
CEJOR (2017) 25:231–260
DOI 10.1007/s10100-016-0437-8

ORIGINAL PAPER

Generating subtour elimination constraints for the TSP
from pure integer solutions

Ulrich Pferschy1 · Rostislav Staněk1

Published online: 17 February 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The traveling salesman problem (TSP) is one of the most prominent combi-
natorial optimization problems. Given a complete graphG = (V, E) and non-negative
distances d for every edge, the TSP asks for a shortest tour through all vertices with
respect to the distances d. The method of choice for solving the TSP to optimality
is a branch and cut approach. Usually the integrality constraints are relaxed first
and all separation processes to identify violated inequalities are done on fractional
solutions. In our approach we try to exploit the impressive performance of current
ILP-solvers and work only with integer solutions without ever interfering with frac-
tional solutions.We stick to a very simple ILP-model and relax the subtour elimination
constraints only. The resulting problem is solved to integer optimality, violated con-
straints (which are trivial to find) are added and the process is repeated until a feasible
solution is found. In order to speed up the algorithm we pursue several attempts to
find as many relevant subtours as possible. These attempts are based on the clustering
of vertices with additional insights gained from empirical observations and random
graph theory. Computational results are performed on test instances taken from the
TSPLIB95 and on random Euclidean graphs.

Keywords Traveling salesman problem · Subtour elimination constraint ·
ILP solver · Random Euclidean graph

Mathematics Subject Classification 90C27

B Rostislav Staněk
rostislav.stanek@uni-graz.at

Ulrich Pferschy
pferschy@uni-graz.at

1 Department of Statistics and Operations Research, University of Graz,
Universitaetsstrasse 15, 8010 Graz, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-016-0437-8&domain=pdf

232 U. Pferschy, R. Staněk

1 Introduction

The Traveling Salesman/Salesperson Problem TSP is one of the best known and most
widely investigated combinatorial optimization problems with four famous books
entirely devoted to its study (Lawler et al. 1985; Reinelt 1994; Gutin and Punnen
2006; Applegate et al. 2006). Thus, we will refrain from giving extensive references
but mainly refer to the treatment in Applegate et al. (2006). Given a complete graph
G = (V, E) with |V | = n and |E | = m = n(n − 1)/2, and nonnegative distances
de for each e ∈ E , the TSP asks for a shortest tour with respect to the distances de

containing each vertex exactly once.
Let δ(v) := {e = (v, u) ∈ E |u ∈ V } denote the set of all edges adjacent to v ∈ V .

Introducing binary variables xe for the possible inclusion of any edge e ∈ E in the
tour we get the following classical ILP formulation:

minimize
∑

e∈E

dexe (1)

s.t.
∑

e∈δ(v)

xe = 2 ∀ v ∈ V, (2)

∑

e=(u,v)∈E
u,v∈S

xe ≤ |S| − 1 ∀ S ⊂ V, S �= ∅, (3)

xe ∈ {0, 1} ∀ e ∈ E (4)

Equation (1) defines theobjective function, (2) is thedegree equation for eachvertex,
(3) are the subtour elimination constraints (SEC), which forbid solutions consisting
of several disconnected tours, and finally (4) defines the integrality constraints. Note
also that some SEC are redundant: For the vertex sets S ⊂ V , S �= ∅, and S′ = V \S
we get pairs of SEC both enforcing the connection of S and S′.

The established standard approach to solve TSP to optimality, as pursued suc-
cessfully during the last 30+ years, is a branch-and-cut approach, which solves the
LP-relaxation obtained by relaxing the integrality constraints (4) into xe ∈ [0, 1]. In
each iteration of the underlying branch-and-bound scheme cutting planes are gen-
erated, i.e. constraints that are violated by the current fractional solution, but not
necessarily by any feasible integer solution. Since there exists an exponential number
of subsets S ⊂ V implying SEC (3), the computation starts with a small collection of
subsets S ⊂ V (or none at all), and identifies violated SEC as cutting planes in the
so-called separation problem. Moreover, a wide range of other cutting plane families
were developed in the literature together with heuristic and exact algorithms to find
them (see e.g. Applegate et al. 2006; Schrijver 2003, ch. 58). Also the undisputed
champion among all TSP codes, the famous Concorde package (see Applegate et al.
2006), is based on this principle.

In this paper we introduce and examine another concept for solving the TSP. In
Sect. 2 we introduce the basic idea of our approach. Some improvement strategies
follow in Sect. 3 with our best approach presented in Sect. 3.4. Since the main con-
tribution of this paper are computational experiments, we discuss them in detail in

123

Generating subtour elimination constraints for the TSP. . . 233

Sect. 4. The common details of all these tests will be given in Sect. 4.1. In Sect. 5, we
present some theoretical results and further empirical observations. Finally, we provide
an “Appendix” with illustrations, graphs and two summarizing tables (Tables 5, 6).

2 General solution approach

Clearly, the performance of the above branch-and-cut approach depends crucially on
the performance of the used LP-solver. Highly efficient LP-solvers have been available
for quite some time, but also ILP-solvers have improved rapidly during the last decades
and reached an impressive performance. This motivated the idea of a very simple
approach for solving TSP without using LP-relaxations explicitly.

The general approach works as follows (see Algorithm 1). First, we relax all SEC
(3) from themodel and solve the remaining ILPmodel (corresponding to aweighted 2-
matching problem). Then we check if the obtained integer solution contains subtours.
If not, the solution is an optimal TSP tour.Otherwise,we find all subtours in the integral
solution (which can be done by a simple scan) and add the corresponding SEC to the
model, each of them represented by the subset of vertices in the corresponding subtour.
The resulting enlarged ILP model is solved again to optimality. Iterating this process
clearly leads to an optimal TSP tour.

Input: TSP instance
Output: an optimal TSP tour
1: define current model as (1), (2), (4);
2: repeat
3: solve the current model to optimality by an ILP-solver;
4: if solution contains no subtour then
5: set the solution as optimal tour;
6: else
7: find all subtours of the solution and add the corresponding SEC into the model;
8: end if
9: until optimal tour found;

Algorithm 1: Main idea of our approach

Every execution of the ILP-solver (see line 3) will be called an iteration. We define
the set of violated SEC as the set of all included SEC which were violated in an
iteration (see line 7). Figures 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 in the
“Appendix” illustrate a problem instance and the execution of the algorithm on this
instance respectively.

It should be pointed out that the main motivation of this framework is its simplicity.
The separation of SEC for fractional solutions amounts to the solution of a max-
flow or min-cut problem. Based on the procedure by Padberg and Rinaldi (1990),
extensive work has been done to construct elaborated algorithms for performing this
task efficiently. On the contrary, violated SEC of integer solutions can be found by a
simple scan. Moreover, we refrain from using any other additional inequalities known
for classical branch-and-cut algorithms, which might also be used to speed up our

123

234 U. Pferschy, R. Staněk

approach, since wewant to underline the strength ofmodern ILP-solvers in connection
with a refined subtour selection process (see Sect. 3.4).

This approach for solving TSP is clearly not new but was available since the earliest
ILP formulation going back to Dantzig et al. (1954) and can be seen as folklore
nowadays. Several authors followed the concept of generating integer solutions for
some kind of relaxation of an ILP formulation and iteratively adding violated integer
SEC.However, it seems that the lack of fast ILP-solvers prohibited its direct application
in computational studies although it was used in an artistic context by Bosch (2008).

Miliotis (1976) also concentrated on generating integer SEC, but within a fractional
LP framework. The classical paper by Crowder and Padberg (1980) applies the iter-
ative generation of integer SEC as a second part of their algorithm after generating
fractional cutting planes in the first part to strengthen the LP-relaxation. They report
that not more than three iterations of the ILP-solver for the strengthened model were
necessary for test instances up to 318 vertices. Also Grötschel and Holland (1991) fol-
low this direction of first improving the LP-model as much as possible, e.g. by running
preprocessing, fixing certain variables and strengthening the LP-relaxation by differ-
ent families of cutting planes, before generating integer subtours as last step to find an
optimal tour. It turns out that about half of their test instances never reach this last phase.
In contrast, we stick to the pure ILP-formulation without any previous modifications.

From a theoretical perspective, the generation of subtours involves a certain trade-
off. For an instance (G, d) there exists a minimal set of subtours S∗, such that the ILP
model with only those SEC implied by S∗ yields an overall feasible, and thus optimal
solution. However, in practice we can only find collections of subtours larger than S∗
by adding subtours in every iteration until we reach optimality. Thus, we can either
collect as many subtours as possible in each iteration, which may decrease the number
of iterations but increases the running time of the ILP-solver because of the larger
number of constraints. Or we try to control the number of SEC added to the model by
trying to judge their relevance and possibly remove some of them later, which keeps
the ILP-model smaller but may increase the number of iterations. In the following we
describe various strategies to find the “right” subtours.

2.1 Representation of subtour elimination constraints

The SEC (3) can be expressed equivalently by the following cut constraints:

∑

e=(u,v)∈E
u∈S,v /∈S

xe ≥ 2 ∀ S ⊂ V, S �= ∅ (5)

Although mathematically equivalent, the two ways of forbidding a subtour in S may
result in quite different performances of the ILP-solver. Formore details about different
ILP-models see Öncan et al. (2009).

It was observed that in general the running time for solving an ILP increases with
the number of non-zero entries of the constraint matrix. Hence, we also tested a hybrid
variant which chooses between (3) and (5) by picking for each considered set S the

123

Generating subtour elimination constraints for the TSP. . . 235

Table 1 Comparison of the behavior of the algorithm for different representations of SEC

Instance SEC as in (3) SEC as in (5) SEC as in (6)

t (s) #iter #SEC t (s) #iter #SEC t (s) #iter #SEC

kroA150 89 12 82 75 12 82 62 12 82

kroB150 52 13 77 237 13 77 54 13 77

u159 9 5 39 13 5 39 9 5 38

brg180 62 14 56 36 5 29 64 16 67

kroA200 2153 11 95 1833 11 95 2440 11 95

kroB200 45 7 65 146 7 65 37 7 65

tsp225 149 15 102 376 16 105 155 16 106

a280 114 10 59 249 10 56 132 10 63

lin318 7171 13 177 8201 13 177 7158 13 177

gr431 5973 22 186 19,111 22 187 5925 22 186

pcb442 4406 43 215 6186 41 197 2393 43 207

gr666 33,259 14 216 189,421 14 217 40,111 14 216

Mean ratio 2.31 0.95 0.95 0.97 1.02 1.02

RE_A_150 23 12 61 65 12 61 26 12 61

RE_A_200 81 15 84 139 15 84 76 15 84

RE_A_250 156 14 82 208 14 82 133 14 82

RE_A_300 534 14 123 4819 14 123 692 14 123

RE_A_350 404 9 110 789 9 110 650 9 110

RE_A_400 49,234 16 179 247,511 16 179 24,619 16 179

RE_A_450 4666 8 117 13,806 8 117 3022 8 117

RE_A_500 68,215 12 167 155,977 12 167 30,809 12 167

Mean ratio 3.39 1.00 1.00 0.93 1.00 1.00

Mean ratio all 2.74 0.97 0.97 0.95 1.01 1.01

Mean ratios refer to the arithmetic means over ratios between t (s)/#iter./#SEC for the approaches using
the SEC represented as in (5) and (6) respectively and t (s)/#iter./#SEC for the approach using the SEC
represented as in (3). “t (s)” is the time in seconds, “#iter” the number of iterations and “#SEC” the number
of SEC added to the ILP before starting the last iteration
The data for the best approach with respect to running time is given in bold

version with the smaller number of nonnegative coefficients on the left-hand side as
follows: ∑

e=(u,v)∈E
u,v∈S

xe ≤ |S| − 1

∑

e=(u,v)∈E
u∈S,v /∈S

xe ≥ 2
∀ S ⊂ V, S �= ∅

if |S| ≤ 2n + 1

3

if |S| >
2n + 1

3

(6)

Weperformedcomputational tests of our approach to compare the three representations
of SEC, namely (3), (5) and (6), and list the results in Table 1. Technical details about
the setup of the experiments can be found in Sect. 4.1.

123

236 U. Pferschy, R. Staněk

It turned out that the three versions sometimes (but not always) lead to huge dif-
ferences in running time (up to a factor of 5). This is an interesting experience that
should be taken into consideration also in other computational studies. From our lim-
ited experiments it could be seen that version (5) was inferior most of the times (with
sometimes huge deviations) whereas only a small dominance of the hybrid variant
(6) in comparison with the standard version (3) could be observed. This is due to the
small size of most subtours occurring during the solution process (the representation
(3) equals to the representation (6) in these cases). But since also bigger subtours
can occur (mostly in the last iterations), we use the representation (6) for all further
computational tests.

3 Generation of subtours

As pointed out above, the focus of our attention lies in the generation and selection of
a “good” set of SEC, including as many as possible of those required by the ILP-solver
to determine an optimal solution which is also feasible for TSP, but as few as possible
of all others which only slow down the performance of the ILP-solver.

Trying to strike a balance between these two goals we followed several directions,
some of them motivated by theoretical results, others by visually studying plots of all
subtours generated during the execution of Algorithm 1.

3.1 Subtour elimination constraints from suboptimal integer solutions

Many ILP-solvers report all feasible integer solutions found during the underlying
branch-and-bound process. In this case, we can also add all corresponding SEC to
the model. These constraints can be considered simply as part of the set of violated
SEC. Not surprisingly, these additional constraints always lead to a decrease in the
number of iterations for the overall computation and to an increase in the total number
of SEC generated before reaching optimality (see Table 2). While the time consumed
in each iteration is likely to increase, it can also be observed that the overall running
time is often decreased significantly by adding all detected subtours to the model.
On the other hand, for the smaller number of instances where this is not the case,
only relatively modest increases of running times are incurred. Therefore, we stick to
adding all detected SEC for the remainder of the paper. The algorithm in this form
will be called BasicIntegerTSP.

3.2 Clustering into subproblems

It can be observed that many subtours have a local context, meaning that a small
subset of vertices separated from the remaining vertices by a reasonably large distance
will always be connected by one or more subtours, independently from the size of
the remaining graph (see also Figs. 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and
17 in the “Appendix”). Thus, we aim to identify clusters of vertices and run the
BasicIntegerTSP on the induced subgraphs with the aim of generating within a very

123

Generating subtour elimination constraints for the TSP. . . 237

Table 2 Using all constraints generated from all feasible solutions found during the solving process versus
using only the constraints generated from the final ILP solutions of each iteration

Instance Only subtours from ILP-optima All subtours: BasicIntegerTSP

t (s) #iter #SEC t (s) #iter #SEC

kroA150 62 12 82 19 7 136

kroB150 54 13 77 179 8 148

u159 9 5 38 6 4 49

brg180 64 16 67 44 4 103

kroA200 2440 11 95 677 8 237

kroB200 37 7 65 31 5 121

tsp225 155 16 106 178 9 261

a280 132 10 63 157 11 143

lin318 7158 13 177 6885 8 357

gr431 5925 22 186 2239 9 453

pcb442 2393 43 207 2737 11 501

gr666 40,111 14 216 17,711 8 789

Mean ratio 0.95 0.60 2.17

RE_A_150 26 12 61 23 8 100

RE_A_200 76 15 84 72 7 163

RE_A_250 133 14 82 138 9 186

RE_A_300 692 14 123 866 6 295

RE_A_350 650 9 110 411 5 252

RE_A_400 24,619 16 179 8456 8 454

RE_A_450 3022 8 117 2107 5 279

RE_A_500 30,809 12 167 15,330 6 436

Mean ratio 0.79 0.55 2.26

Mean ratio all 0.88 0.58 2.20

Mean ratios refer to the arithmetic means over ratios between t (s)/#iter./#SEC for BasicIntegerTSP over t
(s)/#iter./#SEC for the other approach. “t (s)” is the time in seconds, “#iter” the number of iterations and
“#SEC” the number of SEC added to the ILP before starting the last iteration
The data for the best approach with respect to running time is given in bold

small running time the same subtours occurring in the execution of the approach on
the full graph. Furthermore, we can use the optimal tour from every cluster to generate
a corresponding SEC for the original instance and thus enforce a connection to the
remainder of the graph.

For our purposes the clustering algorithm should fulfill the following properties:

– Clustering quality The obtained clusters should correspond well to the distance
structure of the given graph, as in a classical geographic clustering.

– Running time Should be low relative to the running time required for the main part
of the algorithm.

– Cluster size If clusters are too large, solving the TSP takes too much time. If
clusters are too small, only few SEC are generated.

123

238 U. Pferschy, R. Staněk

Clearly, there is a huge body of literature on clustering algorithms (see e.g. Jain
and Dubes 1988) and selecting one for a given application will never satisfy all our
objectives. Our main restriction was the requirement of using a clustering algorithm
which works also if the vertices are not embeddable in Euclidean space, i.e. only
arbitrary edge distances are given. Simplicity being another goal, we settled for the
following approach described in Algorithm 2:

Input: Complete graph G = (V, E), where |V | = n and |E | = m = n(n−1)
2 , distance function d : E →

R
+
0 and parameter c, where 1 ≤ c ≤ n.

Output: Clustering C = {V1, . . . , Vc}, where V1 ∪ . . . ∪ Vc = V .
1: sort the edges such that de1 ≤ . . . ≤ dem ;
2: define G′ = (V ′, E ′) such that V ′ = V and E ′ = ∅;
3: let i := 1;
4: define C := {{v1}, . . . , {vn}};
5: while |C| > c do
6: set E ′ := E ′ ∪ {ei };
7: set C := {V1, . . . , V|C|}, where V1, . . . , V|C| are the connected components of graph G′;
8: end while

Algorithm 2: Clustering algorithm

First, we fix the number of clusters c with 1 ≤ c ≤ n and sort the edges in increasing
order of distances (see line 1). Then we start with the empty graph G ′ = (V ′, E ′)
(line 2) containing only isolated vertices (i.e. n clusters) and add iteratively edges in
increasing order of distances until the desired number of clusters c is reached (see
lines 5 and 6). In each iteration the current clustering is implied by the connected
components of the current graph (see line 7). We denote this clustering approach by
C |c. Note that this clustering algorithm does not make any assumptions about the
underlying TSP instance and does not exploit any structural properties of the Metric
TSP or the Euclidean TSP.

It was observed in our computational experiments that the performance of the TSP
algorithm is not very sensitive to small changes of the cluster number c and thus a
rough estimation of c is sufficient. The behavior of the running time as a function of c
can be found for particular test instances in Fig. 19, see Sect. 4.2 for further discussion.

3.3 Restricted clustering

Although the clustering algorithm (see Algorithm 2) decreases the computational time
of the whole solution process for some test instances, we observed a certain shortcom-
ing. There may easily occur clusters consisting of isolated points or containing only
two vertices. Clearly, these clusters do not contribute any subtour on their own. More-
over, the degree constraints (2) guarantee that each such vertex is connected to the
remainder of the graph in any case. The connection of these vertices to some “neigh-
boring” cluster enforced in BasicIntegerTSP implies that the clustering yields different
subtours for these neighbors and not the violated SEC arising in BasicIntegerTSP.

To avoid this situation, wewant to impose aminimum cluster size of 3. An easyway
to do so is as follows: After reaching the c clusters, continue to add edges in increasing

123

Generating subtour elimination constraints for the TSP. . . 239

order of distances (as before), but add an edge only, if it is incident to one of the vertices
in a connected component (i.e. cluster) of size one or two. This means basically that we
simply merge these small clusters to their nearest neighbor with respect to the actual
clustering. Note that this is a step-by-step process and it can happen that two clusters
of size 1merge first before merging the resulting pair to its nearest neighboring cluster.
The resulting restricted clustering approach will be denoted by RC3|c.

Against our expectations, the computational experiments (see Sect. 4) show that
this approach often impacts the algorithm in the opposite way (see also Fig. 19, Table 6
in the “Appendix”) if compared for the same original cluster size c.

Surprisingly, we could observe an interesting behavior if c ≈ n. In this case, the
main clustering algorithm (see Algorithm 2) has almost no effect, but the “post-phase”
which enforces the minimum cluster size yields a different clustering on its own. This
variant often beats the previous standard clustering algorithm with c � n (see Table 6
in the “Appendix”). Note that we cannot fix the actual number of clusters c′ in this
case. But our computational results show that c′ ≈ n

5 usually holds if the points are
distributed relatively uniformly in the Euclidean plane and if the distances correspond
to their relative Euclidean distances (see Fig. 18 in the “Appendix”).

3.4 Hierarchical clustering

It was pointed out in Sect. 3.2 that the number of clusters c is chosen as an input
parameter. The computational experiments in Sect. 4.2 give some indication on the
behavior of Algorithm 2 for different values of c, but fail to provide a clear guideline
for the selection of c. Moreover, from graphical inspection of test instances, we got
the impression that a larger number of relevant SEC might be obtained by considering
more clusters of moderate size. In the following we present an idea that takes both of
these aspects into account.

In our hierarchical clustering process denoted by HC we do not set a cluster
number c, but let the clustering algorithm continue until all vertices are connected
(this corresponds to c = 1). The resulting clustering process can be represented by
a binary clustering tree which is constructed in a bottom-up way. The leaves of the
tree represent isolated vertices, i.e. the n trivial clusters given at the beginning of the
clustering algorithm. Whenever two clusters are merged by the addition of an edge,
the two corresponding tree vertices are connected to a new common parent vertex in
the tree representing the new cluster. At the end of this process we reach the root of
the clustering tree corresponding to the complete vertex set. An example of such a
clustering tree is shown in Figs. 1 and 2.

Now, we go through the tree in a bottom-up fashion from the leaves to the root.
In each tree vertex we solve the TSP for the associated cluster, after both of its child
vertices were resolved. The crucial aspect of our procedure is the following: All SEC
generated during such a TSP solution for a certain cluster are propagated and added
to the ILP model used for solving the TSP instance of its parent cluster. Obviously, at
the root vertex the full TSP is solved.

The advantage of this strategy is the step-by-step construction of the violated SEC.
A disadvantage is that many constraints can make sense in the local context but not in

123

240 U. Pferschy, R. Staněk

Fig. 1 Example illustrating the
hierarchical clustering: vertices
of the TSP instance. Distances
between every two vertices
correspond to their respective
Euclidean distances in this
example

v1 v2

v3

v4 v5

{v1} {v2} {v3} {v4} {v5}

{v1, v2} {v4, v5}

{v1, v2, v3}

{v1, v2, v3, v4, v5}

Fig. 2 Example illustrating the hierarchical clustering: clustering tree

the global one and thus too many constraints could be generated in this way. Naturally,
one pays for the additional SEC by an increase in computation time required to solve
a large number of—mostly small—TSP instances. To avoid the solution of TSPs of
the same order of magnitude as the original instance, it makes sense to impose an
upper bound u on the maximum cluster size. This means that the clustering tree is
partitioned into several subtrees by removing all tree vertices corresponding to clusters
of size greater than u. After resolving all these subtrees we collect all generated SEC
and add them to the ILP model for the originally given TSP. This approach will be
denoted as HC |u. Computational experiments with various choices of u indicated that
u = 4 n

log2 n would be a good upper bound.
Let us take a closer look at the problem of including too many SEC which are

redundant in the global graph context. Of course the theoretical “best” way would be
to check which of the propagated SEC were not used during the runs of the ILP solver
and drop them. To do this, it would be necessary to get this information from the ILP
solver which often is not possible.

However, we can try to approximately identify subtours which are not only locally
relevant in the following way: All SEC generated in a certain tree vertex, i.e. for a
certain cluster, are marked as considered SEC. Then we solve the TSP for the cluster
of its parent vertex in the tree without using the subtours marked as considered. If we

123

Generating subtour elimination constraints for the TSP. . . 241

generate such a considered subtour again during the solution of the parent vertex, we
take this as an indicator of global significance and add the constraint permanently for
all following supersets of this cluster. If we set the upper bound u, we take also all
SEC found in the biggest solved clusters. This approach will be denoted as HCD|u.

Of course, it is only a heuristic rule and one can easily find examples, where this pre-
diction on a subtour’s relevance fails, but our experiments indicate thatHCD|4n/ log2 n
is the best approach we considered. A comparison with other hierarchical clustering
methods for all test instances can be found in Table 5 in the “Appendix”. It can be seen
that without an upper bound we are often not able to find the solution at all (under
time and memory constraints we made on the computational experiments). In the third
and fourth column we can see a comparison between approaches both using the upper
bound u = 4 n

log2 n where the former collects all detected SEC and the latter allows to
drop those which seem to be relevant only in a local context. Both these methods beat
BasicIntegerTSP (for the comparison of this approach with other presented algorithms
see the computational experiments in Sect. 4).

4 Computational experiments

In the following the computational experiments and their results will be discussed.
Additional illustrative material can be found in an accompanying technical report,
Pferschy and Staněk (2015), which is an extended version of this paper.

4.1 Setup of the computational experiments

All tests were run on an Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz with 16 GB
RAM under Linux1 and all programs were implemented in C++2 by using the SCIP
MIP-solver3 (see Achterberg 2009) together with CPLEX as LP-solver. It has often
been discussed in the literature (see e.g. Naddef and Thienel 2002) and in personal
communications that ILP-solvers are relatively unrobust and often show high varia-
tions in their running time performance, even if the same instance is repeatedly run on
the same hardware and same software environment. Our first test runs also exhibited
deviations up to a factor of 2 when identical tests were repeated. Thus we took special
care to guarantee the relative reproducibility of the computational experiments: No
additional swap memory was made available during the tests, only one thread was
used and no other parallel user processes were allowed. This leads to a high degree of
reproducibility in our experiments. However, this issue makes a comparison to other
simple approaches, which were tested on other computers under other hardware and
software conditions, extremely difficult.

We used two groups of test instances: The first group is taken from the well-known
TSPLIB95 (Reinelt 1995), which contains the established benchmarks for TSP and

1 Precise version: Linux 3.8.0-29-generic #42~precise1-Ubuntu SMP x86_64 x86_64 x86_64 GNU/Linux
2 Precise compiler version: gcc version 4.6.3.
3 Precise version: SCIP version 3.0.1 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver:
CPLEX 12.4.0.0] [GitHash: 9ee94b7] Copyright (c) 2002–2013 Konrad-Zuse-Zentrum für Information-
stechnik Berlin (ZIB).

123

242 U. Pferschy, R. Staněk

related problems. From the collection of instances we chose all those with (i) at least
150 and at most 1000 vertices and (ii) which could be solved in at most 12 hours by
our BasicIntegerTSP. It turned out that 25 instances of the TSPLIB95 fall into this
category (see Table 6), the largest having 783 vertices.

We also observed some drawbacks of these instances: Most of them (23 out of 25)
are defined as point sets in the Euclidean plane with distances corresponding to the
Euclidean metric or as a set of geographical cities, i.e. points on a sphere. Moreover,
they often contain substructures like meshes or sets of colinear points and finally,
since all distances are rounded to the nearest integer, there are many instances which
havemultiple optimal solutions. These instances are relatively unstable with respect to
solution time, number of iterations, and—important for our approach—cardinality of
the set of violated SEC. For our approach instances with a mesh geometry (e.g. ts225
from TSPLIB95) were especially prone to unstable behavior, such as widely varying
running times for minor changes in the parameter setting. This seems to be due to the
fact that these instances contain many 2-matchings with the same objective function
value, and thus the search process for a feasible TSP tour can vary widely (for more
details see Pferschy and Staněk 2015).

In order to provide further comparisons, we also defined a set of instances based
on random Euclidean graphs: In a unit square [0, 1]2 we chose n uniformly distrib-
uted points and defined the distance between every two vertices as their respective
Euclidean distance.4 These random Euclidean instances eliminate the potential influ-
ence of substructures and always have only one unique optimal solution in all stages
of the solving process. We created 40 such instances named RE_X_n where n ∈
{150, 200, 250, . . . , 500} indicates the number of vertices and X ∈ {A, B, C, D, E}.

The running times of our test instances, most of them containing between 150 and
500 vertices, were often within several hours. Since we tested many different variants
and configurations of our approach, we selected a subset of these test instances to get
faster answers for determining the best algorithm settings for use in the final tests.
This subset contains 12 (of the 25) TSPLIB instances and one random instances for
every number of vertices n (see e.g. Table 1).

All our running time tables report the name of the instance, the running time (t (s))
in wall-clock seconds (rounded down to nearest integers), the number of iterations
(#iter), i.e. the number of calls to the ILP-solver in the main part of our algorithm
(without the TSP solutions for the clusters) and the number of SEC (#SEC) added to
the ILP model in the last iteration, i.e. the number of constraints of the model which
yielded an optimal TSP solution. We often compare two approaches in a table by
taking themean ratio, i.e. we compute the quotients between the particular columns t
(s)/#iter/#SEC of the compared method over the first “reference” method on the same
instances and then we report the arithmetic mean of these quotients.

4.2 Computational details for selected examples

Let us now take a closer look at two instances in detail. While this serves only as
an illustration, we studied lots of these special case scenarios visually during the

4 We represented all distances as integers by scaling with 214 and rounding to the nearest integer.

123

Generating subtour elimination constraints for the TSP. . . 243

development of the clustering approach to gain a better insight into the structure of
subtours generated by BasicIntegerTSP.

We selected instances kroB150 and u159 whose vertices are depicted in Figs. 4
and 5 in the “Appendix”. Both instances consist of points in the Euclidean plane and
the distances between every two vertices correspond to their respective Euclidean
distances, however, they represent two very different instance types: The instance
kroB150 consists of relatively uniformly distributed points, the instance u159 is more
structured and it contains e.g. mesh substructures which are the worst setting for our
algorithm (recall Sect. 4.1).

Figure 19 in the “Appendix” illustrates the behavior of the running time t in seconds
as a function of the parameter c for the instances kroB150 and u159. The full lines cor-
respond to standard clustering approach C |c described in Sect. 3.2 (see Algorithm 2),
while the dashed line corresponds to the restricted clustering RC3|c of Sect. 3.3 with
minimum cluster size 3. The standard BasicIntegerTSP without clustering arises for
c = 1.

Instance kroB150 consists of relatively uniformly distributed points in theEuclidean
plane, but has a specific property: By usingAlgorithm 2we can observe the occurrence
of twomain components also for relatively small coefficient c (already for c = 6). This
behavior is rather atypical for random Euclidean graphs, cf. (Penrose 2003, ch. 13),
but it provides an advantage for our approach since we do not have to solve cluster
instances of the same order of magnitude as the original graph but have several clusters
of moderate size also for small cluster numbers c.

Considering the standard clustering approach (Algorithm 2) in Fig. 19, upper graph,
it can be seen that only a small improvement occurs for c between 2 and 5. Looking at
the corresponding clusterings in detail, it turns out in these cases that there exists only
one “giant connected component” and all other clusters have size 1. This structure
also implies that for the restricted clustering these isolated vertices are merged with
the giant component and the effect of clustering is lost completely. For larger cluster
numbers c, a considerable speedup is obtained, with some variation, but more or less
in the same range for almost all values of c ≥ 6 (in fact, the giant component splits
in these cases). Moreover, the restricted clustering performs roughly as good as the
standard clustering for c ≥ 6.

Instance u159 is much more structured and has many colinear vertices. Here, we
can observe a different behavior. While the standard clustering is actually beaten by
BasicIntegerTSP for smaller cluster numbers and has a more or less similar perfor-
mance for larger cluster numbers, the restricted clustering is almost consistently better
than the other two approaches. For c between 2 and 10 there exists a large component
containing many mesh substructures which consumes as much computation time as
the whole instance.

These two instances give some indication of how to characterize “good” instances
for our algorithm: They should

– Consist of more clearly separated clusters and
– Not contain mesh substructures and colinear vertices.

123

244 U. Pferschy, R. Staněk

4.3 General computational results

A summary of the computational results for BasicIntegerTSP and the most promising
variants of clustering based subtour generations can be found in Table 6. For random
Euclidean instances we report only the mean values of all five instances of the same
size [detailed results for all random Euclidean instances can be found in our accom-
panying technical report, Pferschy and Staněk (2015)]. It turns out that HCD|4 n

log2 n ,
i.e. the hierarchical clustering approach combined with dropping SEC and fixing them
only if they are generated again in the subsequent iteration and with the upper bound
on the maximum cluster size u = 4 n

log2 n , gives the best overall performance. A dif-
ferent behavior can be observed for instances taken from the TSPLIB and for random
Euclidean instances. On the TSPLIB instances this algorithm HCD|4 n

log2 n is on aver-
age about 20% faster than pure BasicIntegerTSP and beats the other clustering based
approaches for most instances. In those cases, where it is not the best choice, it is
usually not far behind.

As already mentioned, best results are obtained with HCD|4 n
log2 n for instances

with a strong cluster structure and without mesh substructures (e.g. pr299). For
instances with mesh substructures it is difficult to find an optimal 2-matching which
is also a TSP tour. For random Euclidean instances the results are less clear but
approaches with fixed number of clusters seem to be better then the hierarchical
ones.

It was a main goal of this study to find a large number of “good” SEC, i.e. subtours
that are present in the last iteration of the ILP-model ofBasicIntegerTSP. Therefore,we
show the potentials and limitations of our approach in reaching this goal. In particular,
we will report the relation between the set S1 consisting of all subtours generated
by running a hierarchical clustering algorithm with an upper bound u (set as in the
computational tests to u = 4 n

log2 n) before solving the original problem (i.e. the root
vertex) and the set S2 containing only the SEC included in the final ILP model of
BasicIntegerTSP. We tested the hierarchical clustering with and without the dropping
of non-repeated subtours.

There are two aspects we want to describe: At first, we want to check whether
S1 contains a relevant proportion of “useful” subtour contraints, i.e. constraints also
included in S2, or whether S1 contains “mostly useless” subtours. Therefore, we report
the proportion of used subtours defined as

pused := |S1 ∩ S2|
|S1| . (7)

Secondly, we want to find out to what extend it is possible to find the “right” subtours
by our approach. Hence, we define the proportion of covered subtours defined as

pcov := |S1 ∩ S2|
|S2| . (8)

The values of pused and pcov are given in Table 3. It can be seen that empirically there
is the chance to find about 26–31% (pcov) of all required violated SEC. If SEC are
allowed to be dropped, we are able to find fewer such constraints, but our choice has

123

Generating subtour elimination constraints for the TSP. . . 245

Table 3 Proportion of used and
proportion of covered subtours
for our hierarchical clustering
approaches with the upper bound
u = 4 n

log2 n which (i) does not

allow (HC|4 n
log2 n) and which

(ii) does allow (HCD|4 n
log2 n) to

drop the unused SEC

Instance HC|4 n
log2 n HCD|4 n

log2 n

pused pcov pused pcov

kroA150 0.26 0.46 0.48 0.37

kroB150 0.22 0.35 0.40 0.27

u159 0.09 0.45 0.15 0.39

brg180 0.13 0.15 0.71 0.15

kroA200 0.21 0.32 0.45 0.27

kroB200 0.21 0.41 0.42 0.39

tsp225 0.13 0.22 0.30 0.20

a280 0.06 0.31 0.16 0.28

lin318 0.23 0.38 0.44 0.36

gr431 0.07 0.21 0.22 0.19

pcb442 0.06 0.15 0.13 0.16

gr666 0.08 0.27 0.22 0.24

Mean 0.15 0.31 0.34 0.27

RE_A_150 0.18 0.31 0.29 0.24

RE_A_200 0.12 0.24 0.21 0.19

RE_A_250 0.12 0.27 0.17 0.20

RE_A_300 0.19 0.33 0.33 0.26

RE_A_350 0.15 0.38 0.29 0.33

RE_A_400 0.17 0.30 0.25 0.24

RE_A_450 0.15 0.42 0.31 0.37

RE_A_500 0.17 0.32 0.28 0.27

Mean 0.16 0.32 0.27 0.26

Mean of all 0.15 0.31 0.31 0.27

a better quality (pcov is smaller, but pused is larger), i.e. the solver does not have to
work with a large number of constraints which only slow down the solving process
and are not necessary to reach an optimal solution.

Furthermore, we can observe a relative big difference between the values of the
proportion of used SEC (pused) for the TSPLIB instances and for random Euclidean
instances if the dropping of redundant constraints is allowed.

4.4 Adding a starting heuristic

Of course, there are many possibilities of adding improvements to our basic approach.
Lower bounds and heuristics can be introduced, branching rules can be specified, or
cutting planes can be generated. We did not pursue these possibilities since we want
to focus on the simplicity of the approach. Moreover, we wanted to take the ILP solver
as a “black box” and not interfere with its execution.

Just as an example which immediately comes to mind, we added a starting heuris-
tic to give a reasonably good TSP solution as a starting solution to the ILP solver.
We used the improved version of the classical Lin–Kernighan heuristic in the code

123

246 U. Pferschy, R. Staněk

Table 4 Results for BasicIntegerTSP used without/with the Lin–Kernighan heuristic for generating an
initial solution: Using the starting heuristic yields faster running times for all instances

Instance Without starting heuristic With starting heuristic

t (s) #iter #SEC t (s) #iter #SEC

kroA150 19 7 136 16 10 34

kroB150 179 8 148 17 8 104

u159 6 4 49 4 5 40

brg180 44 4 103 0 2 15

kroA200 677 8 237 42 8 135

kroB200 31 5 121 28 6 124

tsp225 178 9 261 73 13 176

a280 157 11 143 32 8 58

lin318 6885 8 357 4941 8 259

gr431 2239 9 453 838 10 318

pcb442 2737 11 501 447 18 207

gr666 17,711 8 789 13,225 11 485

Mean ratio 0.43 1.14 0.59

RE_A_150 23 8 100 14 11 65

RE_A_200 72 7 163 38 11 99

RE_A_250 138 9 186 63 9 124

RE_A_300 866 6 295 146 8 173

RE_A_350 411 5 252 126 6 151

RE_A_400 8456 8 454 1274 6 251

RE_A_450 2107 5 279 482 7 197

RE_A_500 15,330 6 436 1997 9 241

Mean ratio 0.32 1.27 0.62

Mean ratio all 0.39 1.19 0.60

Mean ratios refer to the arithmetic means over ratios between t (s)/#iter./#SEC for the approach using the
starting heuristic over t (s)/#iter./#SEC for the BasicIntegerTSP. “t (s)” is the time in seconds, “#iter” the
number of iterations and “#SEC” the number of SEC added to the ILP before starting the last iteration

written by Helsgaun (2008). The computational results reported in Table 4 show that
a considerable speedup (roughly a factor of 3, but also much more) can be obtained
in this way.

5 Some theoretical results and further empirical observations

Although ourworkmainly aims at computational experiments, we also tried to analyze
BasicIntegerTSP from a theoretical point of view. In particular we studied the expected
behavior on random Euclidean instances and tried to characterize the expected cardi-
nality of the minimal set of required subtours S∗ as defined in Sect. 2. It is well known
that no polynomially bounded representation of the TSP polytope can be found and
there also exist instances based on a mesh-structure for which E

[|S∗|] has exponen-

123

Generating subtour elimination constraints for the TSP. . . 247

tial size, but the question for the expected size of |S∗| for random Euclidean instances
and thus for the expected number of iterations of our solution algorithm remains an
interesting open problem.

We started with extensive computational tests, some of them presented in Figs. 20
and 21 in the “Appendix”, to gain empirical evidence on this aspect. The upper graph in
Fig. 20 illustrates the mean number of iterations needed by BasicIntegerTSP to reach
optimality for different numbers of vertices n (we evaluated 100 random Euclidean
instances for every value n). The lower graph of Fig. 20 shows the mean length of the
optimal TSP tour and of the optimal 2-matching (i.e. the objective value after solving
the ILP in the first iteration) by using the same setting.

It was proven byBeardwood et al. (1959) that the expected length of an optimal TSP
tour is asymptotically β

√
n, where β is a constant. This approachwas later generalized

for other settings and other properties of the square root asymptotic were identified
by Rhee (1993) and Yukich (1998). We used these properties to prove the square root
asymptotic also for the 2-matching problem (cf. Fig. 20, lower graph, dashed).

Definition 1 [complete convergence, Yukich (1998)] A sequence of random variables
Xn , n ≥ 1, converges completely (c.c.) to a constant C if and only if for all ε > 0 we
have ∞∑

n=1

P [|Xn − C | > ε] < ∞. (9)

Theorem 1 Let G = (V, E) be a random Euclidean graph with n = |V | vertices
and let d : E → R

+
0 be the Euclidean distance function. Furthermore, let M2(G, d)

be the length of an optimal 2-matching. Then

lim
n→∞

M2(G, d)√
n

= α c.c., where α > 0. (10)

Proof See our accompanying technical report, Pferschy and Staněk (2015). ��
Based on these results the following idea might lead to a proof that the expected

cardinality S∗ is polynomially bounded: After the first iteration of the algorithm we
have a solution possibly consisting of several separate subtours of total asymptotic
length α

√
n = α1

√
n. If there are subtours, we add SEC (in fact at most � n

3 �), resolve
the enlarged ILP and get another solution whose asymptotic length is α2

√
n. By prov-

ing that the expected length of the sequence α = α1, . . . , α#i = β is polynomially
bounded in n, one would obtain that also E

[|S∗|] is polynomially bounded since only
polynomially many subtours are added in each iteration. Our intuition and computa-
tional tests illustrated in Fig. 20, upper graph, indicate that the length of this sequence
could be proportional to

√
n as well. Unfortunately, we could not find the suitable

techniques to show this step.
A different approach is illustrated in Fig. 21, where we examine the mean number

of subtours contained in every iteration. In particular, we chose n = 60, generated
100,000 random Euclidean instances and sorted them by the number of iterations
#iter required by BasicIntegerTSP. The most frequent number of ILP solver runs was
7 (dotted line), but we summarize the results for 5 (full line), 6 (dashed), 8 (loosely

123

248 U. Pferschy, R. Staněk

dashed) and 9 (loosely dotted) necessary runs in this figure as well. For every iteration
of every class (with respect to the number of involved ILP runs) we compute the
mean number of subtours contained in the respective solutions. As can be expected
these numbers of subtours are decreasing (in average) over the number of iterations.
To allow a better comparison of this behavior for different numbers of iterations we
scaled the iteration numbers into the interval [0, 10] (horizontal axis of Fig. 21). It can
be seen that the average number of subtours contained in an optimal 2-matching (first
iteration) is about 9.2while in the last iterationwe trivially have only one tour. Between
these endpoints we can first observe a mostly convex behavior, only in the last step
before reaching the optimal TSP tour a sudden drop occurs. It would be interesting to
derive an asymptotic description of these curves. An intuitive guess would point to an
exponential function, but so farwe could not find a theoretical justification of this claim.

6 Conclusions

In this paper we provide a “test of concept” of a very simple approach to solve TSP
instances of medium size to optimality by exploiting the power of current ILP solvers.
The approach consists of iteratively solving ILP models with relaxed SEC to integer
optimality. Then it is easy to find integral subtours and add the corresponding SEC
to the ILP model. Iterating this process until no more subtours are contained in the
solution obviously solves the TSP to optimality. It would also be possible to treat
subtour elimination constraints as so-called lazy cuts and invoke them only when a
new integer solution is found. However, since the number of generated constraints
remains moderate in our test instances we found no advantage in pursuing this option.

In this work we focus on the structure of SEC and how to find a “good” set of SEC
in reasonable time. Therefore, we aim to identify the local structure of the vertices of a
given TSP instance by running a clustering algorithm.Based on empirical observations
and results from randomgraph theorywe further extend this clustering-based approach
and develop a hierarchical clustering method with a mechanism to identify SEC as
“relevant”, if they appear in consecutive iterations of the algorithm.

We mostly refrained from adding additional features which are highly likely to
improve the performance considerably, such as starting heuristics (cf. Sect. 4.4), lower
bounds or adding additional cuts. In the future itmight be interesting to explore the lim-
its of performance one can reachwith a purely integer linear programming approach by
adding these improvements. Clearly, we can not expect such a basic approach to com-
pete with the performance ofConcorde, Applegate et al. (2006), which has been devel-
oped overmany years and basically includes all theoretical and technical developments
known so far. However, it turns out that most of the standard benchmark instances with
up to 400 vertices can be solved in a few minutes by this purely integer strategy.

Finally, we briefly discussed some theoretical aspect for random Euclidean graphs
which could lead to polyhedral results in the expected case.

Acknowledgements Open access funding provided by Austrian Science Fund (FWF). The research was
funded by the Austrian Science Fund (FWF): P23829-N13. We would like to thank the developers of the
SCIP MIP-solver from the Konrad-Zuse-Zentrum für Informationstechnik Berlin, especially Mr. Gerald
Gamrath, for their valuable support.

123

Generating subtour elimination constraints for the TSP. . . 249

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Fig. 3 Instance RE_A_150.
Euclidean distances between
vertices

Fig. 4 Instance kroB150.
Euclidean distances between
vertices

Fig. 5 Instance u159. Euclidean
distances between vertices

123

http://creativecommons.org/licenses/by/4.0/

250 U. Pferschy, R. Staněk

Fig. 6 Instance RE_A_150:
Main idea of our
approach—iteration 0

Fig. 7 RE_A_150: iteration 1

Fig. 8 RE_A_150: iteration 2

123

Generating subtour elimination constraints for the TSP. . . 251

Fig. 9 RE_A_150: iteration 3

Fig. 10 RE_A_150: iteration 4

Fig. 11 RE_A_150: iteration 5

123

252 U. Pferschy, R. Staněk

Fig. 12 RE_A_150: iteration 6

Fig. 13 RE_A_150: iteration 7

Fig. 14 RE_A_150: iteration 8

123

Generating subtour elimination constraints for the TSP. . . 253

Fig. 15 RE_A_150: iteration 9

Fig. 16 RE_A_150: iteration 10

Fig. 17 RE_A_150: iteration 11

123

254 U. Pferschy, R. Staněk

n

c

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

3
6
9

12
15
18
21
24
27

Fig. 18 Restricted clustering with c = n on random Euclidean graphs with minimum cluster size 3. The
number of obtained clusters c′ is plotted for every n. For every number of vertices n we created 100,000
graphs

without clustering (180.42 s)

best obtained time (16.54 s)

c

t
100

0 5 10 15 20 25 30 35 40 45 50

1

2

3

without clustering (180.42 s)

without clustering (6.56 s)

best obtained time (3.8 s)

c

t.

0 5 10 15 20 25 30 35 40 45 50

10

20

Fig. 19 Computation time t in seconds depending on the number of clusters c for clustering (full line) and
for restricted clustering (dashed). Illustrative instances kroB150 (upper figure) and u159 (lower figure)

123

Generating subtour elimination constraints for the TSP. . . 255

nM
ea
n
nu

m
b
er

of
it
er
at
io
ns

4

8

12

n

M
ea
n
le
ng

th

0 35 70 105 140 175 210 245

0 35 70 105 140 175 210 245

4

8

12

Fig. 20 Mean number of iterations used by the BasicIntegerTSP (upper figure), mean length of an optimal
TSP tour (lower figure, dashed) and mean length of an optimal weighted 2-matching (lower figure, full line)
in random Euclidean graphs. For every number of vertices n we created 100 graphs

iteration ∗λ

M
ea
n
nu

m
b
er

of
su

bt
ou

rs

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Fig. 21 Mean number of subtours during the BasicIntegerTSP in random Euclidean graphs for n = 60
sorted according to the number of iterations [λ = 4/10 (full line), 5/10 (dashed), 6/10 (dotted), 7/10 (loosely
dashed), 8/10 (loosely dotted)]. We created 100,000 graphs

123

256 U. Pferschy, R. Staněk

Ta
bl
e
5

R
es
ul
ts
fo
r
B
as
ic
In
te
ge
rT
SP

an
d
fo
r
di
ff
er
en
tv

ar
ia
nt
s
of

th
e
ap
pr
oa
ch

w
hi
ch

us
es

th
e
hi
er
ar
ch
ic
al
cl
us
te
ri
ng

In
st
an
ce

B
as
ic
In
te
ge
rT
SP

H
C

|n
H

C
|4n

/
lo
g 2

n
H

C
D

|4n
/
lo
g 2

n

t(
s)

#i
te
r

#S
E
C

t(
s)

#i
te
r

#S
E
C

t(
s)

#i
te
r

#S
E
C

t(
s)

#i
te
r

#S
E
C

ch
15

0
13

7
74

15
0

2
43

5
9

5
22

3
14

6
12

9

kr
oA

15
0

19
7

13
6

11
2

26
8

8
2

24
5

11
4

13
0

kr
oB

15
0

17
9

8
14

8
72

2
30

1
34

4
31

5
21

4
16

8

pr
15

2
16

13
18

4
5

3
21

4
5

3
20

5
9

4
17

4

u1
59

6
4

49
29

3
29

2
14

4
30

3
11

4
14

0

si
17

5
52

10
18

3
99

6
49

4
40

8
41

5
44

7
26

3

br
g1

80
44

4
10

3
54

2
18

5
10

2
18

35
9

24
2

27

ra
t1
95

34
7

6
27

4
24

1
3

49
1

27
2

4
41

9
26

7
5

32
2

d1
98

10
,9
86

10
30

1
48

3
7

89
4

10
94

10
58

2
39

86
9

32
6

kr
oA

20
0

67
7

8
23

7
17

7
2

36
2

94
1

3
35

3
69

0
5

23
8

kr
oB

20
0

31
5

12
1

37
3

29
2

23
3

26
9

31
4

16
4

gr
20

2
39

11
77

24
30

3
12

16
61

8
33

0
60

8
21

7

ts
p2

25
17

8
9

26
1

11
13

3
98

1
13

8
6

55
1

15
1

6
34

1

pr
22

6
51

83
10

40
9

18
1

59
3

13
1

58
5

59
3

35
7

gr
22

9
23

9
6

31
1

29
84

4
10

56
17

2
7

49
0

17
3

8
32

4

gi
l2
62

17
9

7
26

8
10

52
2

80
7

16
9

3
56

4
21

7
4

36
8

a2
80

15
7

11
14

3
–

–
–

12
4

3
73

3
18

1
7

35
2

pr
29

9
92

63
9

41
3

40
51

2
78

2
19

98
5

74
5

17
16

5
45

5

lin
31

8
68

85
8

35
7

45
7

2
75

6
27

4
5

66
0

27
5

5
35

5

123

Generating subtour elimination constraints for the TSP. . . 257

Ta
bl
e
5

co
nt
in
ue
d

in
st
an
ce

B
as
ic
In
te
ge
rT
SP

H
C

|n
H

C
|4n

/
lo
g 2

n
H

C
D

|4n
/
lo
g 2

n

t(
s)

#i
te
r

#S
E
C

t(
s)

#i
te
r

#S
E
C

t(
s)

#i
te
r

#S
E
C

t(
s)

#i
te
r

#S
E
C

rd
40

0
24

01
9

46
7

93
29

5
14

94
98

3
6

10
18

15
79

8
53

9

gr
43

1
22

39
9

45
3

–
–

–
47

48
9

17
34

42
14

10
83

3

pc
b4

42
27

37
11

50
1

–
–

–
38

30
16

17
96

22
77

15
88

8

u5
74

17
,3
54

6
42

3
–

–
–

18
,0
50

4
12

90
86

64
4

62
9

gr
66

6
17

,7
11

8
78

9
–

–
–

23
,2
12

4
31

04
18

,0
31

7
14

08

ra
t7
83

30
,1
56

6
45

7
–

–
–

–
–

–
–

–
–

M
ea
n
ra
tio

6.
02

0.
40

3.
41

0.
89

0.
81

2.
67

0.
80

0.
75

1.
42

M
ea
n
R
E
_1

50
12
.4

6.
6

72
.6

69
.8

2
32

7
17

3.
8

23
1.
8

14
.6

4.
4

13
3.
4

M
ea
n
R
E
_2

00
75

7.
2

14
6

34
0.
6

2
51

0.
8

51
.4

4.
2

34
0.
4

94
4.
4

22
3

M
ea
n
R
E
_2

50
26

2.
4

6.
6

20
8.
8

84
5.
6

2.
2

71
7

13
5

4.
8

47
2

22
7.
2

5
30

2.
4

M
ea
n
R
E
_3

00
83

0.
8

7
30

8.
8

27
80

.8
3

94
7.
4

40
8.
2

5.
2

59
1.
4

55
7.
4

5.
6

39
8.
6

M
ea
n
R
E
_3

50
79

0.
8

6.
6

29
4.
2

50
15

.6
2.
4

10
47

.4
56

2.
4

4.
2

69
6.
8

58
1.
8

4.
6

41
3.
2

M
ea
n
R
E
_4

00
20

,5
96

.8
7.
2

39
7.
4

30
4,
88

2.
4

2.
4

16
30

.2
14

,5
41

.4
4.
8

83
4.
6

10
,4
22

.2
4.
6

51
6.
4

M
ea
n
R
E
_4

50
23

,9
11

.2
7.
4

40
9.
4

–
–

–
19

,7
05

.8
5

98
8.
8

22
,8
28

.8
5.
6

59
8

M
ea
n
R
E
_5

00
12

0,
45

3.
2

7
49

2.
4

–
–

–
98

,4
47

.6
4.
6

11
72

.4
10

6,
72

1.
2

6
71

4.
6

M
ea
n
ra
tio

12
.1
3

0.
34

3.
80

0.
90

0.
67

2.
47

1.
04

0.
73

1.
50

M
ea
n
ra
tio

al
l

9.
76

0.
37

3.
65

0.
90

0.
72

2.
54

0.
95

0.
74

1.
47

M
ea

n
ra

ti
os

re
fe
r
to

th
e
ar
ith

m
et
ic
m
ea
ns

ov
er

ra
tio

s
be
tw
ee
n
t(
s)
/#
ite
r./
#S

E
C
fo
r
th
e
pa
rt
ic
ul
ar

ap
pr
oa
ch
es

an
d
t(
s)
/#
ite
r./
#S

E
C
fo
r
th
e
B
as
ic
In
te
ge
rT
SP

.“
t(
s)
”
is
th
e
tim

e
in

se
co
nd

s,
“#
ite

r”
th
e
nu

m
be
r
of

ite
ra
tio

ns
an
d
“#
SE

C
”
th
e
nu

m
be
r
of

SE
C
ad
de
d
to

th
e
IL
P
be
fo
re

st
ar
tin

g
th
e
la
st
ite

ra
tio

n.
T
he

en
tr
ie
s
“–
”
fo
r
T
SP

L
IB

in
st
an
ce
s
ca
nn
ot

be
co
m
pu

te
d
w
ith

16
G
B
R
A
M

or
w
ou

ld
ta
ke

m
or
e
th
an

12
ho

ur
s

B
as
ic
In
te
ge
rT

SP
H
C

|n—
hi
er
ar
ch
ic
al
cl
us
te
ri
ng

;t
he

co
ns
tr
ai
nt
s
ca
nn

ot
be

dr
op

pe
d
an
d
th
e
m
ax
im

um
si
ze

of
a
so
lv
ed

cl
us
te
r
is

u
=

n
(i
.e
.i
n
fa
ct
,t
he
re

is
no

up
pe
r
bo

un
d)

H
C

|4n
/
lo
g 2

n—
hi
er
ar
ch
ic
al
cl
us
te
ri
ng

;t
he

co
ns
tr
ai
nt
s
ca
nn

ot
be

dr
op

pe
d
an
d
th
e
m
ax
im

um
si
ze

of
a
so
lv
ed

cl
us
te
r
is

u
=

4
n

lo
g 2

n
H
C
D

|4n
/
lo
g 2

n—
hi
er
ar
ch
ic
al
cl
us
te
ri
ng

;t
he

co
ns
tr
ai
nt
s
ca
n
be

dr
op

pe
d
an
d
th
e
m
ax
im

um
si
ze

of
a
so
lv
ed

cl
us
te
r
is

u
=

4
n

lo
g 2

n
T
he

da
ta
fo
r
th
e
be
st
ap
pr
oa
ch

w
ith

re
sp
ec
tt
o
ru
nn
in
g
tim

e
is
gi
ve
n
in

bo
ld

123

258 U. Pferschy, R. Staněk

Ta
bl
e
6

C
om

pa
ri
so
n
be
tw

ee
n
di
ff
er
en
tv

ar
ia
nt
s
of

ou
r
ap
pr
oa
ch

In
st
an
ce

B
as
ic
In
te
ge
rT
SP

C
|�n

/
5�

R
C
3
|�n

/
5�

R
C
3
|n

H
C

D
|4n

/
lo
g 2

n

t(
s)

#i
te
r

#S
E
C

t(
s)

#i
te
r

#S
E
C

t(
s)

#i
te
r

#S
E
C

t(
s)

#i
te
r

#S
E
C

t(
s)

#i
te
r

#S
E
C

ch
15

0
13

7
74

12
6

11
4

9
6

10
9

16
7

11
7

14
6

12
9

kr
oA

15
0

19
7

13
6

25
6

18
7

43
6

16
6

33
5

18
5

11
4

13
0

kr
oB

15
0

17
9

8
14

8
53

4
21

9
13

8
5

21
5

44
5

20
2

21
4

16
8

pr
15

2
16

13
18

4
17

12
18

1
17

11
20

4
18

12
18

1
9

4
17

4

u1
59

6
4

49
6

4
14

9
5

5
15

1
3

3
70

11
4

14
0

si
17

5
52

10
18

3
31

10
21

3
55

13
25

0
35

9
19

6
44

7
26

3

br
g1

80
44

4
10

3
17

3
81

19
8

10
2

12
1

11
31

6
24

2
27

ra
t1
95

34
7

6
27

4
24

6
4

26
8

27
5

6
31

5
11

4
6

25
7

26
7

5
32

2

d1
98

10
,9
86

10
30

1
42

53
11

31
5

–
–

–
47

62
9

32
1

39
86

9
32

6

kr
oA

20
0

67
7

8
23

7
33

2
6

21
4

35
0

5
19

0
28

7
4

17
1

69
0

5
23

8

kr
oB

20
0

31
5

12
1

29
5

14
8

21
5

14
7

32
4

12
3

31
4

16
4

gr
20

2
39

11
77

50
8

23
3

36
6

17
4

25
6

14
3

60
8

21
7

ts
p2

25
17

8
9

26
1

10
0

9
22

3
84

10
23

5
10

0
8

30
0

15
1

6
34

1

pr
22

6
51

83
10

40
9

36
14

6
36

3
36

,7
44

5
40

3
12

,9
44

9
41

5
59

3
35

7

gr
22

9
23

9
6

31
1

33
5

6
28

9
15

2
6

25
6

31
1

7
34

1
17

3
8

32
4

gi
l2
62

17
9

7
26

8
25

0
8

25
0

13
3

7
26

8
15

2
6

27
4

21
7

4
36

8

a2
80

15
7

11
14

3
61

4
29

9
19

6
11

35
0

11
7

9
22

1
18

1
7

35
2

pr
29

9
92

63
9

41
3

63
76

7
38

7
74

10
6

41
6

16
05

9
6

41
4

17
16

5
45

5

lin
31

8
68

85
8

35
7

53
7

7
33

1
38

6
6

36
4

15
60

6
39

1
27

5
5

35
5

123

Generating subtour elimination constraints for the TSP. . . 259

Ta
bl
e
6

co
nt
in
ue
d

in
st
an
ce

B
as
ic
In
te
ge
rT
SP

C
|�n

/
5�

R
C
3
|�n

/
5�

R
C
3
|n

H
C

D
|4n

/
lo
g 2

n

t(
s)

#i
te
r

#S
E
C

t(
s)

#i
te
r

#S
E
C

t(
s)

#i
te
r

#S
E
C

t(
s)

#i
te
r

#S
E
C

t(
s)

#i
te
r

#S
E
C

rd
40
0

24
01

9
46
7

12
12

7
42
0

18
27

7
43
8

15
22

8
39
8

15
79

8
53
9

gr
43
1

22
39

9
45
3

30
98

9
62
6

33
84

9
64
7

24
96

10
70
4

42
14

10
83
3

pc
b4
42

27
37

11
50
1

38
68

16
77
0

18
15

17
56
7

26
26

16
59
4

22
77

15
88
8

u5
74

17
,3
54

6
42
3

11
,7
02

4
49
8

35
,2
04

5
58
0

13
,7
22

5
57
2

86
64

4
62
9

gr
66
6

17
,7
11

8
78
9

11
,7
56

7
91
9

14
,2
23

7
10
01

13
,5
73

7
10
02

18
,0
31

7
14
08

ra
t7
83

30
,1
56

6
45
7

18
4,
38
1

5
70
1

37
,8
05

5
73
5

38
,6
30

6
77
9

–
–

–

M
ea
n
ra
tio

1.
01

0.
86

1.
31

1.
17

0.
95

1.
34

0.
98

0.
94

1.
29

0.
80

0.
75

1.
42

M
ea
n
R
E
_1
50

12
.4

6.
6

72
.6

9.
6

4.
6

10
5

12
.6

4.
8

11
6.
2

13
.6

4.
8

10
4.
4

14
.6

4.
4

13
3.
4

M
ea
n
R
E
_2
00

75
7.
2

14
6

55
.6

5.
6

20
7.
4

44
.6

5.
4

18
5.
6

56
.6

5.
6

18
4.
2

94
4.
4

22
3

M
ea
n
R
E
_2
50

26
2.
4

6.
6

20
8.
8

16
4.
4

5.
8

23
9.
4

28
7

6
28
3.
2

22
6.
6

6
24
8.
8

22
7.
2

5
30
2.
4

M
ea
n
R
E
_3
00

83
0.
8

7
30
8.
8

72
1.
8

6.
4

35
3.
8

52
5.
6

6.
2

33
9.
2

58
6.
2

6.
2

34
0.
6

55
7.
4

5.
6

39
8.
6

M
ea
n
R
E
_3
50

79
0.
8

6.
6

29
4.
2

58
0.
8

6.
2

32
2.
2

65
5.
4

5.
8

33
3.
6

54
0.
8

5.
2

33
9.
6

58
1.
8

4.
6

41
3.
2

M
ea
n
R
E
_4
00

20
,5
96
.8

7.
2

39
7.
4

18
,6
19
.4

6
45
3.
4

21
,4
82
.4

5.
8

44
8.
4

18
,5
20

6.
6

46
5.
2

10
,4
22
.2

4.
6

51
6.
4

M
ea
n
R
E
_4
50

23
,9
11
.2

7.
4

40
9.
4

12
11
9.
2

6.
8

48
1.
8

11
,0
18
.4

5.
8

47
8.
6

10
,6
49

6.
6

46
8.
8

22
,8
28
.8

5.
6

59
8

M
ea
n
R
E
_5
00

12
0,
45
3.
2

7
49
2.
4

14
1,
57
3.
2

6.
6

59
3.
4

78
,8
74
.8

5.
6

56
0

11
8,
28
9.
6

6.
8

57
2.
2

10
6,
72
1.
2

6
71
4.
6

M
ea
n
ra
tio

0.
90

0.
87

1.
24

0.
96

0.
83

1.
27

1.
18

0.
87

1.
23

1.
04

0.
73

1.
50

M
ea
n
ra
tio

al
l

0.
94

0.
87

1.
27

1.
04

0.
87

1.
29

1.
10

0.
90

1.
25

0.
95

0.
74

1.
47

M
ea

n
ra

ti
os

re
fe
r
to

th
e
ar
ith

m
et
ic
m
ea
ns

ov
er

ra
tio

s
be
tw
ee
n
t(
s)
/#
ite
r./
#S

E
C
fo
r
th
e
pa
rt
ic
ul
ar

ap
pr
oa
ch
es

an
d
t(
s)
/#
ite
r./
#S

E
C
fo
r
th
e
B
as
ic
In
te
ge
rT
SP

.“
t(
s)
”
is
th
e
tim

e
in

se
co
nd

s,
“#
ite

r”
th
e
nu

m
be
r
of

ite
ra
tio

ns
an
d
“#
SE

C
”
th
e
nu

m
be
r
of

SE
C
ad
de
d
to

th
e
IL
P
be
fo
re

st
ar
tin

g
th
e
la
st
ite

ra
tio

n.
T
he

en
tr
ie
s
“–
”
fo
r
T
SP

L
IB

in
st
an
ce
s
ca
nn
ot

be
co
m
pu
te
d
w
ith

16
G
B
R
A
M

B
as
ic
In
te
ge
rT

SP
C

|�n
/
5�
—

cl
us
te
ri
ng

fo
r

c
=

�n 5
�

R
C
3|�

n/
5�
—
re
st
ri
ct
ed

cl
us
te
ri
ng

fo
r

c
=

�n 5
�;
th
e
m
in
im

um
si
ze

of
a
cl
us
te
r
is
3

R
C
3|n

—
re
st
ri
ct
ed

cl
us
te
ri
ng

fo
r

c
=

n;
th
e
m
in
im

um
si
ze

of
a
cl
us
te
r
is
3

H
C
D

|4n
/
lo
g 2

n—
hi
er
ar
ch
ic
al
cl
us
te
ri
ng

;t
he

co
ns
tr
ai
nt
s
ca
n
be

dr
op

pe
d
an
d
th
e
m
ax
im

um
si
ze

of
a
so
lv
ed

cl
us
te
r
is

u
=

4
n

lo
g 2

n
T
he

da
ta
fo
r
th
e
be
st
ap
pr
oa
ch

w
ith

re
sp
ec
tt
o
ru
nn
in
g
tim

e
is
gi
ve
n
in

bo
ld

123

260 U. Pferschy, R. Staněk

References

Achterberg T (2009) SCIP: solving constraint integer programs. Math Progr Comput 1(1):1–41. http://mpc.
zib.de/index.php/MPC/article/view/4

Applegate DL, Bixby RE, Chvátal V, Cook WJ (2006) The traveling salesman problem: a computational
study. Princeton University Press, Princeton

Beardwood J, Halton JH, Hammersley JM (1959) The shortest path through many points. Math Proc Camb
55:299–327

Bosch R (2008) Connecting the dots: the ins and outs of TSP art. In: Sarhangi R, Carlo H. Séquin (eds)
Bridges Leeuwarden: mathematics, music, art, architecture, culture. Southwestern College, Winfield,
pp 235–242

Crowder H, PadbergMW (1980) Solving large-scale symmetric travelling salesman problems to optimality.
Manag Sci 26(5):495–509

Dantzig G, Fulkerson R, Johnson S (1954) Solution of a large-scale traveling-salesman problem. Oper Res
2:393–410

Grötschel M, Holland O (1991) Solving large-scale symmetric travelling salesman problems to optimality.
Math Program 51:141–202

Gutin G, Punnen A (2006) The traveling salesman problem and its variations. Springer, Berlin
Helsgaun K (2008) LKH—version 2.0.2. www.akira.ruc.dk/~keld/research/LKH/LKH-2.0.2.tgz
Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice Hall, Upper Saddle River
Lawler E, Lenstra J, Rinnooy Kan A, Shmoys D (1985) The traveling salesman problem: a guided tour of

combinatorial optimization. Wiley, New York
Miliotis P (1976) Integer programming approaches to the travelling salesman problem. Math Program

10:367–378
Naddef D, Thienel S (2002) Efficient separation routines for the symmetric traveling salesman problem II:

separating multi handle inequalities. Math Program 92:257–283
ÖncanT,KubanAltınel İ, LaporteG (2009)Acomparative analysis of several asymmetric traveling salesman

problem formulations. Comput Oper Res 36(3):637–654
Padberg M, Rinaldi G (1990) An efficient algorithm for the minimum capacity cut problem. Math Program

47:19–36
Penrose M (2003) Random geometric graphs. Oxford University Press, Oxford
Pferschy U, Staněk R (2015) Generating subtour elimination constraints for the TSP from pure integer

solutions. Technical report. University of Graz, Department of Statistics and Operations Research.
arXiv:1511.03533

Reinelt G (1994) The traveling salesman: computational solutions for TSP applications. Springer, Berlin
Reinelt G (1995) TSPLIB95. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
Rhee WT (1993) A matching problem and subadditive euclidean functionals. Ann Appl Probab 3(3):

794–801
Schrijver A (2003) Combinatorial optimization: polyhedra and efficiency. Springer, Berlin
Yukich JE (1998) Probability theory of classical Euclidean optimization problems. Springer, Berlin

123

http://mpc.zib.de/index.php/MPC/article/view/4
http://mpc.zib.de/index.php/MPC/article/view/4
www.akira.ruc.dk/~keld/research/LKH/LKH-2.0.2.tgz
http://arxiv.org/abs/1511.03533
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

	Generating subtour elimination constraints for the TSP from pure integer solutions
	Abstract
	1 Introduction
	2 General solution approach
	2.1 Representation of subtour elimination constraints

	3 Generation of subtours
	3.1 Subtour elimination constraints from suboptimal integer solutions
	3.2 Clustering into subproblems
	3.3 Restricted clustering
	3.4 Hierarchical clustering

	4 Computational experiments
	4.1 Setup of the computational experiments
	4.2 Computational details for selected examples
	4.3 General computational results
	4.4 Adding a starting heuristic

	5 Some theoretical results and further empirical observations
	6 Conclusions
	Acknowledgements
	Appendix
	References

