Skip to main content

Advertisement

Log in

Specific protease activity indicates the degree of Pseudomonas aeruginosa infection in chronic infected wounds

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Chronic non-healing wounds are a major health problem with resident bacteria strongly implicated in their impaired healing. A rapid-screen to provide detailed knowledge of wound bacterial populations would therefore be of value and help prevent unnecessary and indiscriminate use of antibiotics—a process associated with promoting antibiotic resistance. We analysed chronic wound fluid samples, which had been assessed for microbial content, using 20 different fluorescent labelled peptide substrates to determine whether protease activity correlated with the bacterial load. Eight of the peptide substrates showed significant release of fluorescence after reaction with some of the wound samples. Comparison of wound fluid protease activities with the microbiological data indicated that there was no correlation between bacterial counts and enzyme activity for most of the substrates tested. However, two of the peptide substrates produced a signal corresponding with the microbial data revealing a strong positive correlation with Pseudomonas aeruginosa numbers. This demonstrated that short fluorescent labelled peptides can be used to detect protease activity in chronic wound fluid samples. The finding that two peptides were specific indicators for the presence of P. aeruginosa may be the basis for a diagnostic test to determine wound colonisation by this organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siddiqui AR, Bernstein JM (2010) Chronic wound infection: facts and controversies. Clin Dermatol 28:519–526

    Article  PubMed  Google Scholar 

  2. Posnett J, Gottrup F, Lundgren H, Saal G (2009) The resource impact of wounds on health-care providers in Europe. J Wound Care 18:154–161

    PubMed  CAS  Google Scholar 

  3. Franks PJ, Flanagan M (2005) Innovations in wound care and The European Wound Management Association. In: The International Hospital Federation Reference Book 2005/2006. The International Hospital Federation, Ferney Voltaire, France, pp 115–118

  4. Palfreyman S, Nelson EA, Michaels JA (2007) Dressings for venous leg ulcers: systematic review and meta-analysis. BMJ 335:244

    Article  PubMed  Google Scholar 

  5. Davies CE, Hill KE, Wilson MJ, Stephens P, Hill CM, Harding KG, Thomas DW (2004) Use of 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis for analysis of the microfloras of healing and nonhealing chronic venous leg ulcers. J Clin Microbiol 42:3549–3557

    Article  PubMed  CAS  Google Scholar 

  6. Wall IB, Davies CE, Hill KE, Wilson MJ, Stephens P, Harding KG, Thomas DW (2002) Potential role of anaerobic cocci in impaired human wound healing. Wound Repair Regen 10:346–353

    Article  PubMed  Google Scholar 

  7. Bowler PG, Davies BJ (1999) The microbiology of infected and noninfected leg ulcers. Int J Dermatol 38:573–578

    Article  PubMed  CAS  Google Scholar 

  8. Dowd SE, Wolcott RD, Sun Y, McKeehan T, Smith E, Rhoads D (2008) Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One 3:e3326

    Article  PubMed  Google Scholar 

  9. Davies CE, Hill KE, Newcombe RG, Stephens P, Wilson MJ, Harding KG, Thomas DW (2007) A prospective study of the microbiology of chronic venous leg ulcers to reevaluate the clinical predictive value of tissue biopsies and swabs. Wound Repair Regen 15:17–22

    Article  PubMed  Google Scholar 

  10. Gjodsbol K, Christensen JJ, Karlsmark T, Jorgensen B, Klein BM, Krogfelt KA (2006) Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 3:225–231

    Article  PubMed  Google Scholar 

  11. Yarwood JM, Schlievert PM (2003) Quorum sensing in Staphylococcus infections. J Clin Invest 112:1620–1625

    PubMed  CAS  Google Scholar 

  12. Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323

    Article  PubMed  CAS  Google Scholar 

  13. Howell-Jones RS, Price PE, Howard AJ, Thomas DW (2006) Antibiotic prescribing for chronic skin wounds in primary care. Wound Repair Regen 14:387–393

    Article  PubMed  Google Scholar 

  14. Moali C, Hulmes DJS (2009) Extracellular and cell surface proteases in wound healing: new players are still emerging. Eur J Dermatol 19:552–564

    PubMed  CAS  Google Scholar 

  15. Toriseva M, Kahari VM (2009) Proteinases in cutaneous wound healing. Cell Mol Life Sci 66:203–224

    Article  PubMed  CAS  Google Scholar 

  16. Shi L, Ermis R, Kiedaisch B, Carson D (2010) The effect of various wound dressings on the activity of debriding enzymes. Adv Skin Wound Care 23:456–462

    Article  PubMed  Google Scholar 

  17. Motzkau M, Tautenhahn J, Lehnert H, Lobmann R (2011) Expression of matrix-metalloproteases in the fluid of chronic diabetic foot wounds treated with a protease absorbent dressing. Exp Clin Endocrinol Diabetes 119:286–290

    Article  PubMed  CAS  Google Scholar 

  18. Stechmiller J, Cowan L, Schultz G (2010) The role of doxycycline as a matrix metalloproteinase inhibitor for the treatment of chronic wounds. Biol Res Nurs 11:336–344

    Article  PubMed  CAS  Google Scholar 

  19. Trengove NJ, Stacey MC, MacAuley S, Bennett N, Gibson J, Burslem F, Murphy G, Schultz G (1999) Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen 7:442–452

    Article  PubMed  CAS  Google Scholar 

  20. Okamoto T, Akaike T, Suga M, Tanase S, Horie H, Miyajima S, Ando M, Ichinose Y, Maeda H (1997) Activation of human matrix metalloproteinases by various bacterial proteinases. J Biol Chem 272:6059–6066

    Article  PubMed  CAS  Google Scholar 

  21. Beaufort N, Wojciechowski P, Sommerhoff CP, Szmyd G, Dubin G, Eick S, Kellermann J, Schmitt M, Potempa J, Magdolen V (2008) The human fibrinolytic system is a target for the staphylococcal metalloprotease aureolysin. Biochem J 410:157–165

    Article  PubMed  CAS  Google Scholar 

  22. Smagur J, Guzik K, Bzowska M, Kuzak M, Zarebski M, Kantyka T, Walski M, Gajkowska B, Potempa J (2009) Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages. Biol Chem 390:361–371

    Article  PubMed  CAS  Google Scholar 

  23. Wildeboer D, Jeganathan F, Price RG, Abuknesha RA (2009) Characterization of bacterial proteases with a panel of fluorescent peptide substrates. Anal Biochem 384:321–328

    Article  PubMed  CAS  Google Scholar 

  24. Cullen B, Smith R, McCulloch E, Silcock D, Morrison L (2002) Mechanism of action of PROMOGRAN, a protease modulating matrix, for the treatment of diabetic foot ulcers. Wound Repair Regen 10:16–25

    Article  PubMed  Google Scholar 

  25. Travis J, Potempa J (2000) Bacterial proteinases as targets for the development of second-generation antibiotics. Biochim Biophys Acta 1477:35–50

    Article  PubMed  CAS  Google Scholar 

  26. Butler SM, Festa RA, Pearce MJ, Darwin KH (2006) Self-compartmentalized bacterial proteases and pathogenesis. Mol Microbiol 60:553–562

    Article  PubMed  CAS  Google Scholar 

  27. Elston C, Wallach J, Saulnier J (2007) New continuous and specific fluorometric assays for Pseudomonas aeruginosa elastase and LasA protease. Anal Biochem 368:87–94

    Article  PubMed  CAS  Google Scholar 

  28. Stec-Niemczyk J, Pustelny K, Kisielewska M, Bista M, Boulware KT, Stennicke HR, Thogersen IB, Daugherty PS, Enghild JJ, Baczynski K, Popowicz GM, Dubin A, Potempa J, Dubin G (2009) Structural and functional characterization of SplA, an exclusively specific protease of Staphylococcus aureus. Biochem J 419:555–564

    Article  PubMed  CAS  Google Scholar 

  29. Wladyka B, Pustelny K (2008) Regulation of bacterial protease activity. Cell Mol Biol Lett 13:212–229

    Article  PubMed  CAS  Google Scholar 

  30. Matsumoto K (2004) Role of bacterial proteases in pseudomonal and serratial keratitis. Biol Chem 385:1007–1016

    Article  PubMed  CAS  Google Scholar 

  31. Zhao G, Hochwalt PC, Usui ML, Underwood RA, Singh PK, James GA, Stewart PS, Fleckman P, Olerud JE (2010) Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: a model for the study of chronic wounds. Wound Repair Regen 18:467–477

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Engineering and Physical Sciences Research Council (EPSRC), grant number EP/D505445/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Wildeboer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wildeboer, D., Hill, K.E., Jeganathan, F. et al. Specific protease activity indicates the degree of Pseudomonas aeruginosa infection in chronic infected wounds. Eur J Clin Microbiol Infect Dis 31, 2183–2189 (2012). https://doi.org/10.1007/s10096-012-1553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-012-1553-6

Keywords

Navigation