CEJOR (2014) 22:567-589
DOI 10.1007/s10100-013-0321-8

ORIGINAL PAPER

Unified encoding for hyper-heuristics with application
to bioinformatics

Aleksandra Swiercz - Edmund K. Burke -
Mateusz Cichenski - Grzegorz Pawlak -
Sanja Petrovic - Tomasz Zurkowski - Jacek Blazewicz

Published online: 8 August 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract This paper introduces a new approach to applying hyper-heuristic algo-
rithms to solve combinatorial problems with less effort, taking into account the mod-
elling and algorithm construction process. We propose a unified encoding of a solution
and a set of low level heuristics which are domain-independent and which change the
solution itself. This approach enables us to address NP-hard problems and generate
good approximate solutions in a reasonable time without a large amount of additional
work required to tailor search methodologies for the problem in hand. In particu-
lar, we focused on solving DNA sequencing by hybrydization with errors, which
is known to be strongly NP-hard. The approach was extensively tested by solving
multiple instances of well-known combinatorial problems and compared with results
generated by meta heuristics that have been tailored for specific problem domains.

Keywords Bioinformatics - Hyper-heuristics - Simulated annealing -
Choice function - Combinatorial problems - Sequencing by hybrydization

A. Swiercz - M. Cichenski () - G. Pawlak - T. Zurkowski - J. Blazewicz
Institute of Computing Science, Poznan University of Technology, Poznan, Poland
e-mail: mateusz.cichenski@cs.put.poznan.pl

A. Swiercz - J. Blazewicz
Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland

E. K. Burke
University of Stirling, Stirling, UK

S. Petrovic
University of Nottingham, Nottingham, UK

@ Springer

568 A. Swiercz et al.

1 Introduction

In recent years, more and more biologically inspired problems have been studied by
operational researchers. The cooperation between these two disciplines demonstrates
that a strong scientific synergy between molecular biology and operational research
problems can be established. Many methods have been developed to cope with the large
amount of experimental data and new tools have been created to predict the structure of
molecules. A prime example of a biological problem is reading deoxyribonucleic acid
(DNA) sequences. It cannot be done at once due to the fact that the genome sequence
is simply too long. For example: a genome of bacteria Escherichia coli is composed
of 4.6 x 10° small molecules, called nucleotides, a genome of yeast has 1.4 x 107
and a genome of wheat is twice as large as the one from a human, which is 3.3 x 10°.
Usually, the process of reading DNA is divided into three phases: sequencing short
fragments of DNA, assembling these short fragments into longer ones, and then plac-
ing them into the proper places in the chromosome. In the sequencing part, one can read
50-600 nucleotide long sequences at once, depending on the method employed. One
such method is called sequencing by hybridization (SBH) (Southern 1988). It is based
on a biochemical experiment which basically determines the subfragments of the
examined DNA sequence. Naturally, in order to obtain the original sequence, the sub-
fragments which overlap must be merged together. This can be done by combinatorial
algorithms. There have been many successful solutions already presented in the liter-
ature (Lysov et al. 1988; Dramanac et al. 1989; Pevzner 1989; Bui and Youssef 2004;
Blazewicz and Kasprzak 2003; Blazewicz et al. 1997, 2002, 2004, 2006a,b).

This paper presents a unique insight into the DNA sequencing by hybridization
problem from the perspective of developing generic search techniques which could
be applied to different combinatorial optimization problems. Our aim is to explore the
generality of hyper-heuristics, namely whether a hyper-heuristic can solve the DNA
sequencing by hybridization (SBH) problem in addition to some selected well-known
combinatorial optimization problems. In our research study, we chose these optimiza-
tion problems: traveling salesman problem, bottleneck traveling salesman problem
(TSP), prize collecting TSP, and knapsack problem. One of the main motivating ideas
behind hyper-heuristics is to use the same search methodology across different prob-
lem domains whilst minimizing the manual adaptation of the search algorithm.

We focus on a hyper-heuristic framework which consists of a set of heuristics,
also called low level heuristics and a hyper-heuristic algorithm, also called high level
heuristic. The latter one evaluates the performance of low level heuristics and selects
one of them, which is then applied to change current solution (Burke et al. 2003a, 2013;
Ross et al. 2003; Ross 2005). The performance can be measured as an increase of the
objective function value, which is defined by the problem. However, one can also take
into account other factors, e.g. the time of computation or the number of successful
applications of the given low level heuristics. The process is repeated iteratively, i.e.
a low level heuristic is selected from among the available heuristics in the set and
applied to change the solution. The behavior depends on the hyper-heuristic algorithm
itself. However, it enables jumping out of a local optimum.

Thus, these hyper-heuristic approaches operate on the low level heuristic search
space and try to find the best execution order of the available heuristics. It may be

@ Springer

Unified encoding for hyper-heuristics 569

necessary to provide a different set of heuristics to solve different problem domains,
but the hyper-heuristic is kept untouched. In contrast, most implementations of meta
heuristic approaches conduct a search over a representation of the problem and are
usually considered as made-to-measure, algorithms “tailored” to the needs of the given
problem domain (Dowsland 1998) with respect to the problem specific parameters,
constraints etc. However, developing specialized algorithms for each problem domain
is usually time consuming and requires a lot of parameter tuning to provide acceptable
solutions. Hyper-heuristic approaches can adapt themselves to the problem at hand,
operating on the supplied low level heuristics set, yet giving satisfactory results with
less “problem tailoring” required (Burke et al. 2003b).

Hyper-heuristic algorithms have been successfully employed in solving many prob-
lem domains. We investigate two meta-heuristics to be used as high level heuristics in
the hyper-heuristic framework: simulated annealing (Kirkpatrick et al. 1983; Aarts et
al. 2005), tabu search (Glover and Laguna 1997; Gendrau and Potvin 2005) and also
the choice function (Cowling et al. 2001, 2002a). There are also new approaches that
use multiple phases (Cichowicz et al. 2012a) or genetic algorithms (Cichowicz et al.
2012b). Hyper-heuristics inspired by simulated annealing have been considered for
problems such as automating the design of supermarket shelf layouts (Bai and Kendall
2005) and determining shipper sizes (Dowsland et al. 2007). Tabu search based hyper-
heuristics have been applied to different problems including timetabling and rostering
(Burke et al. 2003b, 2007; Kendall and Hussin 2005). Lastly, choice function hyper-
heuristics have been used on a sales summit scheduling problem (Cowling et al. 2001),
scheduling project presentations (Cowling et al. 2002a) and the nurse rostering prob-
lem (Cowling et al. 2002b). However, these approaches were mostly developed and
evaluated on a single optimization problem.

In this paper, we propose a unified encoding for the selected optimization problems
to be used in the hyper-heuristic framework. The aim of the unified encoding is to
simplify the process of constructing an effective search procedure by omitting the
need to create complex low level heuristics or customizing meta heuristics. Simple
low level heuristics are used on the proposed unified encoding instead. Additionally,
the aim of the study is to show that such a unified representation is possible, even for
problems coming from different research domains including bioinformatics. We run
extensive experiments to evaluate the unified encoding and performance of the hyper-
heuristic on the selected optimization problems. The results were compared to meta
heuristics and hyper-heuristics which were not as generic as our approach, to verify
if the generalization of the methodology can still yield satisfactory results. It is not
to be expected that the generalised approach produces better results than the tailored
one (although it may happen). However, a good performance of the hyper-heuristic
will open the door to the investigation of their applicability to other combinatorial
optimization problems including bioinformatics ones, which could be represented by
the proposed unified encoding. It would mean that a variety of other bioinformatics
problems could be solved with less effort with respect to the time needed for the
development and fine tuning of the algorithm.

The paper is organized as follows. The next section provides the definitions of
investigated combinatorial problems. Section 3 describes the idea of hyper-heuristics
in more detail including an explanation of choice function based hyper-heuristics, and

@ Springer

570 A. Swiercz et al.

Sect. 4 contains the description of the new approach proposed here. In Sect. 5 the low
level heuristics used in the experiments are described. The computational experiments
are presented in Sect. 6. Final remarks are included in Sect. 7.

2 Combinatorial problems formulation

Five combinatorial problems were employed to test the proposed approach. Four of
them were investigated during the selection of the representation and one was used as
a hidden domain to test the power of the approach. The following subsections provide
short descriptions of the problems with special attention paid to the SBH problem.

2.1 Sequencing by hybridization

As mentioned above, during biochemical experiments it is not possible to read the
whole DNA sequence of a genome at once, because it is too long (about 3.3 x 10°
nucleotides for humans). Instead, biochemists are able to determine short fragments
of a given length /, which are subsequences of the examined DNA sequence. These
fragments are sequences of nucleotides represented by letters A, C, G and T. The
letters correspond to the nitrogenous bases contained in the nucleotides: adenine,
cytosine, guanine and thymine, respectively. Next, the short fragments have to be
merged together into one, longer DNA sequence. The method that determines the
order of nucleotides is called SBH.

Usually, it is not possible to determine all the subfragments of the examined DNA
sequence. On the other hand, sometimes fragments determined during the experiment
are not the subfragments of the DNA sequence. These missing and erroneous fragments
make the reconstruction of the DNA sequence difficult. The SBH problem in the case of
errors in the set of input fragments belongs to the strongly NP-hard class of problems.

Given a set W of words (I-mers) of length / over the alphabet {A, C, G, T} and
length m of the original DNA sequence, one has to find the unknown original DNA
sequence, not longer than m, which will contain the maximum number of I-mers from
W. The words can overlap with an offset, e.g. word ACGT overlaps word TACG
with offset 1, but word TACG overlaps word ACGT with offset 3 (because word
T ACG can start at the third position of word ACGT without any misplaced letter).
This example can be analyzed in Fig. 1.

The SBH problem can be represented as a graph problem—I-mers are represented
as vertices and the distance between two nodes is the offset between these two l-mers.
The task is to find a path that visits the maximum number of nodes and its length is
less than or equal to Q =m — [.

Fig. 1 An example of I-mers T

e ACG ACGT
overlapping I I I
ACG

!
T TACG

offset offset

@ Springer

Unified encoding for hyper-heuristics 571

2.2 The traveling salesman problem

The TSP is strongly NP-hard. Given a list of cities and distances between them, the
task is to find the shortest possible route that visits each city exactly once. Richard
Karp has proved that the determination of a Hamiltonian cycle is an NP-complete
problem, which implies that TSP is NP-hard (Karp 1972).

Given n cities and n x n matrix D of distances between each pair of cities the task
is to find the shortest path, which will allow a visit to all the cities and which will let
the salesman come back to the city from which the path started, i.e. the shortest cycle
visiting all cities.

The problem can also be represented by using a directed graph. Each city is repre-
sented by a node. There is an arc between two nodes i and j if there is a direct route
from city i to city j. The weight of the arc represents the distance between those cities.
The task is to find the shortest Hamiltonian cycle.

2.3 Bottleneck traveling salesman problem

This problem is similar in formulation to TSP, but it has a different objective—one
has to find a cycle (path) that will go through all the cities and minimize the weight of
the most costly connection between the cities (or arc in graph representation) in the
cycle (path).

2.4 The prize collecting traveling salesman problem

In addition to the TSP definition, a prize Pr; for visiting city i and a penalty Pe; for
not visiting a city is introduced in this problem. The minimum amount Q of prizes that
has to be collected is also defined. The goal is to find a cycle that minimizes the total
route length and the sum of penalties for not visited cities while collecting at least a
specified amount of prizes. In contrast to classic TSP, one does not have to visit all the
cities.

2.5 The knapsack problem

The knapsack problem is an NP-hard optimization problem where, for given items
with associated weights and values, one has to pack them into one knapsack, that can
hold items up to some total maximal weight. Hereafter, the 0—1 knapsack problem
will be investigated, in which every item can be used at most once. This problem was
not considered during the selection of the unified encoding. It was a hidden domain
that was used to evaluate the approach on the problem that can be represented by the
proposed model, but was not designed for it.

Given n items, with weights w; and value v;, i = 1...n, the task is to find a subset
of items that will fit to a knapsack with a weight limit Q and will maximize the total
value of items inside the knapsack.

@ Springer

572 A. Swiercz et al.

3 Hyper-heuristic approaches

Hyper-heuristics can be described as a knowledge-poor approach (Cowling et al. 2001;
Ozcan et al. 2008) to solve problems in different domains. An overview of hyper-
heuristic methods can be found in Burke et al. (2013). We can consider the role of
the hyper-heuristic to be to choose one or more low level heuristics from a given set
and apply them iteratively to improve the resulting solution, in other words selecting
appropriate existing heuristics (Burke et al. 2010). Those low level heuristics are
specialized in solving certain problem domains, but the ideal hyper-heuristic does not
have knowledge about the problem itself—it uses only the quality measures of the
performance of low level heuristics which are independent from the problem domain,
e.g. how many times the heuristics improved solution and by what factor. Thus, given
a hyper-heuristic framework one has to define only the set of low level heuristics and
one or more quality measures to rate the solutions (Cowling et al. 2002b).

In 1975 John Rice proposed a framework for the algorithm selection problem (Rice
1976) which can be used to define hyper-heuristic algorithms. This framework seeks
which algorithm from a given set is likely to perform best, based on measures derived
from a collection of problem instances. The framework consists of four components:

— Problem space &2 which is represented by a set of instances of a problem

— Feature space . which contains measurable characteristics of the instances from
7

— Algorithm space .« which is a set of considered algorithms that can be used to
solve the problem

— Performance space % which contains performance metrics of each algorithm for
a given problem instance

The algorithm selection problem is stated in Smith-Miles and Lopes (2012) as: For
a given problem instance x € &2, with feature vector f(x) € .7, find the selection
mapping S(f(x)) into algorithm space .27 such that the selected algorithm o € o
maximizes the performance metric ||y|| for y(o, x) € %. The collection of data
describing {2, o7, %, F} is known as meta-data.

Thanks to Rice’s framework one can define the hyper-heuristic algorithm as fol-
lows: it is possible to map the performance of low level heuristics as feature space
F as opposed to calculating the characteristics of the problem instances. In other
words, the performance space % is the same as feature space .# when considering a
hyper-heuristic approach (Burke et al. 2003a). Unfortunately, Rice did not clarify how
the feature space should be calculated and this is widely explored in Smith-Miles and
Lopes (2012). Even using performance space ¢ as features does not provide knowl-
edge about how the mapping into algorithm space 7 should be undertaken. This is
the task of designing hyper-heuristic algorithms.

3.1 How hyper-heuristics work
In general, the input data for our hyper-heuristic framework contains a set of low level

(problem specific) heuristics and one or more quality measures (domain barrier) to rate
the produced solutions. Thus, the single hyper-heuristic algorithm can be employed

@ Springer

Unified encoding for hyper-heuristics 573

Hyper-heuristic

Domain Barrier Domain Barrier Domain Barrier

Set of low level heuristics Set of low level heuristics Set of low level heuristics

Evaluation function Evaluation function Evaluation function

Solution space Solution space Solution space

Fig. 2 A standard hyper-heuristic approach [similar to that presented in Cowling et al. (2001)]

to solve different problem domains, which is illustrated in Fig. 2. The process is
iteratively going through the following steps:

1. Find the starting solution and set it as current

2. Apply one or more low level heuristics to the solution and measure the quality of
the new solution

3. Select one of the solutions from 2 and set it as current

4. If stop conditions are not satisfied go to step 2, otherwise STOP

In step 1, any initial solution can be used. However, it is important to notice that
different starting solutions may provide different final results (if they are not optimal)
due to the fact that a different part of solution space could be explored. In case of TSP,
the initial solution can be set to a solution generated by a random number permutation
or to a more complex greedy heuristic.

Step 2 is the most important, as it defines the behavior of the hyper-heuristic. There
are many possible approaches inspired by meta heuristic.

Most commonly hyper-heuristics have, as a termination criterion, a time limit,
a number of iterations without significant improvement in the solution quality or a
number of iterations the algorithm can perform. In practice, the termination condition
used depends on the constraints given by the user—if the problem should be solved
within a given time period a time limit should be used, if time is not so important
and the goal is to obtain the best possible result, the number of iterations without
significant improvement can be used.

3.2 Choice function

One of the possibilities to create a hyper-heuristic algorithm is to base it on mathemat-
ical functions, e.g. the choice function (Cowling et al. 2001). This method uses three

@ Springer

574 A. Swiercz et al.

components—the effectiveness of the low level heuristic, the effectiveness of a pair of
low level heuristics (how well two heuristics work together) and the part responsible
for the diversification of the solution (when the heuristic was last used).

Let us assume that /; is the improvement in objective function reached by heuristic
h in iteration i (if it was not used in iteration i then I; = 0), T; is the time taken
by the low level heuristics used in iteration i and ¢ is the current iteration. The first
component takes into account only the performance of a single heuristic, and can be
calculated as:

t
I
c1(h) = Z“Hf)

i=1

where o, 0 < o < 1, is the parameter used to weight the past results. This function
uses the performance measure. It also employs the time required to execute the low
level heuristic.

The second component is used to evaluate the performance of one solution occurring
after another. It is possible that a pair of low level heuristics will work well together
and it is worth applying first heuristic and then immediately using the other one after
it. To calculate this value the following formula is used:

t
p;
SOEDW e)
i=1 !

where g is a heuristic that was used in the previous iteration, and / p; is the improvement
in the objective function made by heuristic % in iteration i, but only if it was used after
g. For each iteration i when 4 was not used right after g let Ip; = 0. § is a weight
that can be tuned for every problem separately, 0 < B < 1. The difference between
c1 and ¢, is in iterations that are considered—in c¢; all iterations when heuristic & was
used are taken into consideration and in ¢, only those iterations when & was preceded
by g are used.

The last component is equal to the number of seconds elapsed from the last usage
of a given low level heuristic 7 (/) scaled by factor y. This value helps to diversify the
search—if the heuristic was not used for a long time, the value will be higher.

c3(h) = yt(h) A3)
The choice function for a given heuristic % is equal to:
c(h) = ci(h) + c2(h) + c3(h) “)
The positive choice function for a given heuristic is defined as:
¢ (h) = explne(h)] (&)

where 7 is a scaling factor.

@ Springer

Unified encoding for hyper-heuristics 575

The final choice function and its components can be used to create different hyper-
heuristic algorithms.

Four hyper-heuristics based on the choice function are defined below, including
straight choice, ranked choice, decomp choice and roulette choice (Cowling et al.
2001; Mruczkiewicz 2009). They differ from one another in the way they choose the
heuristic that should be used in a given iteration.

3.2.1 Straight choice

The first algorithm, straight choice, always chooses the heuristics with the highest value
of the choice function c(#). Only the value of choice function is used to determine
the heuristics chosen in a given iteration. This means that in this method only one
heuristic is executed in every iteration.

3.2.2 Ranked choice

The ranked choice algorithm selects k heuristics with the highest choice function
(k is defined for every problem separately). Then it applies these heuristics to a current
solution and compares the objective function of a new obtained solution. The heuristic
that achieved the best objective function is chosen and used in the next iteration.

This algorithm requires k runs of the low level heuristics to choose one that will be
used in a given iteration.

3.2.3 Decomp choice

The decomp choice algorithm selects four heuristics—with the best value of
c1(h), ca(h), c3(h), c(h). Next, each of those four heuristics is applied to a current
solution, and the one that achieved the best objective function is chosen in a given
iteration.

This algorithm requires exactly four runs of low level heuristics.

3.2.4 Roulette choice

The roulette choice based hyper-heuristic chooses the heuristics randomly with the
probability of choosing a given heuristics 4 equal to:

()

Ph)y= =—
" deyc+(g)

6)

4 Unified encoding approach

Solving a problem domain using a standard hyper-heuristic approach requires defining
the set of low level heuristics, the objective function and the solution representation.
The last two parts are described by problem formulation. However, the low level
heuristics are the hardest part, because one has to know the characteristics of the

@ Springer

576 A. Swiercz et al.

Hyper-heuristic

Set of low level heuristics

Domain Barrier

Evaluation function | | Evaluation function | | Evaluation function

Solution space Solution space Solution space

Fig. 3 Unified encdoding hyper-heuristic approach

problem. For example, a good low level heuristic for the TSP would be the well
known 2-OPT neighborhood (Croes 1958; Mersmann et al. 2012), but if we use the
same heuristic for other problem domains it might not perform that well. Thus a lot
of effort has to be put into creating a good low level heuristic set.

To overcome this problem we propose a unified encoding. In this approach, the
low level heuristics are not problem-specific, but are bound to the representation of
the solution. Thanks to this approach, one can skip the difficult part of defining low
level heuristics and get nonetheless good results. In the standard approach the domain
barrier can be defined as a set of statistical measures gathered from the execution of
low level heuristics and then used by the hyper-heuristic to pick one of them for the
next iteration. The proposed unified encoding approach in Fig. 3 pushes the domain
barrier one level down and can be interpreted as solution representation which is used
by an evaluation function to calculate the objective value for a given solution.

The difference between the approaches can be expressed as follows. In the standard
hyper-heuristic approach, given a set of problem-specific low-level heuristics and an
objective function, one can solve problem P using one of the existing hyper-heuristics.
In contrast, in the proposed approach: given a solution encoding and an objective
function we can solve problem P using one of the existing hyper-heuristics and a
generic set of solution-encoding-specific low-level heuristics.

In the evaluation of the framework, the solution is represented as a sequence S of
unique integers from range 1 to n. Each instance is represented as a directed complete
graph G with n vertices and weighted arcs between them. Data is stored inann X n
adjacency matrix D, where value D; ; denotes the weight of the arc from vertex i to
vertex j. Graph G is a directed complete graph, so between every pair of vertices there
are two arcs. Two real numbers are assigned to each vertex—the prize (Pr;) and the
penalty (Pe;). There is also a constraint value represented as a real number (Q).

@ Springer

Unified encoding for hyper-heuristics 577

4.1 Problem domains and their respective representation

Four problem domains were analyzed when choosing the solution encoding and then a
fifth problem domain was introduced to the framework as a hidden domain—it was not
considered when the solution encoding was chosen. The problems are: the sequencing
by hybridization problem (SBH), the TSP, the bottleneck traveling salesman problem
(BTSP) and the prize collecting traveling salesman problem (PCTSP). The hidden
domain was the knapsack problem.

4.2 Representing the sequencing by hybridization problem

Representing the SBH problem is done by setting the distances between vertices in
matrix D as offset between I-mers and by setting constraint Q to the maximum length
of the path. The values of Pe; and Pr; are set to 0 as they are not used.

The task is to maximize the following objective function:

S|

Hard constraint:

IS1-1

> Ds.s5. <0
i=1

This objective function does not distinguish between solutions of the same number
of elements that differ in the route length. Keeping the hard constraint, an alternative
objective function sbh-additive was proposed:

sbh-additive = (|S| + 1) x factor — length

In this function, factor is a number that is significantly greater than the route length,
and length is the length of the route expressed as the left side of the hard constraint
equation. The scalar factor is used to leverage the main goal of visiting as many nodes
as possible while keeping information about the differences in route length. To get the

original objective value one has to take integral part of the fraction Sbh}“w
actor

4.3 Representing the traveling salesman problem

Mapping the TSP into the proposed model is trivial—matrix D is used to store the
distances between cities as it would be in the original problem and the rest of the
variables (Pr;, Pe;, Q) are equal to 0. If some edge in the original problem does not
exist, it is represented as an edge with a very large weight which will not affect the
correctness of the computed solution.

@ Springer

578 A. Swiercz et al.

The task is to minimize the following objective function:

S|

Z DS;,S(I' mod n)+1

i=1

Hard constraint: The solution sequence § has to contain exactly n elements (| S| =n).

4.4 Representing the bottleneck traveling salesman problem

The BTSP instance is encoded in the same way as is done for the classic TSP—matrix
D is used to store the distances between cities and Pr;, Pe;, Q are equal to 0. Missing
edges are replaced with edges with a very large weight which will not affect the validity
of the model.

The task is to minimize the following objective function:

1S
Ilnzalx DS,',S(,' modn)+1

Hard constraint: The solution sequence S has to contain exactly n elements (| S| =n).

4.5 Representing the prize collecting traveling salesman problem

The PCTSP is the most complex problem in terms of input variables. The model
actually perfectly fits with this problem and other problems can be easily transformed
to this representation. In this problem, the task is to minimize the following objective
function:

S|

z Dys; S modisp1 + Z Pe,

i=1 veS

Hard constraint:

ZPVUEQ

ves

4.6 Representing the knapsack problem

To encode the knapsack problem with the proposed model the necessary values of
item weights and item values must be mapped. An array of prizes Pr is used to store
the values of items and array of penalties Pe is used to store their weights. Limit Q is
used as the maximal total allowed weight of items in the knapsack. In this problem,
matrix D is not used to evaluate the solution. Solution § will contain all items that are
inside the knapsack.

@ Springer

Unified encoding for hyper-heuristics 579

The task is to maximize the following objective function:

S|

z Pryg,

i=1
Hard constraint:

S|

ZPesi <0

i=1
5 Low level heuristics

The low level heuristics are strictly bound to the solution encoding. They do not have
any information about the problem domain, which makes them ineffective when used
alone. The task of hyper-heuristics is to evaluate the performance of low level heuristics
and select them according to relevant measures, similarly to the algorithm selection
problem described previously.

Obviously, the set of low level heuristics should enable the search over the whole
search space—starting from a given solution one should be able to reach another
solution if applying certain moves to the starting solution. However, the low level
heuristics might somehow overlap their behavior, because it is better to choose a
single heuristics that is equivalent to a sequence of heuristics applied consecutively.
A good example could be the move heuristic—it could be easily replaced by remove
and insert heuristics applied one after another. However, in general, two heuristics
need to be executed instead of one, which is considered to be inefficient.

In the following sections, five low level heuristics used for computational experi-
ments are described: insert, remove, move, swap, replace. Those basic five heuristics
can produce any possible solution but the set of low level heuristics can be easily
extended. We performed an experiment with an extended set by introducing three
more heuristics: move sequence, revert sequence and remove highest arc.

5.1 Insert heuristic

Input:
pos—a position in the sequence at which a node should be inserted
node—a node to be inserted

This heuristic basically tries to insert a new node into the sequence. By definition of
the solution encoding, the node has to be unique, so it cannot be part of the sequence
already. Thus, this heuristic is not useful for solutions of length n, because there is no
unique node that can be inserted.

This heuristic had to be implemented in pair with the remove heuristic, so that
every possible solution can be reached. However, for the TSP it is considered to be
ineffective, because only solutions with all nodes are valid, for which there are no

@ Springer

580 A. Swiercz et al.

unique nodes to be inserted. Despite this fact, this heuristic can be used in the case of
invalid starting solution of size smaller than n to repair the solution and reach the size
of n for the TSP.

In the case of the PCTSP and the knapsack problem, the heuristic should play an
important role, because there is no restriction on sequence length. For example, for a
given capacity of the knapsack it might be possible to put another item into it, which
will not produce an infeasible solution.

5.2 Remove heuristic

Input:
pos—a position in the sequence from which a node should be deleted

This heuristic is used to remove nodes from the solution to get shorter solutions. It
is complementary with the insert heuristic—one can invert the effect of the other. With
insert and remove heuristics it is possible to reach every possible solution from the
search space. However, it might not be the fastest way to do so. Next three heuristics
are in some way a combination of those two basic low level heuristics, but because
they are considered as a single move, they might be more efficient.

The remove heuristics for the TSP will always produce infeasible solutions, because
not all cities will be visited. Due to this fact, two heuristics that use a combination
of insert and remove in a single operation are included, so the solutions will remain
feasible. However, this heuristic can be useful for the prize collecting TSP and the
knapsack problem. In the first one it can try to reduce the total route length but increase
the punishment for paying penalties and for the latter it can, for example, change an
infeasible, overweight solution into a feasible one or make space for other items.

5.3 Move heuristic

Input:
pos—a position in the sequence from which a node should be picked out
dest—a position in the sequence at which this node should be inserted

The move heuristic combines the insert and remove heuristics—it removes a node
from pos and instantly inserts it at dest.

It was introduced for the case of the TSP and its bottleneck variant, where the
solution must be of length 7.

5.4 Swap heuristic

Input:

pos—a position in the sequence from which a node will be swapped

pos2—a second position in the sequence from which the other node will be
swapped

@ Springer

Unified encoding for hyper-heuristics 581

This heuristics swaps two nodes which are at positions pos and pos2. It is similarly
to the move heuristic in that it does not produce infeasible solutions for the TSP, because
the length of the solution remains the same.

5.5 Replace heuristic

Input:
pos — a position in the sequence at which a node should be replaced
node — a node to be inserted

This heuristic removes a node from position pos and inserts a node which has
not been in the solution, thus the sequence solution is unique. This heuristic was
developed for the SBH and the PCTSP, because for other domains it will produce
infeasible solutions. It should also be useful for the knapsack problem.

5.6 Move sequence heuristic

Input:

pos—a position in the sequence from which a sequence should be picked out
length—number of elements in the sequence

dest—a position in the sequence at which this nodes should be inserted

The move sequence heuristic is a generalisation of the move heuristic. It performs
the same task but on a larger set of nodes. It was introduced for the case of the SBH,
where the solution consists of many subsequences of good quality which are merged
into a final sequence.

5.7 Revert heuristic

Input:
pos—a position in the sequence which is a first node in the subsequence
pos2—a position in the sequence which is the last node in the subsequence

This heuristic reverts the subsequence given by two nodes which are at positions
pos and pos2. Assuming that pos < pos2, a node at position pos is swapped with
node at position pos2, then node at position pos + 1 is swapped with node at position
pos2 — 1, etc.

5.8 Remove highest arc in the solution heuristic

This heuristic looks for the highest arc in the sequence and replaces it with the one
that improves the solution quality best. This is valid for all problems that use the
matrix D to store a graph of distances between nodes. However, for the knapsack
problem it has no effect and the solution is not changed. This heuristic is still problem
independent, because it looks into the relation between the input data rather then the
problem characteristics.

@ Springer

582 A. Swiercz et al.

6 Computational experiments

The performance of the proposed approach can be analyzed from two points of view.
First, a comparison to meta heuristic approaches for the SBH problem was made.
Next, a comparison of different hyper-heuristic algorithms was investigated. The per-
formance was measured as the distance of the result to the known optimal value
expressed as a percentage.

6.1 Data set

To test any algorithm, a benchmark data set is required. Each problem is “similar” to
another with respect to the used variables. However, their values are different and have
different meanings. Thus, it is good practice to provide a set of instances crafted for a
given problem domain. The used benchmark sets contain the known optimal value of
the instances, which is beneficial for measuring the performance of algorithms.

— SBH—data used for SBH comes from (Blazewicz et al. 2006a). The optimal value
is equal to the number of 1-mers in instance minus positive errors count.

— TSPLib (inp, 1995)—this data set contains a large number of TSP instances. This
benchmark was used for the classic TSP and BTSP. It provides optimum values
for the first problem, but for reference on the second problem the instances from
(Ramakrishnan et al. 2009; Larusic et al. 2012; Ahmed 2010) were used.

— UKP (inp, 2005)—this data set contains some knapsack instances with optimal
values and the package also contains an instance generator.

— PCTSP—data used for this problem comes from (Chaves and Lorena 2008) in
which a CPLEX method was used to get the optimal values.

All tests were conducted on a PC with Intel Xeon 2.33 GHz processor and 2,048 MB
of physical memory, running openSUSE 11.4 operating system. The algorithms were
implemented in Java, compiled and run in the JRE 6 Update 29 and were given a S min
computation time.

6.2 Parameter tuning

The hyper-heuristic framework presented in this paper has a lot of parameters. The
set of configurable input data consists of general, hyper-heuristic algorithm and low
level heuristics parameters. The general category defines the stop condition, the hyper-
heuristic algorithm and the set of low level heuristics which should be used to perform
the search. As we mentioned in Sect. 6.1 we terminate the search after Smin. All
hyper-heuristics were tested in computational experiments and the set of low level
heuristics contained all heuristics described in Sect. 5.

For each low level heuristic we can estimate the number of neighboring solutions
by calculating the number of possible permutations. To search as many solutions as
possible within the given amount of time we set the number of “inner iterations”
(iterations made by low level heuristics itself to look for best neighborhood) to 5 % of

@ Springer

Unified encoding for hyper-heuristics 583

all permutations or 100 iterations, whichever is smaller. With larger values we can get
better local results, but this will take much more time.

To decide on parameters for hyper-heuristic algorithms, we performed initial com-
putational experiment on small instances. The ranked-choice ranking length was set
to 3 heuristics. Lower values make it similar to straight-choice and higher values often
make one low-level heuristic superior above others. The tabu tenure was set to 4,
because higher values would make it similar to round robin algorithm which leads to
non-improving iterations. The initial temperature for simulated annealing was set to
0.015 with 13 iterations of cooling. The parameters « and 8 were set to 0.5, while y
was set to 10 and 1 was set to 0.1. Those parameters were picked in initial compu-
tational experiment with decomp-choice hyper-heuristics, because it is not dependent
on any other factor.

6.3 Unified encoding applied to the SBH problem

We compare our proposed unified encoding approach with other methods dedicated
to the SBH problem (Blazewicz et al. 2004, 2011). We used a set of instances from
Blazewicz et al. (2006a). The dataset contains three different sizes of input set of 1-
mers (/ was equal to 10). These I-mers were subfragments of original DNA sequences
of length 200, 400 and 600, thus the size of the input sets was equal to 191, 391 and
591, respectively. The input set contained 5 % or 20 % error rate. 5 % error rate means
that there are 5 % of negative errors (missing I-mers) and 5 % of positive errors (I-mers
which do not occurred in the original sequence, but for some reason were detected
during the biochemical experiment).

Table 1 contains the result of the computational experiments of all methods. We
used the same simulated annealing hyper-heuristic as in Blazewicz et al. (2011), but
provided it with our unified encoding and the set of low level heuristics. We also
compared the ranked-choice hyper-heuristics. Two different measures were used to
evaluate the algorithms. ’Avg. usage’ is the percentage of 1-mers from the spectrum
used to construct the solution including only l-mers from original sequence, i.e. with-
out positive errors. *Alignment’ is a measure used by biologists, because the most
important thing for them is the similarity of the solution to the original sequence. It
is calculated with the Needelman—Wunsch algorithm (Needleman and Wunsch 1970)
after the computation, 100 % means that the sequences are identical.

The algorithms compared in the table have different levels of generalization. The
tabu and scatter search (Blazewicz et al. 2004) is a meta heuristic algorithm tailored
to solve the SBH problem. The simulated annealing hyper-heuristic from Blazewicz
et al. (2011) is using a set of low level heuristics which are specially crafted for the
SBH problem and it uses information about the problem domain—e.g. the algorithm
gets better results by clustering the 1-mers into longer sequences and then combining
them together. With the proposed approach we use the same simulated annealing
hyper-heuristic as a top level algorithm, but the set of low level heuristics is problem
independent. The ranked-choice hyper-heuristic is also included in the comparison to
present that it is capable of solving SBH problem. Those last two algorithms are using
unified encoding and thus do not use any characteristics of problem domain.

@ Springer

584 A. Swiercz et al.

Table 1 The results of the tests of different algorithms for biological dataset

Instance 200 400 600

5% 20% 5% 20% 5% 20%

Unified encoding + ranked-choice hyper-heuristics

Avg. usage (%) 96,69 98.36 95.01 97.60 96.08 92.48
Alignment (%) 92.86 94.66 86.55 85.05 86.03 74.09
Unified encoding + simulated annealing hyper-heuristics

Avg. usage (%) 97.79 96.38 97.17 98.88 98.84 92.27
Alignment (%) 94.63 89.95 90.47 90.58 93.84 73.33
Simulated annealing hyper-heuristics (Blazewicz et al. 2011)

Avg. usage (%) 99.81 99.64 99.83 98.93 99.66 98.20
Alignment (%) 98.06 91.48 95.69 82.00 93.25 74.18
Tabu and scatter search meta heuristics (Blazewicz et al. 2004)

Avg. usage (%) 99.93 99.93 99.90 99.67 99.84 99.36
Alignment (%) 99.87 98.44 98.96 95.70 95.82 88.50

Input datasets are created from DNA sequences which do not contain repetitions of I-mers. In the first row
there is the length of the examined sequence, next is the percentage of errors in the spectrum. Each entry in
rows 'Avg. usage’ and *Alignment’ is the mean value across 40 instances

Obviously, with more generalization, one tends to obtain worse solutions. It is worth
noting though, that the average usage of I-mers is comparable to the usage obtained
by other algorithms, they differ by average of 2 %. In contrast, the alignment of the
resulting sequences is not as good in comparison to other methods. However, it has
to be stressed here that even for the ideal experiment it is possible to obtain different
sequences from the same number of I-mers. With the increase of errors, the probability
that for high usage the alignment is not satisfactory increases. There are a few instances
for which the proposed new method allowed to obtain the original DNA sequence, i.e.
the value of the alignment was equal to 100 %.

The proposed set of low level heuristics was very simple. It is highly possible that
with more complex low level heuristics, which will still be problem independent, one
could get even better results. The heuristics should have an impact on the search—
either they should intensify the search by finding better combinations or diversify it
by destroying good solutions.

6.4 Unified encoding performance for combinatorial problems

To compare different hyper-heuristics, we performed extensive tests on available
benchmarking sets and calculated the distance to the optimal value (or reference value
in the case of BTSP). For example, if the result is 25 % it means that the solution we
obtained is 125 % of the optimum value, e.g. if the optimum is 100 then the obtained
solution value is 125.

Figures 4 and 5 present the results of those experiments. The obtained performance
for most domains is quite good if we take into account the amount of time spent on

@ Springer

Unified encoding for hyper-heuristics 585

20,00%
18,00% m decomp-choice
M ranked-choice
16,00% M roulette-choice
14,00% simulated-annealing
M straight-choice
AR M tabu-search
10,00% = weighted-simulated-annealing

8,00%

sbh sbh-additive tsp knapsack

Fig. 4 Comparison of different hyper-heuristic algorithms. The colors present different hyper-heuristics.
On the Y axis is the distance to the optimum value in %. Sbh-additive is enhanced objective function which
allows to better differentiate solutions of the same number of 1-mers

450,00%

400,00%

350,00%

300,00%

250,00% -

200,00% -
150,00% -
100,00% -

50,00%

0,00% -
btsp pctsp

M decomp-choice M simulated-annealing 1 weighted-simulated-annealing
1% ranked-choice W straight-choice

M roulette-choice tabu-search

Fig. 5 Comparison of different hyper-heuristic algorithms. The colors present different hyper-heuristics.
On the Y axis is the distance to the optimum value in %. For BTSP, a reference value was used

@ Springer

586 A. Swiercz et al.

computing. In most cases the ranked-choice and decomp-choice hyper-heuristics per-
formed best. For the knapsack problem, the SBH problem and the TSP, the proposed
unified encoding used with one of those two hyper-heuristics gave results which dif-
fered on by at most 5 % from the optimum, even though these problems are of different
type.

On the other hand, it did not cope well with the BTSP and the PCTSP. The first
problem is particularly hard, because the objective value does not change continuously
and there are many solutions with the same value which are hard to distinguish. There
is potential in overcoming this issue by providing an objective function that will
distinguish the solutions in a better fashion.

In contrast, the PCTSP is much more diverse, but the set of low level heuristics was
not enough to solve it effectively. However, the ranked-choice and decomp-choice
hyper-heuristics clearly reduced the usage of ineffective low level heuristics from the
set and obtained better results then other algorithms. This leads to a conclusion that
even though the low level heuristics are problem independent, they have significant
influence on the search effectiveness.

7 Conclusions

In this paper, we have proposed a unified encoding for the hyper-heuristic approach,
which should provide an easier way to address different combinatorial problems. We
introduced more generalization (problem independency) by employing the unified
encoding and using a set of low level heuristics which are specific to that encoding
rather than to the particular problem domain. The off-the-peg solution that will simplify
the solution procedure even when compared to a standard hyper-heuristic approach
is desirable, because one does not need to analyze the problem characteristics to
create sophisticated algorithms or low level heuristics and yet we can still generate
approximate solutions that are good enough. To solve a new problem the user has to
define the objective function which will be optimized and eventually change the input
parameters of the methods used within the framework.

However, the set of low heuristics could be extended to exploit more complex
operations, although the basic set provided for the testing purposes gave surprisingly
good results, especially when we introduced the move sequence, revert sequence and
remove arc heuristics. From the tested hyper-heuristics, the simulated annealing hyper-
heuristic and ranked-choice hyper-heuristic are the most promising as they enable
intensification and diversification of the search procedure by using low level heuristics
which decreases the objective value for different problem domains. When compared
to some meta heuristic implementations and standard hyper-heuristics, the proposed
unified encoding performed well, but by introducing more low level heuristics (to
get better coverage of the solution space) it is possible to obtain even better results.
It would be interesting to investigate both the behavior and the usage of the low
level heuristics bound to the unified encoding for different problem domains and to
define characteristics of those problems to better understand their nature. Also, it
could be interesting to investigate other hyper-heuristics and see if any of them gives
significantly better results.

@ Springer

Unified encoding for hyper-heuristics 587

Acknowledgments This research project was partially supported by Grant no. DEC-2011/01/B/ST6/07021
and Grant no. DEC-2012/05/B/ST6/03026 from the National Science Centre, Poland.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

Aarts E, Korst J, Michiels W (2005) Simulated annealing. In: search methodologies: introductory tutorials
in optimization and decision support, techniques, pp 187-210

Ahmed ZH (2010) A lexisearch algorithm for the bottleneck traveling salesman problem. Int J Comput Sci
Secur 3(6):569-577

BaiR, Kendall G (2005) An investigation of automated planograms using a simulated annealing based hyper-
heuristic. In: Metaheuristics: progress as real problem solvers operations research/computer science
interfaces series, vol 32, pp 87-108

Blazewicz J, Kaczmarek J, Kasprzak M, Markiewicz W, Weglarz J (1997) Sequential and parallel algorithms
for DNA sequencing. CABiOS 13:151-158

Blazewicz J, Formanowicz P, Guinand F, Kasprzak M (2002) A heuristic managing errors for DNA sequenc-
ing. Bioinformatics 18:652-660

Blazewicz J, Kasprzak M (2003) Complexity of DNA sequencing by hybrydization. Theor Comput Sci
290:1459-1473

Blazewicz J, Glover F, Kasprzak M (2004) DNA sequencing—tabu and scatter search combined. INFORMS
J Comput 16(3):232-240

Blazewicz J, Glover F, Swiercz A, Kasprzak M, Markiewicz W, Oguz C, Rebholz-Schuhmann D (2006a)
Dealing with repetitions in sequencing by hybridization. Comput Biol Chem 30(5):313-320

Blazewicz J, Oguz C, Swiercz A, Weglarz J (2006b) DNA sequencing by hybridization via genetic search.
Oper Res 54:1185-1192

Blazewicz J, Burke EK, Kendall G, Mruczkiewicz W, Oguz C, Swiercz A (2011) A hyper-heuristic
approach to sequencing by hybridization of DNA sequences. Ann Oper Res, pp 1-15. doi:10.1007/
s10479-011-0927-y

Bui T, Youssef W (2004) An enhanced genetic algorithm for DNA sequencing by hybrydization with
positive and negative errors. Lect Notes Comput Sci 3103:908-919

Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Ozcan E, Qu R (2013) Hyper-heuristics: a survey
of the state of the art. Journal of the Operational Research Society (10 July 2013), Palgrave Macmillan

Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Woodward JR (2010) A classification of hyper-
heuristic approaches. In: Gendreau M, Potvin JY (eds) Handbook of meta-heuristics, vol 146. Springer,
International series in operations research and management science, pp 449-468

Burke EK, Kendall G, Soubeiga E (2003b) A tabu-search hyperheuristic for timetabling and rostering.
J Heuristics 9:451-470

Burke EK, McCollum B, Meisels A, Petrovic S, QuR (2007) A graph-based hyper-heuristic for timetabling
problems. Eur J Oper Res 176:177-192

Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003a) Hyper-heuristics: an emerging
direction in modern search technology. In: Handbook of metaheuristics, international series in operations
research and management science, vol 57. Springer, New York, chap 16, pp 457-474. doi:10.1007/
0-306-48056-5_16

Chaves AA, Lorena LAN (2008) Hybrid metaheuristic for the prize collecting travelling salesman prob-
lem. In: Proceedings of the 8th European conference on evolutionary computation in combinatorial
optimization. Springer-Verlag, Berlin, Heidelberg, EvoCOP’08, pp 123—134. http://dl.acm.org/citation.
cfm?id=1792634.1792645

Cichowicz T, Drozdowski M, Frankiewicz M, Pawlak G, Rytwinnski F, Wasilewski J (2012) Five phase and
genetic hive hyper-heuristics for the cross-domain search. In: Lecture notes in computer science 7219.
Springer 2012, pp 354-359

Cichowicz T, Drozdowski M, Frankiewicz M, Pawlak G, Rytwinnski F, Wasilewski J (2012) Hyper-
heuristics for cross-domain search. In: Bulletion of the Polish Academy of Sciences. Technical Sciences
60(4):801-808

@ Springer

http://dx.doi.org/10.1007/s10479-011-0927-y
http://dx.doi.org/10.1007/s10479-011-0927-y
http://dx.doi.org/10.1007/0-306-48056-5_16
http://dx.doi.org/10.1007/0-306-48056-5_16
http://dl.acm.org/citation.cfm?id=1792634.1792645
http://dl.acm.org/citation.cfm?id=1792634.1792645

588 A. Swiercz et al.

Cowling P, Kendall G, Soubeiga E (2001) A hyperheuristic approach to scheduling a sales summit. In:
PATAT ’°00: selected papers from the third international conference on practice and theory of automated
timetabling III. Springer-Verlag, London, UK, vol 2079, pp 176-190. http://portal.acm.org/citation.cfm?
id=646431.692903

Cowling P, Kendall G, Soubeiga E (2002a) Choice function and random hyperheuristics. In: Proceedings
of the fourth Asia-Pacific conference on simulated evolution and learning, SEAL, Springer, pp 667-671

Cowling P, Kendall G, Soubeiga E (2002b) Hyperheuristics: a tool for rapid prototyping in scheduling and
optimisation. In: Proceedings of the applications of evolutionary computing on EvoWorkshops 2002:
EvoCOP, EvolASP, EvoSTIM/EvoPLAN, Springer-Verlag, London, UK, pp 1-10. http://dl.acm.org/
citation.cfm?id=645407.652005

Croes GA (1958) A method for solving traveling-salesman problem. In: Operations Research. INFORMS
6:791-812

Dowsland KA (1998) Off-the-peg or made-to-measure? Timetabling and scheduling with SA and TS.
In: Selected papers from the second international conference on practice and theory of automated
timetabling II. Springer-Verlag, London, UK, PATAT °97, pp 37-52. http://dl.acm.org/citation.cfm?
id=646430.692896

Dowsland K, Soubeiga E, Burke EK (2007) A simulated annealing hyper-heuristic for determining shipper
sizes. Eur J Oper Res 179:759-774

Dramanac R, Labat I, Brukner I, Crkvenjakov R (1989) Sequencing of megabase plus DNA by hybrydiza-
tion: theory of the method. Genomics 4:114-128

Gendrau M, Potvin JY (2005) Tabu search. In: Search methodologies: introductory tutorials in optimization
and decision support, techniques, pp 165-186

Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Norwell

Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW (eds) Proceedings
of a symposium on the complexity of computer computations, the IBM research symposia series. Plenum
Press, New York, pp 85-103

Kendall G, Hussin NM (2005) A tabu search hyper-heuristic approach to the examination timetabling
problem at the MARA University of Technology. Lect Notes Comput Sci 3616:270-293

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science, Number
4598(13), May 1983, 20, 4598:671-680. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.
4175

Larusic J, Punnen AP, Aubanel E (2012) Experimental analysis of heuristics for the bottleneck traveling
salesman problem. J Heuristics 18(3):473-503

Lysov LP, Florent’ev VL, Khorlin AA, Khrapko KR, Shik VV (1988) Determination of the nucleotide
sequence of DNA using hybridization with oligonucleotides. A new method. In: Doklady Akademii
nauk SSSR, vol 303:1508-1511

Mersmann O, Bischl B, Bossek J, Trautmann H, Wagner M, Neumann F (2012) Local search and the
traveling salesman problem: a feature-based characterization of problem hardness. In: Learning and
Intelligent Optimization conference, Microsoft Technology Center, Paris

Mruczkiewicz W (2009) Hyper-heuristics for Sequencing by Hybridisation Problem. Master’s thesis,
Poznan University of Technology, Poznan, Poland

Needleman SB, Wunsch CD (1970) A general method applicable to search for similarities of the amino
acid sequence of two proteins. J Mol Biol 48:443-453

Ozcan E, Bilgin B, Korkmaz EE (2008) A comprehensive analysis of hyper-heuristics. Intell Data Anal
12(1):3-23. http://dl.acm.org/citation.cfm?id=1368027.1368029

Pevzner PA (1989) I-tuple DNA sequencing: computer analysis. J Biomol Struct Dyn 7(1):63-73

Ramakrishnan R, Sharma P, Punnen A (2009) An efficient heuristic algorithm for the bottleneck traveling
salesman problem. OPSEARCH 46:275-288. doi:10.1007/s12597-009-0018-x

Rice JR (1976) The algorithm selection problem. In: Rubinoff M, Yovits MC (eds) Advances in computers,
vol 15, Elsevier, pp 65-118. doi:10.1016/S0065-2458(08)60520-3

Ross P (2005) Hyper-heuristics. In: Search methodologies: introductory tutorials in optimization and deci-
sion support, techniques, pp 529-556

Ross P, Marin-Bldzques JG, Schulenburg S, Hart E (2003) Learning a procedure that can solve hard bin-
packing problems: a new GA-based approach to hyper-heuristics. In: Proceedings of the genetic and
evolutionary computation conference, pp 1295-1306

Smith-Miles K, Lopes L (2012) Measuring instance difficulty for combinatorial optimization problems.
Comput Oper Res 39(5):875-889. doi:10.1016/j.cor.2011.07.006

@ Springer

http://portal.acm.org/citation.cfm?id=646431.692903
http://portal.acm.org/citation.cfm?id=646431.692903
http://dl.acm.org/citation.cfm?id=645407.652005
http://dl.acm.org/citation.cfm?id=645407.652005
http://dl.acm.org/citation.cfm?id=646430.692896
http://dl.acm.org/citation.cfm?id=646430.692896
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.4175
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.4175
http://dl.acm.org/citation.cfm?id=1368027.1368029
http://dx.doi.org/10.1007/s12597-009-0018-x
http://dx.doi.org/10.1016/S0065-2458(08)60520-3
http://dx.doi.org/10.1016/j.cor.2011.07.006

Unified encoding for hyper-heuristics 589

Southern E (1988) United Kingdom Patent Application GB8810400
TSP Lib Benchmark (1995) [on-line] http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
UKP Knapsack Benchmark (2005) [on-line] http://download.gna.org/pyasukp/

@ Springer

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://download.gna.org/pyasukp/

	Unified encoding for hyper-heuristics with application to bioinformatics
	Abstract
	1 Introduction
	2 Combinatorial problems formulation
	2.1 Sequencing by hybridization
	2.2 The traveling salesman problem
	2.3 Bottleneck traveling salesman problem
	2.4 The prize collecting traveling salesman problem
	2.5 The knapsack problem

	3 Hyper-heuristic approaches
	3.1 How hyper-heuristics work
	3.2 Choice function
	3.2.1 Straight choice
	3.2.2 Ranked choice
	3.2.3 Decomp choice
	3.2.4 Roulette choice

	4 Unified encoding approach
	4.1 Problem domains and their respective representation
	4.2 Representing the sequencing by hybridization problem
	4.3 Representing the traveling salesman problem
	4.4 Representing the bottleneck traveling salesman problem
	4.5 Representing the prize collecting traveling salesman problem
	4.6 Representing the knapsack problem

	5 Low level heuristics
	5.1 Insert heuristic
	5.2 Remove heuristic
	5.3 Move heuristic
	5.4 Swap heuristic
	5.5 Replace heuristic
	5.6 Move sequence heuristic
	5.7 Revert heuristic
	5.8 Remove highest arc in the solution heuristic

	6 Computational experiments
	6.1 Data set
	6.2 Parameter tuning
	6.3 Unified encoding applied to the SBH problem
	6.4 Unified encoding performance for combinatorial problems

	7 Conclusions
	Acknowledgments
	References

