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of bacterial infections: a puzzling paradox or a logical
consequence of their mode of action?
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Abstract This review summarizes evidence that commercial-
ly available fluoroquinolones used for the treatment of bacte-
rial infections are active against other non-bacterial infectious
agents as well. Any of these fluoroquinolones exerts, in par-
allel to its antibacterial action, antiviral, antifungal, and anti-
parasitic actions at clinically achievable concentrations. This
broad range of anti-infective activities is due to one common
mode of action, i.e., the inhibition of type II topoisomerases or
inhibition of viral helicases, thus maintaining the selective
toxicity of fluoroquinolones inhibiting microbial
topoisomerases at low concentrations but mammalian
topoisomerases at much higher concentrations. Evidence sug-
gests that standard doses of the fluoroquinolones studied are
clinically effective against viral and parasitic infections,
whereas higher doses administered topically were active
against Candida spp. causing ophthalmological infections.
Well-designed clinical studies should be performed to sub-
stantiate these findings.

Introduction

The history of quinolones began in 1962with the isolation of a
byproduct of chloroquine synthesis by George Yohe Lesher
and colleagues [1] at the Sterling-Winthrop Research Institute
in Rensselaer, New York; this compound was found to be
antibacterially active and was subsequently modified to yield
nalidixic acid. Nalidixic acid and chloroquine share structural
features being essential for their antibacterial and antiparasitic
activity, respectively. Apart from its well-known antimalarial

effects [2–4], chloroquine exerts direct antiviral [5–13], anti-
fungal [13–16], and antibacterial effects [13, 17–20]. Further-
more, chloroquine exhibits immunomodulatory activity
[21–25] and was found to reverse P-glycoprotein (P-gp)-me-
diated multidrug resistance, thereby increasing the cytotoxic-
ity of some antineoplastic agents [26–30]. The antimalarial
effects of chloroquine are due to its accumulation in acidic
food vacuoles of intraerythrocytic trophozoites, thereby
preventing hemoglobin degradation and inhibition of a haem
polymerase enzyme [3, 4]. The antiviral, antifungal, and anti-
bacterial activities of chloroquine are pH-dependent [10, 14,
16, 18]. This phenomenon is due to the fact that chloroquine is
a weak base and, therefore, does not enter the cell if the
extracellular fluid or the incubation medium is acidic. Once
chloroquine has entered cells, it intercalates into DNA and
prevents the introduction of topoisomerase II-mediated DNA
breaks. The intercalation of chloroquine into DNA protects
cells against epipodophyllotoxins such as etoposide, acting as
topoisomerase II poison by hindering the DNA cleavage
reaction of this target enzyme [31, 32]. The use of chloroquine
in the treatment of some autoimmune diseases and its anti-
inflammatory properties may be due to the inhibition of MHC
class II antigen presentation; the inhibition of T-cell response
may be due to a direct interaction of chloroquine with the cell
membrane [22]. Furthermore, chloroquine was found to de-
stabilize indirectly lysosomal and plasma membranes as a
result of accumulation within the lysosome, followed by an
increase in lysosomal volume; it also sequesters important cell
membrane constituents in lysosomes [29]. Chloroquine was
found to adsorb to the plasma membrane of yeasts, inhibit
competitively the binding of immunoglobulin G to the cell
surface, altered phospholipid turnover, and influenced directly
but non-specifically the membrane integrity and permeability
of renal brush border vesicles, mast cell membranes, and
fibroblasts [16, 33–35]. Furthermore, chloroquine blocks the
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inward rectifier potassium channel Kir2.1; it is bound at the
center of the cytoplasmic domain of the channel [36, 37].
These data demonstrate that the congener of fluoroquinolones,
i.e., chloroquine, exhibits, apart from its antimalarial activity,
pleiotropic actions and interacts with multiple targets.

As chloroquine and nalidixic acid share structural features
being essential for their activity, it was not surprising that it
has been recognized in the late 1980s that nalidixic acid and
oxolinic acid derivatives exert trypanocidal and antitumor
activities [38]; in the early 1990s, it was described that
fluoroquinolones used for the treatment of bacterial infections
exert not only an antibacterial but also an antiprotozoal activ-
ity [39] and may find applications as antiparasitic, antifungal,
or antiviral agents [40]. Furthermore, and in analogy to chlo-
roquine, the activity of antibacterially active fluoroquinolones
is pH-dependent [41], and they bind directly to bacterial
DNA, i.e., two molecules intercalate at the highly bent DNA
gate in the DNA cleavage domain [42–46]. Despite these
phenotypic and molecular homologies between chloroquine
and fluoroquinolones, the pharmaceuticals industry invested
financial and human resources into focused research programs
on the application of developmental fluoroquinolones as
antibacterials only and into pre- and postmarketing stud-
ies supporting the use of fluoroquinolones in the once-
granted indications. Studies on the function of an anti-
bacterial agent exerting pleiotropic anti-infective actions
have never been performed systematically. Surprisingly,
the use of fluoroquinolones in indications other than
bacterial infections has never been exploited, although
not only nalidixic acid and its congener chloroquine
exerts pleiotropic actions but, e.g., β-lactams and ami-
noglycosides are characterized by a broad range of
biological activities too [47, 48], so that a multitude
of antimicrobial effects would not have been unusual.

This review summarizes the pleiotropic phenotypes of non-
antibacterial actions of fluoroquinolones and addresses the
question if the diversity of effects are due to one common
mode of action of antibacterially active fluoroquinolones, i.e.,
inhibition of essential bacterial type II topoisomerases, or if
other mechanisms may mediate non-antibacterial activities.
Although the complexity and diversity of prokaryotic and
eukaryotic topoisomerases is remarkable and little or no se-
quence homology of amino acids exists, type I and type II
topoisomerases share certain structural elements mediating
identical functions like DNA relaxation or DNA transport in
bacteria, DNAviruses, yeasts, and parasites; the DNA helicase
coordinates the directionality of topoisomerase activity; RNA
helicases as present, e.g., in hepatitis C virus (HCV) directly
interact with double-stranded DNA or RNA and assembles
complexes with type II topoisomerases [49–53]. As DNA
topoisomerases are ubiquitous enzymes controlling DNA to-
pology, it is conceivable that antibacterially active quinolones
may not only inhibit the growth of bacteria at clinically

relevant concentrations, but that of other prokaryotic and even
eukaryotic organisms as well.

Antiviral activities of fluoroquinolones

Ciprofloxacin, ofloxacin, levofloxacin, and gatifloxacin were
found to be clinically effective in the treatment of the single-
stranded RNA HCV and the non-enveloped, encapsulated
DNA polyomavirus BK [54–60]. Five and four patients with
HCV-induced chronic hepatitis and compensated liver cirrho-
sis, respectively, were treated with 100 to 900 mg ofloxacin
per day for one to eight weeks. In three patients with chronic
hepatitis and one patient with compensated liver cirrhosis,
HCV RNA decreased at least by 1 log titer [54]. In another
study, five patients with chronic HCV were treated with
500 mg ciprofloxacin twice daily (b.i.d.) for 30 days. Serum
HCV RNA levels remained largely unchanged in these pa-
tients [55]. The latter study indicates that the anti-HCVefficacy
of quinolones may be limited in patients with advanced liver
cirrhosis. Ciprofloxacin decreased BK peak viral load after
hematopoietic stem cell transplantation [56]. A reduction of
viremia was demonstrated two months after a 10-day course
of gatifloxacin at 400 mg/d in 7 of 10 transplant recipients
with active BK virus replication [57]. A retrospective analysis
revealed that the use of either ciprofloxacin 250 mg b.i.d. or
levofloxacin 250 mg once daily (q.d.) within the first month
post transplantation and up to 3 months after transplantation
was associated with significantly lower one-year rates of BK
viremia [58]. A recent study in nine kidney transplant recip-
ients with persistent BK infection revealed that, three months
post ciprofloxacin treatment with 250mg b.i.d for 30 days, the
virus load was cleared completely in three patients and de-
creased by >50 % in another three patients [59]; patients were
not treated with anti-infectives other than fluoroquinolones.

Fluoroquinolones inhibit BK viral replication in vitro.
Ofloxacin and levofloxacin inhibited polyomavirus BK repli-
cation in primary human kidney cells in a dose-dependent
manner, yielding a ~90 % inhibition at 150 μg/ml. BK virus
genome replication was reduced by 77% at 48 h post infection
of the kidney cells. At 72 h after inoculation of the kidney
cells, the reduction in genome replication and protein expres-
sion was less pronounced. A dose-dependent cytostatic effect
was noted. In infected cells, 150 mg/L ofloxacin led to a 26 %
and 6 % inhibition of cellular DNA replication and total
metabolic activity, respectively, while 150 mg/L levofloxacin
exhibited a slightly more marked cytostatic effect, particularly
in uninfected cells [60]. Ciprofloxacin, moxifloxacin,
levofloxacin, ofloxacin, gatifloxacin, and norfloxacin
inhibited BK virus replication to 50 % at concentrations
ranging from 66.7 to 266.6 mg/L [61]. Ciprofloxacin,
ofloxacin, levofloxacin, gatifloxacin, and trovafloxacin
inhibited viral replication of simian virus 40 (SV40), another
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member of the polyomaviridae, in permissive monkey cells,
as well as plaque formation, DNA replication, and helicase
activity. Ciprofloxacin, levofloxacin, and ofloxacin inhibited
“significantly” helicase activity at 0.5, 1.0, and 2.0 mM,
whereas trovafloxacin inhibited helicase activity at 50 μM
[62, 63]. Recently, it was demonstrated that norfloxacin,
ofloxacin, flumequine, enrofloxacin, cinoxacin, enoxacin,
fleroxacin, lomefloxacin, balofloxacin, and difloxacin
inhibited HCV replication, in particular, hepatoma Huh-7
and Huh-8 cell lines, and HCV NS3 helicase activity. The
concentrations inhibiting HCV RNA replication to 50 %
ranged from 3.3 to 8.2 μM and those inhibiting helicase
activity ranged from 4.1 to 9.9 μM [64].

The clinical studies reviewed above and one recent report
of a successful treatment of a kidney retransplant patient with
ciprofloxacin (250 mg b.i.d. for 10 days) who needed an
overall increase of immunosuppression due to acute rejection
[65] suggest that fluoroquinolone treatment of polyomavirus
BK infections in transplant patients may be beneficial. There-
fore, a study protocol for a randomized controlled clinical trial
evaluating the prophylactic efficacy of fluoroquinolones has
been designed and is registered at ClinicalTrials.gov under
NCT01353339; levofloxacin at a dose of 500 mg q.d. will be
administered for 3 months and will be compared to placebo
[66]. Another clinical study on the use of ciprofloxacin
(250 mg q.d. for 3 months as compared to placebo) for the
prevention of BK infections is registered under
NCT01789203 [67].

Furthermore, it was demonstrated that ofloxacin [68] and
levofloxacin [69] inhibited viral topoisomerase activity of
vaccinia virus but not of herpes simplex virus and influenza
virus [68]. In agreement with this finding, it was reported that
200 mg/L each of ciprofloxacin, lomefloxacin, ofloxacin,
pefloxacin, and rufloxacin inhibited to 50 % the cytopathic
effect of herpes simplex virus type 2 at concentrations being
equivalent to the cytotoxic effect of the quinolones on the
Vero cells [70]. Fluoroquinolones inhibit not only enzymic
activity of viral topoisomerases/helicases, but inhibit in vitro
human immunodeficiency virus (HIV) reverse transcriptase as
well; complete inhibition was observed at concentrations of
ciprofloxacin and ofloxacin of 3 μMand norfloxacin of 1 μM,
respectively [71–73].

Inhibition of rhinovirus (RV) infection by quinolones is
due to the inhibition of cell functions required for viral repli-
cation. Levofloxacin pretreatment of not yet infected human
tracheal epithelial cells reduced the mRNA level of intercel-
lular adhesion molecule 1 (ICAM-1), a receptor for RV, in the
cells and the concentration of the soluble form of ICAM-1 in
the supernatant, so that RV infection of the tracheal epithelial
cells was significantly reduced. Levofloxacin pretreatment
also decreased the number of the acidic endosomes from
which RV RNA enters the cytoplasm. Furthermore,
levofloxacin pretreatment inhibited the activation of nuclear

factor κB proteins. These data suggest that levofloxacin
inhibits RV infections first by reducing ICAM-1 expres-
sion levels and the number of acidic endosomes, and
second by modulating airway inflammation [74].
Fluoroquinolones other than levofloxacin have not been
studied in this context.

Antifungal activities of fluoroquinolones

Moxifloxacin and gatifloxacin inhibited, at a concentration of
0.5 % used for topical application in ophthalmology, Candida
spp. to >95 % [75]. Gatifloxacin and sparfloxacin showed
activity in a qualitative paper disk diffusion test against
Trichophyton rubrum, Fusarium solani, and Candida
albicans, but not against Saccharomyces cerevisiae [76]. Cip-
rofloxacin, moxifloxacin, levofloxacin, trovafloxacin, and
sitafloxacin enhanced the activities of antifungal agents
against Candida albicans and Aspergillus fumigatus
[77–84]. Furthermore, ciprofloxacin showed synergism with
azoles against Histoplasma capsulatum and Coccidioides
posadasii [85], as well as in combination with amphotericin
B against Exophiala spinifera [86].

Several but still rare reports of clinical and microbiological
cure of fungal keratitis by quinolones have been published;
recently, five additional cases of fungal keratitis treated suc-
cessfully with topical moxifloxacin monotherapy were pub-
lished [79]. The causative organisms Curvularia spp., Candi-
da parapsilosis, Paecilomyces lilacinum, and Aspergillus
fumigatus were treated with moxifloxacin 0.5 %, one drop
every half-hour to every hour. All these cases of fungal kera-
titis were cured with topical moxifloxacin and the pathogens
were eliminated [87].

These data demonstrate that topical administration of quin-
olones, thus generating high target site concentrations, are
clinically effective in the treatment of fungal ophthalmological
infections.

Topoisomerase II has been identified as the primary
target for quinolones in yeast [88, 89], so that the
antifungal activities of the fluoroquinolones tested are
likely to be mediated by this enzyme. The DNA topo-
isomerase II isolated from Candida albicans was more
susceptible to quinolones than the calf thymus DNA
topoisomerase II, despite the fact that both enzymes
are of eukaryotic origin [80]. Yeast DNA topoisomerase
II selected for resistance to quinolones are characterized
by amino acid mutations which are homologous to
mutations in gyrA of Escherichia coli [90–92]. These
differences between yeast and mammalian type II
topoisomerases may explain why fluoroquinolones ex-
hibit an antifungal activity by maintaining in parallel a
selective toxicity against prokaryotic topoisomerases.
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Antiparasitic activities of fluoroquinolones

Although antibacterially active fluoroquinolones were derived
from the antimalaria agent chloroquine, the clinical efficacy of
norfloxacin against Plasmodium falciparum was discovered
by chance when the agent was used for the treatment of
typhoid fever in Indian patients. Norfloxacin was adminis-
tered to nine hospitalized malaria patients orally with 400 mg
norfloxacin b.i.d. for three days; treatment led to disappear-
ance of splenomegaly [93]. Later, another 15 patients with
uncomplicated malaria were treated with norfloxacin (ten with
400 mg b.i.d. and five with 800 mg b.i.d.) for three days [94].
This study confirmed that norfloxacin is clinically effective in
the treatment of falciparum malaria, but the efficacy of the
lower dose was suboptimal. Later, it was demonstrated that
norfloxacin is inferior to chloroquine for falciparum malaria.
A prospective, randomized trial revealed that the mean para-
site clearance time as well as the mean defervescence time
were shorter in the chloroquine group [95].

Fluoroquinolones like ciprofloxacin, amifloxacin,
enoxacin, norfloxacin, ofloxacin, pefloxacin, grepafloxacin,
trovafloxacin, and 16 additional commercially available quin-
olones exhibit marked in vitro activity and in vivo efficacy
against Plasmodium spp. [96–105].

Nalidixic acid and several fluoroquinolones like ciproflox-
acin, norfloxacin, enoxacin, ofloxacin, fleroxacin,
clinafloxacin, pefloxacin, and sparfloxacin exerted an
antitrypanosomal in vitro and in vivo effect at micromolar
concentrations [38, 106–116].

In addition, nalidixic acid, norfloxacin, ofloxacin,
moxifloxacin, gatifloxacin, lomefloxacin, and some more
fluoroquinolones inhibited growth of the microsporidia
Encephalitozoon intestinalis and Vittaforma corneae to 50 %
at concentrations ranging from 0.9 to 98.4 μM [112]. Further-
more, ciprofloxacin caused a 50 % growth inhibition of Ba-
besia microti, B. bigemina, B. caballi, B. equi, and B. bovis at
concentrations of 2.5 to 15.8 μM [113]. Fluoroquinolones
exerted antitoxoplasma activities as well. Moxifloxacin,
gatifloxacin, trovafloxacin, and grepafloxacin were the most
active agents, inhibiting growth of T. gondii to 50 % at
concentrations ranging from 0.4 to 5.1 mg/L, while ciproflox-
acin was poorly active, with a 50 % inhibitory concentration
value of 79.4 mg/L [116].

The parasites of the phylum Apicomplexa, i.e.,
Plasmodium spp., Toxoplasma spp., Babesia spp., and
Leishmania spp. are characterized by the absence of organ-
elles like mitochondria, but they have acquired a plastid by
endosymbiosis of a green alga. The apicoplast is a non-
photosynthetic plastid in which several essential biosynthetic
pathways are sequestered, so that interactions with these bio-
synthetic functions cause deleterious effects. Elimination of
the plastid or total inhibition of its function results in a “de-
layed death”, i.e., the parasites grow and evade normally

within and from the first host cell, but their replication is
halted immediately after the invasion of a new host cell. The
apicoplast harbors a circular DNA and bacterial type DNA
gyrase. Ciprofloxacin induced cleavage of apicoplast DNA in
P. falciparum, without targeting nuclear DNA [117–119].
Exposure of Toxoplasma gondii to ciprofloxacin resulted in
a decrease of the apicoplast genome copy number during
replication [120]. Although it was discussed that differences
in the role of apicoplasts in Toxoplasma and Plasmodiummay
exist [121], the apicoplast DNA gyrases isolated from both
species were inhibited by almost identical concentrations; the
apicoplast DNA gyrase isolated from Plasmodium falciparum
is inhibited by ciprofloxacin concentrations ranging from 7 to
38 μM and trovafloxacin inhibits apicoplast DNA gyrase
activity isolated from Toxoplasma gondii and Plasmodium
falciparum, respectively, at 30 μM [102, 117–121]. Conse-
quently, prokaryotic type II DNA topoisomerase of
apicomplexan protozoa are effectively targeted by
fluoroquinolones.

Indirect effects

It has been summarized previously that fluoroquinolones are
active in preclinical infection models against quinolone-
resistant bacteria as well as Candida albicans infections
[122, 123]. Furthermore, levofloxacin was active against RV
infections [74]. These phenomena were found to be directly
correlated to the immunomodulatory activities of
fluoroquinolones [122, 123]. Mechanisms underlying the var-
ious immunomodulatory effects of fluoroquinolones include
an effect on intracellular cyclic adenosine-3,5-monophosphate
and phosphodiesterases, as well as an effect on transcription
factors and also a triggering effect on the eukaryotic equiva-
lent of bacterial SOS response with its ensuing intracellular
events [124].

Fluoroquinolones are routinely prescribed for the treatment
of coronavirus-associated severe acute respiratory syndrome
(SARS) or opportunistic bacterial infections in HIV-positive
patients. Upon elimination of the bacterial pathogen or exclu-
sion of bacterial pathogens, antibiotic therapy can be with-
drawn. However, patients may benefit from the immunomod-
ulatory activities of fluoroquinolones, but their effect on the
course of SARS or acquired immune deficiency syndrome
(AIDS) is undetermined.

Although it is well documented that nalidixic acid and
fluoroquinolones modulate immune responses by the modu-
lation of intracellular signaling cascades, it is unknown which
mechanism(s) may trigger signal transduction. It has been
demons t ra ted tha t , in ana logy to chlo roquine ,
fluoroquinolones bind to and insert into pro- and eukaryotic
membranes, respectively, thereby altering their fluidity [116].
Changes in membrane fluidity may be sensed by the

664 Eur J Clin Microbiol Infect Dis (2015) 34:661–668



immunocompetent cells, so that gene expression may be
controlled according to the signals triggered. Furthermore, it
can be hypothesized that fluoroquinolones exert direct anti-
infective activities due to their physicochemical interactions
with membranes, thus making the organisms leaky, followed
by cell death. This latter aspect has never been addressed
systematically.

Conclusions

Any fluoroquinolone used for the treatment of bacterial infec-
tions exerts, in parallel to its antibacterial action, antiviral,
antifungal, and antiparasitic actions at clinically achievable
concentrations. This broad range of anti-infective activities is
due to one common mode of action, i.e., the inhibition of type
II topoisomerases, thus maintaining the selective toxicity of
fluoroquinolones inhibiting microbial topoisomerases and eu-
karyotic topoisomerases of prokaryotic origin at low concen-
trations but mammalian topoisomerases at much higher con-
centrations. There is strong evidence that the broad range of
anti-infective activities translates into the clinical arena. How-
ever, anti-infective activities other than antibacterial activities
have never been evaluated systematically. This may be due to
the strategy of both the pharmaceutical industry and regulato-
ry authorities to develop an agent on the basis of its applica-
tion, i.e., its use as an antibacterial agent. Therefore, the
antiviral or antifungal activities of fluoroquinolones have, so
far, not been exploited systematically; two controlled studies
evaluating the antiviral effects of fluoroquinolones have been
initiated recently. The clinical evaluation of their antifungal
and antiparasitic effects is justifiable and would be opportune.
Traditionally, clinical studies are designed on the basis
of a monocausal microbe–outcome association, i.e., the
presence of one bacterial species at the site of infection
indicates pathogenicity. Consequently, an anti-infective
agent is considered to be effective if this single species
is eradicated from the focus of infection. However,
infections may be polymicrobial or chronically ill pa-
tients may suffer from opportunistic infections; HIV-
positive patients represent an extreme example for the
acquisition of opportunistic infections caused in parallel
by viruses, bacteria, and/or parasites. Such patients
could, in theory, benefit from treatment with agents
which exert a broad range of anti-infective activities.
A multifactorial analysis of the outcome of infectious
diseases would be necessary. The corresponding out-
come measures are quantifiable and can be linked to
pharmacokinetics and overall clinical efficacy. In sum-
mary, based on one common mode of action,
fluoroquinolones being commercially available as anti-
bacterial agents are active against viruses, fungi, and
parasites too, so this class of agents is probably

representative of broad-spectrum anti-infectives in its
true sense.
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