C/K ratio, we will address both inequalities
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Table 4 Values of z̃ and computational time T for m = 3 and different n

n z̃(πMIH) T (πMIH) z̃(πEVO) T (πEVO) z̃(πCVE) T (πCVE)

5 134 <0.01 164 0.90 136 0.01

6 205 <0.01 180 1.34 153 0.01

7 199 <0.01 199 2.13 199 0.02

8 212 <0.01 196 2.32 204 0.04

9 224 <0.01 165 3.09 180 0.05

10 207 <0.01 171 4.25 180 0.07

11 195 <0.01 158 3.58 172 0.10

12 234 <0.01 189 3.82 177 0.12

13 286 0.01 237 5.51 168 0.17

14 231 0.01 218 6.93 176 0.21

15 248 0.01 220 7.63 176 0.27

16 248 0.01 194 9.96 176 0.34

17 268 0.01 159 14.54 155 0.42

18 268 0.02 149 12.34 158 0.52

19 248 0.02 162 10.52 176 0.67

20 249 0.02 148 15.70 152 0.78

21 249 0.02 133 15.29 83 0.93

22 317 0.03 155 12.70 98 1.12

23 253 0.03 188 22.83 164 1.30

24 270 0.03 212 21.91 164 1.52

25 318 0.04 174 21.15 164 1.77

26 381 0.04 177 20.15 122 2.05

27 452 0.04 154 25.27 130 2.35

28 392 0.05 185 31.34 127 2.70

29 421 0.05 216 27.87 127 3.07

30 423 0.06 168 27.42 127 3.50

31 464 0.06 170 32.32 127 3.97

32 521 0.07 175 35.93 122 4.43

33 521 0.08 171 45.70 89 5.01

34 582 0.10 182 44.24 92 5.61

35 582 0.10 188 31.97 83 6.25

36 606 0.10 208 42.37 120 6.94

37 573 0.11 281 48.78 145 7.68

38 556 0.12 197 64.34 99 8.54

39 558 0.13 235 48.94 99 9.37

40 558 0.14 281 43.75 134 10.45

41 534 0.15 244 64.10 134 11.38

42 534 0.16 243 71.47 90 12.45

43 542 0.17 250 78.16 75 13.67

44 503 0.18 215 69.15 88 14.85
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Table 4 continued

n z̃(πMIH) T (πMIH) z̃(πEVO) T (πEVO) z̃(πCVE) T (πCVE)

45 424 0.19 224 80.39 68 16.26

46 453 0.21 267 80.62 200 17.72

47 623 0.21 234 80.06 152 19.10

48 374 0.23 285 78.37 100 20.78

49 528 0.24 333 110.55 64 22.48

50 478 0.25 360 108.57 64 24.32
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Fig. 4 Dependence of z̃ on n for m = 3
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Fig. 5 Dependence of T on n for m = 3

separately with the Wilcoxon paired-rank test (Wilcoxon 1945; Derrac et al. 2011).
Three hundred independent samples have been generated according to the 4-tuple
{{5, 50}, {3, 5}, 100, {10, 100}}, and the calculated values of z̃(πCVE), z̃(πEVO) and
z̃(πMIH) have been the basis of two statistical tests comparing z̃(πMIH), z̃(πEVO) and
z̃(πEVO), z̃(πCVE).
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Table 5 Values of lower and upper bounds of z given in (9) obtained by MIH, EVO and CVE

n zLB(πMIH) zUB(πMIH) zLB(πEVO) zUB(πEVO) zLB(πCVE) zUB(πCVE)

5 67 188 109 188 132 188

6 110 196 109 180 121 180

7 94 160 108 173 115 160

8 66 153 76 153 130 153

9 110 206 153 215 107 206

10 107 209 175 246 79 169

11 144 227 326 339 171 248

12 155 239 185 234 219 248

13 181 261 180 203 152 185

14 212 284 230 265 163 213

15 212 284 273 310 148 213

16 208 280 235 252 154 231

17 234 284 278 328 174 235

18 283 319 259 321 196 249

19 323 379 246 277 199 268

20 323 369 238 254 208 268

21 311 356 217 260 212 259

22 300 345 415 462 236 266

23 436 494 274 318 233 280

24 459 504 283 347 216 263

25 482 517 333 380 284 328

26 509 571 678 720 284 328

27 540 589 351 381 285 330

28 584 646 395 418 334 357

29 536 603 493 510 313 343

30 564 610 545 582 313 343

31 545 577 356 401 330 360

32 518 577 510 540 330 360

33 541 590 813 826 351 360

34 520 570 471 476 444 450

35 533 583 645 668 438 447

36 612 637 731 773 438 457

37 636 659 717 747 411 447

38 682 696 735 752 406 414

39 688 709 736 749 386 396

40 596 614 903 926 526 552

41 691 705 462 471 400 416

42 666 681 685 720 440 457

43 615 628 947 960 471 483

44 665 680 714 727 445 462
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Table 5 continued

n zLB(πMIH) zUB(πMIH) zLB(πEVO) zUB(πEVO) zLB(πCVE) zUB(πCVE)

45 758 785 794 807 510 527

46 770 806 918 941 649 657

47 860 870 978 999 774 782

48 871 884 873 907 767 779

49 932 943 935 967 789 800

50 937 945 846 863 782 787
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Fig. 6 Dependence of zLB(π(·)) and zUB(π(·)) on n for MIH (dots), EVO (triangles) and CVE (squares)
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To perform the Wilcoxon test for z̃(πMIH) and z̃(πEVO), the null-hypothesis has
been defined as:

H0 : There is no statistically significant difference between the values of z̃(πMIH)

and z̃(πEVO) with the alternative hypothesis H1 : z̃(πMIH) ≥ z̃(πEVO).
To verify the hypothesis, the differences z̃(πMIH) − z̃(πEVO) for each pair of 300

instances have been calculated, and 295of themhave been remained after discarding all
zero-differences. Then, the remaining differences’ absolute values have been ranked,
and the signed rank has been determined based on the sign of the difference. All
signed ranks have been added up to obtain the statisticW = 37794.5. It is known that
for large sample size, if the compared random variables have the same distributions
than W tends to the normal distribution with the mean value μW = 0 and a standard

deviation equal to: σW =
√

NW(NW+1)(2NW+1)
6 = 2932.75 for NW = 295.

Finally, zW has been calculated after adding to W the value -0.5 as the correction
for continuity zW = (W−μW)−0.5

σW
= 12.88.

It outperforms the critical value z0.0005one-tailed = 3.291 valid for the one-tailed test and
the significance level α = 0.0005. Therefore, we can conclude that there is a strong
statistical evidence of rejecting the null-hypothesis which confirms right-hand part of
inequality (11).

The same test has been performed to compare EVO and CVE algorithms with
the analogous hypotheses H0 and H1. The numerical results are as follows: W =
3205319, μW = 0, σW =

√
NW(NW+1)(2NW+1)

6 = 2726.82 for NW = 281 after

discarding 19 zero-differences, zW = (W−μW)−0.5
σW

= 11.75. Like for the previous
test, there is very strong evidence to reject the null hypothesis, which confirms the
left-hand inequality in (11).

5 Conclusions

Theminmax regret version of the permutation flow-shop with the number of machines
greater than two, unlimited buffers, interval processing times and the makespan as a
criterion has been investigated. The paper extends previous works on the difficult
problem with many machines when the deterministic counterpart is NP-hard. The
constructive algorithm CVE has been introduced for the first time and experimen-
tally evaluated with respect to two other heuristic algorithms: the new version of the
previously elaborated evolutionary algorithm (EVO) and the evident middle interval
algorithm (MIH). The value of maximum regret, as well as the computational time has
been the basis for the comparison. The new algorithm CVE substantially outperforms
EVO and MIH for both bases of the comparison. It turned out that CVE not only is
faster than EVO, but it also is substantially better in terms of the value of minmax
regret (5), and, consequently, it is recommended for real-world applications.

The elaboration of a branch and bound based exact algorithm is now in progress
to have the more credible basis for the evaluation of heuristic algorithms. Moreover,
searching for new more efficient heuristic approaches for the considered in the paper
minmax regret flow-shop with interval processing times is still under development. It
mainly concerns the approximation of the criterion value which is itself an NP-hard
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issue. The usefulness of other heuristics for the flow-shop like CDS (Campbell, Dudek
andSmith)will also be verified (Pinedo2008). The idea of elaborating of time-effective
heuristics for different interval minmax regret combinatorial optimization problems
will be continued primarily for task scheduling problems with the open-shop as the
first example.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Aayyub BM, Klir GJ (2006) Uncertainty modeling and analysis in engineering and the sciences. Chapman
and Hall/CRC, Boca Raton

Aissi H, Bazgan C, Vanderpooten D (2005a) Complexity of the min–max and min–max regret assignment
problem. Oper Res Lett 33(6):634–640

Aissi H, Bazgan C, Vanderpooten D (2005b) Approximation complexity of min-max (regret) versions of
shortest path, spanning tree, and knapsack. In: Brodal G, Leonardi S (eds) Algorithms—ESA 2005.
Lecture Notes in Computer Science, vol 3369, pp 862–873

Aissi H, Bazgan C, Vanderpooten D (2009) Min-max and min-max regret versions of combinatorial opti-
mization problems: a survey. Eur J Oper Res 197(2):427–438

Allahverdi A, Aldowaisan T, Sotskov YN (2003) Two-machine flowshop scheduling problem to minimize
makespan or total completion time with random and bounded setup times. Int J Math Math Sci
39:2475–2486

Averbakh I (2006) The minmax regret permutation flow-shop problem with two jobs. Oper Res Lett
69(3):761–766

Averbakh I, Pereira J (2011) Exact and heuristic algorithms for the interval data robust assignment problem.
Comput Oper Res 38(8):1153–1163
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238 M. Ćwik, J. Józefczyk
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