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Abstract
One-hundred Polish soldiers of a contingent in Afghanistan in 2019 were screened for Enterobacterales resistant to newer-
generation β-lactams at their departure and return. Seventeen percent were colonized in the gut at the departure, whereas 
70% acquired carriage in Afghanistan. The commonest organisms were extended-spectrum β-lactamase (ESBL)-producing 
Escherichia coli (ESBL-Ec; 96.6%). All isolates were sequenced and were clonally diverse overall, even within the same 
sequence type, indicating that independent acquisitions mainly. ESBL-Ec were often multi-drug-resistant. Soldiers station-
ing in certain regions are at high risk of acquiring resistant bacteria that may cause endogenous infection, be transmitted to 
vulnerable individuals, and spread resistance genes.
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Introduction

Polish soldiers have been participating in international mis-
sions in different countries, often in world regions of broad 
dissemination of antimicrobial-resistant (AMR) pathogens, 
such as extended-spectrum β-lactamase (ESBL)-producing 
Enterobacterales [1–4]. Staying in such areas has been 
shown to be of increased risk of gut colonization with 
these. For example, around 75%, 49%, and 43% of Dutch 
travelers to Southern, Central-Eastern, and Western Asia, 
respectively, acquired such organisms, most often ESBL-
producing Escherichia coli (ESBL-Ec) with the CTX-M-15 
enzyme [2]. The percentage of ESBL (CTX-M-15)-Ec carri-
ers among French soldiers stationing in Afghanistan for one 
year was 34.5% [5]; however, research on AMR pathogens 

in military contingents has been scarce so far. Various fac-
tors may specifically facilitate acquisition of pathogens in 
such populations, including gathering for prolonged periods, 
shared social areas of limited size, common sources of food 
and water, and/or lower sanitary standards in the field and 
combat conditions.

The E. coli intestinal carriage is a significant source of 
endogenous infection [3, 6–10], and diseases caused by 
ESBL-Ec strains are difficult to treat because of their usual 
multi-drug-resistance (MDR) [3, 4, 9, 11–13]. The global 
increase in the ESBL-Ec occurrence, raising serious clini-
cal and epidemiological concern, has been largely due to 
horizontal ESBL gene transmission and/or clonal spread [3, 
9, 12], the latter often associated with specific MDR clones, 
like E. coli ST131 [14]. ESBLs have been the main factor of 
enterobacterial resistance to expanded-spectrum β-lactams 
(cephalosporins), followed by acquired AmpC-like cephalo-
sporinases and, recently, carbapenemases [15]. Our aim was 
to investigate the intestinal carrier status and characteristics 
of Enterobacterales resistant to newer β-lactams isolated 
from Polish soldiers of a contingent in Afghanistan.
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Materials and methods

From June to November 2019, 295 Polish soldiers served 
in Afghanistan, 100 of whom, without any symptoms of 
illness, were tested both before and after the 6-month stay. 
Their stool samples were inoculated on chromID™ ESBL, 
CHROMID® Carba and CHROMID® OXA-48 media 
(bioMérieux, Marcy l’Etoile, France). Subsequently, bac-
terial isolates (1–4 per sample) were screened for ESBL 
and AmpC production, using the ESBL double-disk syn-
ergy test (including cefepime disk) [16], followed by PCRs 
for the detection of various ESBL or AmpC genes [17]. 
Carbapenemase activity was assessed by the CIM assay 
[18]. Species were identified using Vitek 2 (bioMérieux).

All of the 90 ESBL/AmpC-producing isolates (E. coli 
and Klebsiella pneumoniae) were subjected to short-read 
whole-genome sequencing (WGS) by Illumina HiSeq 
platform (Illumina, San Diego, CA, USA), with reads 
assembled as previously reported [19]. E. coli isolates 
were phylogrouped [20] using the Clermont Typer web 
interface at CATIBioMed (http:// clerm ontyp ing. iame- 
resea rch. center/). Multi-locus sequence typing (MLST) 
of E. coli [21] and K. pneumoniae [22] was performed 
using mlst (https:// github. com/ tseem ann/ mlst) and 
BIGSdb [23], respectively. New E. coli sequence types 
(STs) were assigned at https:// enter obase. warwi ck. ac. uk/ 
speci es/ index/ ecoli. The single-nucleotide polymorphism 
(SNP)-based analysis was done for E. coli with BioNu-
merics v.7.6.3 (Applied Maths NV, Sint-Martens-Latem, 
Belgium), using selected sample isolates as references. 
Resistomes were revealed with ResFinder v. 4. 1 (https:// 
cge. cbs. dtu. dk/ servi ces/ ResFi nder/), with 100% coverage 
and > 98% identity criteria. Susceptibility testing was 
performed using the in-house broth microdilution (BMD) 
assay and BMD commercial Micronaut MDR MRGN 
plates (Bruker Daltonics, Bremen, Germany). The results 
were interpreted based on EUCAST (http:// eucast. org) or 
CLSI (doxycycline; http:// clsi. org) breakpoints.

Results

Of the 100 soldiers screened, 17 were colonized with 
ESBL-Ec (14 CTX-M-15) in June 2019, before leaving 
for Afghanistan (Table 1). At the end of the mission in 

November, 73 soldiers tested positive, comprising 12/17 
carriers at the departure. The November organisms con-
tained 70 ESBL-Ec (66 CTX-M-15, including five with 
DHA-1 AmpC), one AmpC-Ec (CMY-42), and two ESBL-
producing K. pneumoniae (CTX-M-15). All isolates tested 
carbapenemase-negative.

All but one of the 17 June ESBL-Ec isolates belonged 
to the commensal phylogroups A (n = 12) or B1 (n = 4) 
and represented nine STs (Table 2). A cluster of six phylo-
group A CTX-M-15-producing ST515 isolates (0-2 SNPs 
between each other) was notable, like two indistinguish-
able B1 ST156 isolates with CTX-M-27. Of the 12 soldiers 
colonized both in June and November, three had the same 
or almost the same organism, suggesting the remaining 70 
November isolates, mostly ESBL-Ec (n = 67; 95.7%), to 
have been acquired possibly in Afghanistan. A half of the 
ESBL/AmpC-Ec (n = 36; 51.4%) represented the more 
pathogenic phylogroups D (n = 27) and B2 (n = 9), and 
38 STs overall, with more numerous ST10 (phylogroup A), 
ST131 (B2) and ST394 (D) (n = 8; 11.4% each), and ST69 
(D) (n = 7; 10%). Only four pairs of November ESBL-Ec 

Table 1  Frequency and types of organisms isolated from the intesti-
nal colonization of 100 Polish soldiers of the contingent in Afghani-
stan, June–November 2019

a 3/100 tested soldiers had the same or almost the same CTX-M-
15-producing isolates in June and November; these were not included 
in the final analysis for November

June
n (%)

November
n (%)

Soldiers, MDR Enterobacterales carriers 17 (17.0) 70 +  3a (70.0)
ESBL 17 (17.0) 69 +  3a (69.0)
AmpC 1 (1.0)
β-lactamase producers 17 70 +  3a

ESBL-Enterobacterales 17 (100.0) 69 +  3a (98.6)
AmpC-Enterobacterales 1 (1.4)
ESBL-Ec 17 (100.0) 67 +  3a (95.7)
E. coli CTX-M-1 gr 15 (88.2) 66 +  3a (94.3)
 E. coli CTX-M-15 14 (82.4) 58 +  3a (82.9)
 E. coli CTX-M-15 + DHA-1 5 (7.1)
 E. coli CTX-M-1 1 (5.9)
 E. coli CTX-M-231 3 (4.3)
K. pneumoniae CTX-M-15 2 (2.9)
E. coli CTX-M-9 gr (CTX-M-27) 2 (11.8) 1 (1.4)
E. coli CMY-2-like (CMY-42) 1 (1.4)

http://clermontyping.iame-research.center/
http://clermontyping.iame-research.center/
https://github.com/tseemann/mlst
https://enterobase.warwick.ac.uk/species/index/ecoli
https://enterobase.warwick.ac.uk/species/index/ecoli
https://cge.cbs.dtu.dk/services/ResFinder/
https://cge.cbs.dtu.dk/services/ResFinder/
http://eucast.org
http://clsi.org
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(including ST69 and ST394) and the two K. pneumoniae 
isolates were closely related to each other within the pairs 
(0–13 SNPs). In three other ESBL-Ec pairs (ST10, ST69 
and ST131), the genetic relatedness was clear (39–56 
SNPs), though not necessarily indicative of direct epide-
miological links.

The ESBL-Ec strains (June plus November) were 
characterized by β-lactam susceptibility patterns typi-
cal for ESBL producers (Table 3), with almost 100% 
resistance and/or “susceptibility increased exposure” to 
penicillins, cephalosporins, and aztreonam. Otherwise, 
all isolates were susceptible in  vitro to piperacillin-
tazobactam, ceftolozane-tazobactam, ceftazidime-avi-
bactam, and carbapenems. Regarding non-β-lactams, 
broader resistance/“susceptibility increased exposure” 
was observed for f luoroquinolones, doxycycline, tri-
methoprim, and co-trimoxazole. Aminoglycosides, tige-
cycline, fosfomycin, nitrofurantoin, and colistin were 
active against most of the isolates.

The resistome analysis of the ESBL-Ec strains revealed 
various mobile AMR genes (Table 4), which with specific 
chromosomal mutations corresponded well to the suscep-
tibility patterns. Along with genes of β-lactamases men-
tioned above, multiple quinolone resistance determinants 
were common, including combinations of mutations in 
the chromosomal gyrA and/or parC/E genes, and acquired 
qnrB/S-like genes. Doxycycline, trimethoprim, and sul-
famethoxazole resistance correlated with tet(A), dfr-, and 
sul-like genes, respectively. The isolates carried various 
genes of aminoglycoside-modifying enzymes; however, 
those conferring resistance to clinically-relevant drugs, 

namely, amikacin, gentamicin, and tobramycin (e.g., 
aac(3)-IId; aac(6')-Ib-cr), were rare.

Discussion

Our analysis revealed the 70% rate of acquisition of 
ESBL/AmpC Enterobacterales by a group of Polish sol-
diers stationing in Afghanistan in 2019. Despite some 
methodological differences between the studies, this 
high percentage doubled the 34.5% reported for French 
soldiers in Afghanistan in 2011 [5], but was similar to 
the 75% rate of ESBL-Ec acquisition by Dutch citizens 
travelling in 2012–2013 to the South Asia region, com-
prising the Afghanistan territory [2]. The notable 17% 
carriage rate at the departure is difficult to comment 
because the data on the ESBL-Ec colonization in Pol-
ish community has been scarce. A study performed in 
2015–2017 in several North European countries included 
86 individuals (e.g., primary care patients) from Poland, 
8% of whom were colonized [24], comparably to Swed-
ish citizens (6.6%) in the same analysis, or to German 
population (6.3%) in another work [25]. The notably 
higher rate in the soldiers might have been due to their 
clustering within units, including increased risk of com-
mon exposure to contaminated food or environment. 
Only 3/17 “pre-colonized” soldiers came back with the 
same ESBL-Ec from Afghanistan, nine had other organ-
isms, and five were negative, which corresponded well 
to recent reports on high dynamics of the ESBL-Ec car-
riage in travelers to the “ESBL broad- dissemination” 

Table 2  Phylogroups and STs of 87 ESBL-Ec

Phylogroup June (n = 17) November (n = 70)

n (%) ST (n) n (%) ST (n)

A 12 (70.6) ST515 (6), ST10 (2), ST43 (2), 
ST34 (1), ST746 (1)

23 (32.9) ST10 (8), ST226 (2), ST6438 (2), ST14267 (2), ST34 (1), ST46 (1), 
ST165 (1), ST227 (1), ST450 (1), ST515 (1), ST746 (1), ST757 
(1), ST8676 (1)

B1 4 (23.5) ST156 (2), ST155 (1), ST1795 (1) 10 (14.3) ST29 (1), ST99 (1), ST156 (1), ST162 (1), ST336 (1), ST616 (1), 
ST1136 (1), ST12313 (1), ST11978 (1), ST12637 (1)

B2 9 (12.9) ST131 (8), ST636 (1)
D 1 (5.9) ST405 (1) 27 (38.6) ST394 (8), ST69 (7), ST349 (2), ST405 (2), ST14268 (2), ST38 (1), 

ST70 (1), ST362 (1), ST2076 (1), ST2914 (1), ST6326 (1)
Clade I 1 (1.4) ST3042 (1)
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regions [26, 27]. Moreover, the only three cases of 
longer-term ESBL-Ec persistence were concordant with 
the data on rather short duration of the travel-acquired 
colonization, with a median of 1–3 months [26, 28, 29].

The 90 ESBL/AmpC organisms from 78 individu-
als were sequenced. The predominance of ESBL-Ec 
(~ 96.6%), and the high prevalence of the CTX-M-15 
enzyme (~ 94.3%) were congruent with multiple data 
sets on the general community and, especially, travel-
ers to the “ESBL broad-dissemination” areas [2, 5, 24, 
25, 27, 29–31]. Our study showed several cases of the 
occurrence of the same organism in different soldiers, 
including the cluster of six E. coli ST515 CTX-M-15 at 
the departure, and five pairs of E. coli or K. pneumoniae 
CTX-M-15 at return. These evidenced either transmis-
sion of bacteria between the individuals or their acquisi-
tion from a common contaminated source. However, the 
overall high clonal diversity of the organisms indicated 
their vast majority to have been acquired independently 
by the participants of the military contingent.

The ESBL/AmpC-Ec diversity was demonstrated by 
classification of the 17 departure and 70 return isolates 
into nine and 38 STs, respectively, and by limited or no 
relatedness between most of the isolates of the same 
ST. The more frequent STs among the return isolates 
included the ubiquitous commensal ST10 and common 
pathogenic ST69 and ST131 lineages [14, 32]. However, 
the ~11% contribution of ST131 was much lower than in 
community-acquired and healthcare-associated ESBL-Ec 
infections [33, 34], as well as carriage in hospitalized 
patients [17]. Studies on ESBL-Ec colonizing travelers to 
the “ESBL broad-dissemination” regions usually showed 
their clonal diversity and unique ST distributions, with 
limited ST131 incidence [27, 30, 35, 36].

Military contingents in some regions of the world have 
been at increased risk of colonization with AMR micro-
organisms, especially ESBL-Ec. Even though all of the 
carriers identified in our study were healthy individuals, 
they might also transmit these to vulnerable subjects in 
their habitats after return, creating so a significant epi-
demiological threat.

Table 3.  Antimicrobial susceptibility of the 87 ESBL-Ec isolated 
from soldiers in June and November

a Abbreviations: AMX amoxicillin, AMC amoxicillin/clavulanic acid, 
SAM ampicillin/sulbactam, PIP piperacillin, TZP piperacillin/tazo-
bactam, TEM temocillin, CXM cefuroxime, CTX cefotaxime, CAZ 
ceftazidime, CZA ceftazidime/avibactam, FEP cefepime, CTA  cef-
tolozane/tazobactam, ATM aztreonam, ETP ertapenem, IPM imi-
penem, MEM meropenem, AMK amikacin, GEN gentamicin, TOB 
tobramycin, CIP ciprofloxacin, LEV levofloxacin, DOX doxycycline, 
TGC  tigecycline, TRM trimethoprim, SXT trimethoprim/sulfamethox-
azole, FUR nitrofurantoin, FOS fosfomycin, CMP chloramphenicol, 
COL colistin
b The in-house BMD assay included: AMX, AMC, SAM, TEM, 
CXM, FEP, ATM, ETP, GEN, TOB, DOX, TRM, and FUR. The 
Micronaut MDR MRGN assay contained PIP, TZP, CTX, CAZ, 
CZA, CTA, IPM, MEM, AMK, CIP, LEV, TGC, SXT, FOS, CMP, 
and COL
c Susceptible increased exposure
d CTX, MEM, CIP–MIC interpretation for indications other than men-
ingitis
e FOS: interpretation for the iv formulation

Antimicrobialsa,b R
n (%)

Ic

n (%)
S
n (%)

AMX 87 (100.0)
AMC 19 (21.8) 68 (78.2)
SAM 40 (46.0) 47 (54.0)
PIP 87 (100.0)
TZP 87 (100.0)
TEM 87 (100.0)
CXM 87 (100.0)
CTXc 84 (96.6) 2 (2.3) 1 (1.1)
CAZ 40 (46.0) 46 (52.9) 1 (1.1)
CZA 87 (100.0)
FEP 86 (98.9) 1 (1.1)
CTA 87 (100.0)
ATM 82 (94.3) 4 (4.6) 1 (1.1)
ETP 87 (100.0)
IPM 87 (100.0)
MEMd 87 (100.0)
AMK 3 (3.4) 84 (96.6)
GEN 9 (10.3) 78 (89.7)
TOB 11 (12.6) 76 (87.4)
CIPc 32 (36.8) 36 (41.4) 19 (21.8)
LEV 30 (34.5) 5 (5.7) 52 (59.8)
DOX 39 (44.8) 15 (17.2) 33 (37.9)
TGC 7 (8.0) 80 (92.0)
TRM 75 (86.2) 12 (13.8)
SXT 70 (80.5) 1 (1.1) 16 (18.4)
FUR 87 (100.0)
FOSe 87 (100.0)
CMP 10 (11.5) 77 (88.5)
COL 1 (1.1) 86 (98.9)
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Table 4  Acquired AMR genes and fluoroquinolone resistance mutations identified in ESBL-Ec strains isolated from soldiers in June and 
November

Combinations of resistance determinants June, n = 17
n (%)

November, n = 70
n (%)

Total, n (%)

β-lactams 17 (100.0) 70 (100.0) 87 (100.0)
blaCTX-M-15 & blaTEM-1 / blaCTX-M-15 & blaTEM-35 11 (64.7) 32 (45.7)/2 (2.9) 45 (51.7)
blaCTX-M-15 / blaCTX-M-1 2 (11.8)/1 (5.9) 22 (31.4) 25 (28.7)
blaCTX-M-15 & blaDHA-1 / +blaTEM-1 4 (5.7)/1 (1.4) 5 (5.7)
blaCTX-M-15 & blaOXA-1 / +blaTEM-1 1 (5.9) 1 (1.4)/4 (5.7) 6 (6.9)
blaCTX-M-27 1 (1.4) 1 (1.1)
blaCTX-M-27 & blaTEM-1 2 (11.8) 2 (2.3)
blaCTX-M-231 & blaTEM-1 3 (4.3) 3 (3.4)
Aminoglycosides 14 (82.4) 51 (72.9) 65 (74.7)
aph(6)-Id & aph(3″)-Ib & aac(3)-IId & aadA5 or aadA2 4 (5.7) 4 (4.6)
aph(6)-Id & aph(3″)-Ib & aadA5 or aadA1 or aadA2 3 (17.6) 9 (12.9) 12 (13.8)
aph(6)-Id & aph(3″)-Ib & sat2 / sat2 3 (4.3)/2 (2.9) 5 (5.7)
aph(6)-Id & aph(3″)-Ib 8 (47.1) 12 (17.1) 20 (23.0)
aadA5/aadA1 or aadA2 2 (11.8)/1 (5.9) 11 (15.7)/10 (14.3) 24 (27.6)
Aminoglycosides and quinolones 1 (5.9) 6 (8.6) 7 (8.0)
aac(6′)-Ib-cr (D181Y) & aadA5 & aph(6)-Id & aph(3″)-Ib & aac(3)-IId 2 (2.9) 2 (2.3)
aac(6′)-Ib-cr (D181Y) & aadA5 & aph(6)-Id & aph(3″)-Ib & aac(3)-IIe 1 (5.9) 1 (1.4) 2 (2.3)
aac(6′)-Ib-cr (D181Y) & aadA5 / +aac(3)-IIe 2 (2.9)/1 (1.4) 3 (3.4)
Quinolones 14 (82.4) 48 (68.6) 62 (71.3)
qnrS1/qnrS1 & qnrB4 14 (82.4)/0 41 (58.6)/5 (7.1) 60 (69.0)
qepA4 2 (2.9) 2 (2.3)
Trimethoprim/sulfonamides 15 (88.2) 64 (91.4) 79 (90.8)
dfrA & sul 15 (88.2) 56 (80.0) 71 (81.6)
dfrA/sul 3 (4.3)/5 (7.1) 8 (9.2)
Tetracyclines 15 (88.2) 43 (61.4) 58 (66.7)
tet(A)/tet(B) 12 (70.6)/3 (17.6) 26 (37.1)/16 (22.9) 57 (65.5)
tet(A) & tet(B) 1 (1.4) 1 (1.1)
Other 6 (35.3) 52 (74.3) 58 (66.7)
mph(A) 5 (29.4) 41 (58.6) 46 (52.9)
erm(B)/catA1 6 (8.6)/4 (5.7) 10 (11.5)
cmlA1 1 (5.9) 1 (1.1)
ere(A) 1 (1.4) 1 (1.1)
gyrA and/or parC/E mutations 5 (29.4) 33 (47.1) 38 (43.7)
gyrA(S83A) 1 (5.9) 1 (1.4) 2 (2.3)
gyrA(S83L)/gyrA(S83L) & parC(S80I) 13 (18.6)/2 (2.9) 15 (17.2)
gyrA(S83L) & gyrA(D87N) & parC(S80I or E84K) & parE(L416F) 4 (23.5) 1 (1.4) 5 (5.7)
gyrA(S83L) & gyrA(D87N) & parC(S80I) & parE(I464F) 1 (1.4) 1 (1.1)
gyrA(S83L) & gyrA(D87N) & parC(S80I) & parC(E84V) & parE(I529L) 7 (10.0) 7 (8.0)
gyrA(S83L) & gyrA(D87N) & parC(S80I) & parE(S458A)/+parE(S458T) 3 (4.3)/1 (1.4) 4 (4.6)
gyrA(S83L) & gyrA(D87N) & parC(S80I) & parE(S458T) 1 (1.4) 1 (1.1)
gyrA(S83L) & parE(I355T or I529L) 2 (2.9) 2 (2.3)
gyrA(S83V) & parC(p.S80I) 1 (1.4) 1 (1.1)
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