S. B. Girois • F. Chapuis • E. Decullier • B. G. P. Revol

Adverse effects of antifungal therapies in invasive fungal infections: review and meta-analysis

Published online: 11 February 2006
(C) Springer-Verlag 2006

Abstract

Amphotericin B is the main therapeutic agent for the treatment of invasive fungal infections; however, it is associated with significant toxicities that limit its use. Other systemic antifungal agents have been developed to improve tolerability while maintaining the efficacy profile of conventional amphotericin B. Fifty-four studies involving 9,228 patients were assessed for the frequency of adverse effects of the main systemic antifungal agents. While the results suggest that liposomal amphotericin B is the least nephrotoxic of the lipid formulations (14.6%), that conventional amphotericin B is the most nephrotoxic (33.2%), and that itraconazole is the most hepatotoxic (31.5\%), the lack of standard definitions of antifungalrelated adverse effects limits the validity of these results. Furthermore, heterogeneous patient pools and differing protocols make it difficult to draw direct comparisons between studies. With the advent of newer classes of systemic antifungal agents, future trials should conform to definitions that are universally applicable and clinically relevant to allow for such comparisons and to enable evidence-based decision-making.

The online version of the original article can be found at: http://dx.doi.org/10.1007/s10096-005-1281-2

Editor's note: This is a corrected and republished version of the original article that appeared in the European Journal of Clinical Microbiology \& Infectious Diseases [Eur J Clin Microbiol Infect Dis (2005) 24:119-130], in which multiple references were omitted or incorrectly numbered due to a technical error.
S. B. Girois • F. Chapuis (\triangle) E. Decullier • B. G. P. Revol Clinical Epidemiology Unit, Département d'Information
Médicale des Hospices Civils de Lyon,
162 Avenue Lacassagne,
69003 Lyon, France
e-mail: francois.chapuis@chu-lyon.fr
Tel.: +33-4-72115169
Fax: +33-4-72115720
Present address:
S. B. Girois

Handicap International,
14 Avenue Berthelot, 69361 Lyon Cedex 07, France

Introduction

Invasive fungal infections are a major source of morbidity and mortality in susceptible patients. Systemic antifungal medications are therefore given curatively to patients with proven infection or empirically to at-risk patients with suspected fungal infections. Since the 1950s, deoxycholate amphotericin $B(A m B)$ has been the main therapeutic agent for fungal infections; however, it is associated with significant toxicities that limit its use, including infusionrelated reactions, nephrotoxicity, hypokalemia, and hepatotoxicity [1]. Lipid formulations of AmB have been developed to improve tolerability while maintaining or even improving the efficacy profile of conventional amphotericin by allowing higher doses [2-5]. AmB lipid complex (ABLC) injection (Abelcet; The Liposome Company, Princeton, NJ, USA) was the first lipid-based formulation approved by the Federal Drug Administration (FDA) in the USA (in December 1995). In 1996, AmB colloidal dispersion, or ABCD (Amphocil; Sequus Pharmaceuticals, Menlo Park, CA, USA), was approved in the USA. Although available commercially outside of the USA for several years, a third product, liposomal AmB, or LAmB (AmBisome; NeXstar Pharmaceuticals/Fujisawa, San Dimas, CA, USA), received FDA approval in 1997. A majority of patients receiving these newer formulations have demonstrated intolerance to AmB or are documented to have Aspergillus infections refractory to AmB conventional therapy [3, 6-10].

Certain azoles are also used to treat invasive fungal infections. Fluconazole (Pfizer, New York, NY, USA) is a triazole antifungal agent approved for use in systemic candidiasis and is generally well-tolerated. Adverse effects, including hepatotoxicity, are reported only rarely. Itraconazole (Janssen Pharmaceutical Products, Titusville, NJ, USA) is a broad-spectrum synthetic triazole whose most common reported adverse effects are gastrointestinal disturbances, including nausea, abdominal pain, and diarrhea [1]. More serious hepatic toxicity and cardiac effects have also been reported. Finally, drug interactions with itraconazole can occur as a result of its inhibitory effects on
the cytochrome P450-dependent enzymes, and investigators using this antifungal agent have been advised to exclude patients receiving certain medications [11].

In this review, we attempt to assess the frequency of adverse effects of the antifungal agents studied and compare the toxicity profiles of antifungal agents included in randomized controlled trials. We also demonstrate the difficulty in comparing the toxicities of the different agents due to the variety of definitions and study protocols encountered in the literature.

Materials and methods

We searched the MEDLINE, Embase, and Pascal electronic databases for data from 1990 to May 2002 using a strategy based both on keywords and natural language and using the "explode" function. In addition, the database in the Medical Mycology Reference Laboratory in Lyon, France, was reviewed with expert assistance, and references were manually searched for data from the years 1990-2002. The search was limited to human studies and to articles published in English, French, and Spanish. Review articles were excluded from the analysis but retained for the discussion.

Randomized controlled trials and nonrandomized cohort studies of antifungal medications were eligible. Studies were included primarily on the basis of availability of the required information to define a numerator and a denominator for calculations of rates of adverse effects. In the case of missing information, the primary authors were contacted by electronic mail when possible to request details of the study.

Decisions on which trials to include and which variables to use when several options were available for the same outcome were made by three reviewers (B.R.G.P., S.B.G., and F.C.). Details on antifungal medications, invasive fungal infections, infusion-related reactions, nephrotoxicity, hepatotoxicity, hypokalemia, and reasons for discontinuation of the study drug were extracted by two reviewers separately (B.R.G.P. and S.B.G.). Differences in the data extracted were resolved in consultation with the third reviewer (F.C.). We considered the randomization method concealed if the investigators reported central or computer randomization, sealed envelopes, or pharmacy codes. Allocation concealment was considered only if it was specifically described.

Studies were excluded if data was accounted for in another article; if study patients consisted of neonates or infants; if the publication consisted of a letter, a case report, a small case series (<10 patients), or a report of case controls; if the study reported laboratory or survey data without clinical correlation; or if toxicity information was not reported at all.

Data extraction

The following data were extracted from each article: study characteristics, patient characteristics, study drug information, and toxicity information. Data on study characteristics comprised the following: year of publication, country of patients, dates of study, funding sources, study design, blinding of study (if applicable), indication for antifungal medication (prophylactic, empiric, curative), condition being treated (fever alone, candidiasis, aspergillosis, other), and definitions of outcomes. Patient characteristics consisted of inclusion criteria, exclusion criteria, underlying conditions, mean/median age, neutropenia, renal insufficiency, and use of concomitant nephrotoxic medications. Study drug information included prescribed dose, route, mean/median duration of treatment, and mean/ median cumulative dose. Toxicity information consisted of definitions of toxicity/adverse events; total number of adverse events; patients with infusion/ingestion-related reactions; patients with nephrotoxicity, including hemodialysis; patients whose renal function improved; patients with hepatotoxicity; patients with hypokalemia; discontinuation of study medication due to adverse events; and duration of follow-up.

Participants and interventions

Study participants included hospitalized patients with proven, probable, or suspected invasive fungal infection, as defined by the researchers within each study. Study drugs included intravenous conventional AmB, ABLC, ABCD , L-AmB, and fluconazole or itraconazole given intravenously or orally.

Definitions of adverse effects

To determine criteria and definitions of adverse effects, we first extracted all definitions used in all included studies. We then developed a computer database that included criteria for toxicity, as described most often in the studies. Finally, we selected the most frequently used definitions for performing this analysis.

Using this method and for this analysis, we grouped infusion-related and acute drug reactions into the following categories: fever with or without rigors, nausea with or without vomiting, rash, bronchospasm/cough with or without dyspnea or hypoxia, and reaction requiring discontinuation of the study drug. Episodes of chills, headache, and flushing were not analyzed separately, as we could not consistently determine if these reactions occurred together or singly in individual patients. A wide variety of gastrointestinal side effects were reported, such as nausea,
Table 1 Description of studies

Country [reference] (year)	Design; indication for antifungal therapy; allocation ${ }^{\mathrm{a}}$ and blinding	Number of patients ${ }^{\text {b }}$	Underlying conditions	Antifungal 1 daily dose (i.v.) ${ }^{\text {c }}$	Antifungal 2 daily dose (i.v.) ${ }^{\text {c }}$	Reason for inclusion in analysis		
							Nephrotoxicity (increase in creatinine $\times 2$)	Hepatotoxicity (increase in bilirubin or transaminases $\times 3$)
Netherlands [14] van't Wout et al. (1991)	RCT; empiric/curative; allocation unknown; not blinded	32	heme	ITR 400 mg p.o.	AmB 0.6 mg kg		yes	no
USA [15] Rex et al. (1994)	RCT; curative; allocation by seq list pharm; blinded to assessors only	206	other	FLU $5.1-5.7 \mathrm{mg} / \mathrm{kg}$	AmB $0.67 \mathrm{mg} / \mathrm{kg}$		no	yes
USA [16] Anaissie et al. (1995)	RCT; curative; allocation unknown; not blinded	231	heme, other	ABLC 5 mgkg	AmB $0.6-1 \mathrm{mg} / \mathrm{kg}$		yes	no
Germany [17] Abele-Horn et al. (1996)	RCT; empiric/curative; allocation unknown; not blinded	72	other	FLU 200 mg	AmB $0.5-0.75 \mathrm{mg} / \mathrm{kg}$		no	no
Italy [18] Viscoli et al. (1996)	RCT; empiric; allocation by envelopes; not blinded	112	heme, BMT, other	FLU 6 mg kg	AmB 0.8 mg kg		no	no
USA [19] Anaissie et al. (1996)	RCT; curative; allocation by computer; blinded to assessors only	142	BMT, other	FLU 400 mg i.v.p.p.	AmB $0.67 \mathrm{mg} / \mathrm{kg}$		yes	no
Canada [20] Phillips et al. (1997)	RCT; curative; allocation unknown; blinded to assessors only	103	other	FLU 400 mg	AmB $0.6 \mathrm{mg} / \mathrm{kg}$		no	no
UK [21] Prentice et al. (1997)	RCT; empiric; allocation by envelopes; blinded	338	heme, BMT, Txp	L-AmB $3 \mathrm{mg} / \mathrm{kg}$, $1 \mathrm{mg} / \mathrm{kg}$	AmB 1 mg kg		yes	yes
Europe [22] Ellis et al. (1998)	RCT; empiric/curative; allocation by central computer; blinded	87	Heme, BMT	L-AmB $1 \mathrm{mg} / \mathrm{kg}$	L-AmB $4 \mathrm{mg} / \mathrm{kg}$		no	no
Germany [23] Schoffski et al. (1998)	RCT; empiric; allocation unknown; not blinded	24	Heme, other	AmB $0.75 \mathrm{mg} / \mathrm{kg}$	intralipid (not analyzed)		no	no
Germany [24] Silling et al. (1998)	RCT; empiric; allocation unknown; blinding unknown	98	heme	FLU $5.7 \mathrm{mg} / \mathrm{kg}$	AmB $0.75 \mathrm{mg} / \mathrm{kg}$		no	no
The Netherlands [25] Leenders et al. (1998)	RCT; empiric/curative; allocation by central computer; not blinded	106	heme, BMT	L-AmB $5 \mathrm{mg} / \mathrm{kg}$	AmB $1 \mathrm{mg} / \mathrm{kg}$		yes	yes
Pakistan [26] Malik et al. (1998)	RCT; empiric; allocation unknown; not blinded	100	heme	FLU 400 mg p.o.	AmB 0.5 mg kg	yes	no	no
USA [27] White et al. (1998)	RCT; empiric; allocation by central computer; blinded	213	heme, BMT, other	ABCD $4 \mathrm{mg} / \mathrm{kg}$	AmB $0.8 \mathrm{mg} / \mathrm{kg}$		yes	no
USA [28] Walsh et al. (1999)	RCT; empiric; allocation by central computer; blinded	687	heme, BMT, other	L-AmB $3 \mathrm{mg} / \mathrm{kg}$	AmB $0.6 \mathrm{mg} / \mathrm{kg}$		yes	no
The Netherlands [29] Timmers et al. (2000)	RCT; curative; allocation unknown; not blinded	24	heme, BMT	FLU 200 mg p.o.	ABCD $2 \mathrm{mg} / \mathrm{kg}$	yes	no	no
USA [30] Sandler et al. (2000)	RCT; empiric; allocation unknown; blinded	119	heme, BMT	ABCD $4 \mathrm{mg} / \mathrm{kg}$	AmB $0.8 \mathrm{mg} / \mathrm{kg}$	yes	yes	no
USA [31] Wingard et al. (2000)	RCT; empiric; allocation by pharmacy; not blinded	244	heme, BMT, other	ABLC 5 mgkg	L-AmB $3 \mathrm{mg} / \mathrm{kg}$; L-AmB 5 $\mathrm{mg} / \mathrm{kg}$	yes	yes	no
USA [32] Winston et al. (2000)	RCT; empiric; allocation unknown; not blinded	317	heme, BMT, other	FLU 400 mg i.v.	AmB 0.5 mg kg	yes	no	no
Belgium [33] Boogaerts et al. (2001)	RCT; curative; allocation by central computer, not blinded	384	heme, BMT	ITR 200-400 mg i.v/p.o.	AmB $0.6 \mathrm{mg} / \mathrm{kg}$		yes	no
USA [34] Fleming et al. (2001)	RCT; empiric/curative; allocation by central computer; blinded	82	heme	ABLC 3 mgkg	L-AmB $4 \mathrm{mg} / \mathrm{kg}$		no	yes
Belgium [35] De Beule et al. (1988)	retrospective cohort; curative	137	heme, Txp, other	ITR 100-400 mg p.o.	-	yes	no	no
USA [36] Baddour (1999)	retrospective cohort; empiric/curative	1,986	heme, BMT, other	ABLC 5 mgkg	-		yes	no
Belgium [37] Meunier et al. (1991)	retrospective cohort; empiric/curative	126	heme, Txp, other	L-AmB $5 \mathrm{mg} / \mathrm{kg}$	-	yes	no	no
Sweden [38] Ringden et al. (1994)	retrospective cohort; empiric/curative	13	heme, Txp, other	L-AmB $0.5-3 \mathrm{mg} / \mathrm{kg}$	-	yes	no	no
Sweden [39] Ringden et al. (1994)	retrospective cohort; empiric/curative	187	BMT, Txp	L-AmB $1.49 \mathrm{mg} / \mathrm{kg}$	-	yes	no	no
UK [40] Mills et al. (1994)	retrospective cohort; empiric/curative	116	heme, BMT	L-AmB $5 \mathrm{mg} / \mathrm{kg}$	-		no	no
USA [41] Denning et al. (1994)	retrospective cohort; empiric/curative	76	heme, BMT, Txp, other	ITR 400 mg p.o.	-	yes	no	yes
Sweden [42] Andstrom et al. (1996)	retrospective cohort; empiric/curative	79	BMT	L-Amb (daily dose not available)		yes	no	no
USA [43] Anaissie et al. (1996)	retrospective cohort; empiric	90	heme	FLU 400 mg p.o.	AmB 0.6 mg kg		no	no
USA [44] Noskin et al. (1999)	retrospective cohort; empiric/curative	220	BMT	ABCD $0.5-8 \mathrm{mg} \mathrm{kg}$	-		no	no
USA [45] Wingard et al. (1999)	retrospective cohort; empiric/curative	239	BMT, Txp, other	AmB (specific dosage unknown)	-		yes	no

Table 1 (continued)

Country [reference] (year)	Design; indication for antifungal therapy; allocation ${ }^{\text {a }}$ and blinding	Number of patients ${ }^{\text {b }}$	Underlying conditions	Antifungal 1 daily dose (i.v.) ${ }^{\text {c }}$	Antifungal 2 daily dose (i.v.) ${ }^{\text {c }}$	Reason for inclusion in analysis		
							Nephrotoxicity (increase in creatinine $\times 2$)	Hepatotoxicity (increase in bilirubin or transaminases $\times 3$)
USA [47] Lister (1994)	prospective cohort, empiriccurative	47	heme, Txp, other	ABLC 5 mg kg	-	yes	no	no
The Netherlands [48] De Pauw et al. (1995)	prospective cohort; curative	24	heme, BMT	FLU 400 mg i.v./p.o.	-	yes	no	no
UK [49] Oppenheim et al. (1995)	prospective cohort; empiric/curative	168	heme, Txp, other	ABCD 6 mgkg	-		yes	no
USA [50] Bowden et al. (1996)	prospective cohort; empiriccurative	73	heme, BMT	ABCD $0.5-2 \mathrm{mg} \mathrm{kg}, 2.5-$ 4 mg kg	ABCD $4.5-6 \mathrm{mgkg}, 6.5-$ $8 \mathrm{mg} k \mathrm{~kg}$	yes	no	no
Europe [51] Troke (1997)	prospective cohort, empiric/curative	587	heme, other	FLU $100-200 \mathrm{mg}$ i.v/p.o.	-	yes	no	no
UK [52] Mehta et al. (1997)	prospective cohort empiric/urative	64	heme, BMT	ABLC 5 mg kg	-	yes	no	no
USA [53] Wingard (1997)	prospective cohort, empiric/curative	95	BMT	ABLC 5 mg kg	-	yes	no	no
Germany [54] Kruger et al. (1998)	prospective cohort, empiric/curative	115	heme, BMT, other	L-AmB 3 mgkg	-	yes	no	no
USA [55] Anaissie et al. (1998)	prospective cohort; curative	133	heme, BMT, Txp, other	ABCD 4 mgkg	-	yes	no	no
USA [56] Walsh et al. (1998)	prospective cohort; empiric	72	heme, BMT	L-AmB 1-7.5 mgkg	-	yes	no	no
USA [57] Walsh et al. (1998)	prospective cohort, empiric/curative	551	heme, BMT, other	ABLC 5 mgkg	-	no	no	no
Spain [58] Martino et al. (1999)	prospective cohort; empiric	30	hen	ABLC 1 mgkg	-	yes	no	no
USA [59] Walsh et al. (1999)	prospective cohort, empiric/curative	111	heme, BMT, other	ABLC 5 mgkg	-	yes	no	no
Europe, Australia, Canada [60] Caillot et al. (2001)	prospective cohort, empiric/curative	31	heme, BMT, other	ITR 200 mg day i.v/p.o.	-	yes	no	no
Italy [61] Lequaglie (2002)	prospective cohort; empiric/curative	36		L-AmB 1-1.2 mgkg	-	yes	no	no
Sweden [62] Tollemar et al. (1992)	case control; empiric/curative	20	heme, BMT, Txp	L-AmB 1 mgkg	AmB 0.6 mgkg	yes	no	no
UK [63] Clark et al. (1998)	case control; empiric/curative	66	heme, BMT, other	ABLC 5 mg kg	L-AmB 2-3 mgkg	yes	no	no
USA [64] Popp et al. (1999)	case control; empiric/curative	10	other heme, BMT, Txp,	AmB 1 mgkg	-	no	yes	no
Scandinavia [65] Ringden et al. (1998)	case series; empiric/curative	19	heme, other	ABLC 5 mgkg	-	yes	no	no
Sweden [66] Furebring et al. (2000)	case series; empiric/curative	21	heme, BMT, Txp, other	ABLC 5 mgkg	-		yes	no
Italy [67] Utili et al. (2000)	case series; curative	6	Txp	ITR $200-400 \mathrm{mg} /$ day (i.v/p. o.?)			no	no

[^0]vomiting, abdominal discomfort, and diarrhea. Again, we were not able to distinguish single episodes from generalized gastrointestinal upset in individuals. Rash was not further characterized in the trials. Reported respiratory symptoms included asthma-like bronchospasm, cough, dyspnea, and hypoxia. We used only the terms "bronchospasm" and "cough" to indicate respiratory-related adverse effects in this analysis. By choosing to focus our definitions in this way, we necessarily underreport the total number of acute drug reactions and leave considerable uncertainty as to the underlying cause or severity. "Nephrotoxicity" was defined in this analysis as a twofold increase in baseline serum creatinine, regardless of underlying renal insufficiency, and "hypokalemia" as a serum potassium concentration of $<2.5 \mathrm{mEq} / \mathrm{l}$. This restrictive definition for hypokalemia was required because it was the most frequently reported reaction across studies, although this naturally results in underreporting, especially where potassium replacement was used at a higher cut-off level. Finally, "hepatotoxicity" was defined as an increase in serum transaminase, alkaline phosphatase, or total bilirubin concentrations of three times the baseline or more, regardless of baseline levels.

Statistical analysis

To report the frequency of adverse effects across all patients in all trials, we divided the trials into treatment subgroups of patients, each receiving a distinct antifungal agent or different doses of the same antifungal agent. For each adverse effect criterion, subgroups were assessed for clinical homogeneity, and then a Cochran Q test was performed to ensure statistical homogeneity [12]. When subgroups were not heterogeneous, the data were pooled so that one global incidence rate was available per toxicity criterion and per study drug. Data to be combined went through a quality control process with rechecking of the numerator and denominator. The incidence was computed with a weighted mean of individual studies' incidences [13]. As events in some studies were rare (<5 patients), the conditions for normal approximation methods for confidence intervals were therefore not fulfilled, and we chose to use a combination of study-specific confidence intervals based on the F-distribution using a rescaling factor [13]. Study prevalences of 0% and 100% resulted in corrections of +0.5 and -0.5 cases, respectively.

The patient risk groups and the doses and durations of the study medications were also scanned manually to determine whether these impacted the incidence of adverse effects. Finally, a global Q test was computed to assess heterogeneity between subgroups. When randomized controlled trials were available, data were exported to the RevMan package (version 4.1.1; Cochrane Collaboration, Oxford, UK) and a meta-analysis was performed with a fixed-models odds ratio.

Results

We identified 84 studies that fit our selection criteria. Of these, 30 studies were excluded due to methodological or reporting issues. These are available on request. The remaining 54 studies, which included 9,228 patients, were used in this analysis and are described in Table 1.

The study drug was given empirically for fever in 10 studies, curatively for proven infection in 14 , and both empirically and curatively in 30 studies. Study medications varied in terms of prescribed dose, average actual dose (after dose adjustments), and duration of treatment, resulting in a range of cumulative doses. We report these variables in the nephrotoxicity analysis. Study participants also consisted of patients with a variety of underlying conditions, including hematologic malignancies, bone marrow transplants, solid tumors, and solid organ transplants. These patient groups were rarely reported separately in terms of adverse effects and so are not further described in this review.

Infusion-related and acute drug reactions

Table 2 outlines infusion-related and acute drug reactions. Infusion-related reactions, when defined, generally referred to adverse events occurring during infusion or for up to 1 h after infusion with the study medication. Similarly, trials with oral medications reported acute drug reactions linked with study drug ingestion. The severity or type of reaction was reported only occasionally, and the heterogeneity of definitions and patient conditions made it difficult to derive specific quantitative criteria. Many studies did not comment on the use of premedications, which are often used to reduce the frequency and severity of infusion-related reactions. Some did specify that the first dose of the drug was given without premedications, but that subsequent doses were premedicated at the discretion of the medical team. Even if the use of premedications was reported, outcomes were rarely specified as to whether these were used for patients experiencing adverse events.

Infusion-related reactions were systematically reported in 48 studies. The frequency of fever was not dosedependent, but ranged widely from 4 to 100% for AmB , from 0 to 36% for $\mathrm{L}-\mathrm{AmB}$, and from 12 to 88% for ABCD . Nausea with or without vomiting was reported most often for patients receiving itraconazole (19.7\%, range 6-24\%). Using a broad grouping of respiratory symptoms-bronchospasm or cough with or without dyspnea or hypoxiathese effects were reported more frequently with itraconazole (9.4% of 223 patients) and ABLC (8.5% of 307 patients) than with conventional AmB. Discontinuation of the study drug due to infusion-related reactions was, surprisingly, two times higher with ABCD and ABLC than with conventional AmB , and probably due to the limited alternatives to AmB between 1990 and 1995 and to the fact
Table 2 Patients experiencing infusion-related or acute drug reactions

Study drug ${ }^{\text {a }}$ [references]	Fever		Nausea		Rash		Bronchospasm		Discontinuation due to any IRR	
	No. of patients ${ }^{\text {b }}$	Percent ($95 \% \mathrm{Cl}$)	No. of patients ${ }^{\text {b }}$	Percent (95\%CI)	No. of patients ${ }^{\text {b }}$	Percent ($95 \% \mathrm{Cl}$)	No. of patients ${ }^{\text {b }}$	Percent ($95 \% \mathrm{Cl}$)	No. of patients ${ }^{\text {b , }}$ c	Percent (95\%CI)
Amphotericin formulation										
AmB [14, 17-19, 23-26, 28, 30, 32, 33, 43, 62, 68]	1,180	34.2 (32.0-36.4)	871	19.2 (17.2-21.9)	408	2.9 (1.9-6.0)	1,073	7.2 (6.0-9.2)	1,314	1.4 (1.2-3.1)
ABLC [16, 31, 34, 47, 52, 53, 58, 59, 63, 65, 66, 69]	386	31.1 (27.3-35.7)	118	11.9 (7.7-20.2)	40	15.0 (8.6-3.1)	307	8.5 (6.4-13.0)	697	3.7 (3.0-6.3)
ABCD [29, 30, 44, 49, 50, 55]	816	37.4 (34.3-40.3)	263	7.2 (4.7-11.7)	168	5.4 (2.5-10.0)	608	6.1 (4.6-8.8)	816	3.9 (3.2-6.2)
L-Amb $[22,25,28,31,34,37-40,42,46,54,61-63,69]$ Azoles	1,126	11.2 (9.9-13.4)	923	12.2 (11.0-14.6)	304	1.6 (1.0-5.4)	606	2.6 (2.1-5.2)	1,417	1.6 (1.2-3.1)
Fluconazole [17-19, 26, 29, 32, 43, 48, 51]	422	1.4 (0.9-4.2)	837	2.0 (1.3-3.7)	865	2.0 (1.3-3.5)	222	0 (0-3.8)	1,139	0.0 (0.0-1.5)
Itraconazole [14, 33, 35, 41, 60, 67]	223	8.5 (5.1-13.4)	299	19.7 (15.9-24.9)	127	8.7 (5.0-16.1)	223	9.4 (6.0-14.5)	462	2.4 (1.7-5.2)

 amphotericin B (AmBisome)
${ }^{\text {a }}$ Not all studies referenced reported infusion-related reactions as listed in the table
All patients included in studies reporting any infusion-related or acute drug toxicity
that many patients on newer agents had failed AmB therapy, a discontinuation that was not considered in this analysis.

In the meta-analysis, 11 randomized controlled trials reported fever in patients receiving study medications: fluconazole vs AmB [17-19, 26, 32], L-AmB vs AmB [25, 28], ABCD vs $\mathrm{AmB}[27,30]$, and ABLC vs L-AmB [31, 34], but a majority of these studies were too heterogeneous to be pooled. With the exclusion of the German study by Abele-Horn et al. [17], which used a dose of fluconazole inconsistent with the four other studies, trials comparing fluconazole with AmB had the following patient inclusion criteria: Malik et al. [26] and Winston et al. [32] required neutropenia [absolute neutrophil count (ANC) <500 cells/ mm^{3}]; Viscoli et al. [18], Malik et al. [26], and Winston et al. [32] included only patients with hematologic malignancies and defined "fever" as $>38^{\circ} \mathrm{C}$, whereas Anaissie et al. [19] used a threshold of $>38.3^{\circ} \mathrm{C}\left(101^{\circ} \mathrm{F}\right)$. Days on broad-spectrum antibiotics varied between 2 and 4 in four studies [18, 19, 26, 32]. These studies were statistically homogeneous, however, and showed that fluconazole was associated less often with fever than AmB. Data on ABLC vs L-AmB were also pooled, favoring L-AmB in terms of fever profile, although inclusion criteria were not given explicitly in the study by Wingard et al. [31] and therefore could not be compared clinically. Concerning nausea, seven randomized controlled trials were available, including two comparing fluconazole and AmB and two comparing L-AmB and conventional AmB. These studies were pooled but showed no difference in nausea experienced during treatment. Only five randomized controlled trials presented data on rash, including three that compared fluconazole and AmB. Again, of these, the studies by Malik et al. [26] and Winston et al. [32] were clinically homogeneous, while the study of Anaissie et al. [19] offered little information on inclusion criteria. Once pooled, there was no difference between the two antifungal agents causing rashes. Eight randomized trials reported bronchospasms, but only four used the same study drugs: fluconazole vs $\mathrm{AmB}[26,32]$ and ABCD vs $\mathrm{AmB}[27,30]$, where all included patients had hematologic malignancies or bone marrow transplants with neutropenia and 3 days of broad-spectrum antibiotics. The respiratory event profile was surprisingly more favorable for AmB than for ABCD.

Nephrotoxicity

Nephrotoxicity was defined by a number of criteria across studies: a flat increase of $0.5 \mathrm{mg} / \mathrm{dl}$ over the baseline serum creatinine level, an increase of $1.5-3$ times the baseline creatinine level, a peak serum creatinine level of $2.5-$ $3.5 \mathrm{mg} / \mathrm{dl}$, a 50% decrease in creatinine clearance, and so on (Table 3). Fifteen authors reported nephrotoxicity without definitions. The most frequent criterion used for reporting nephrotoxicity was a twofold increase in baseline serum creatinine, as described in 14 studies representing 4,633 evaluable patients. The highest rates of nephrotoxicity using this criterion were seen among patients

Table 3 Patients experiencing nephrotoxicity

Study drug [references]	Nephrotoxicity (baseline creatinine $\times 2$)		Discontinuation due to nephrotoxicity	
	Number of patients	Percent (95\% CI)	Number of patients ${ }^{\text {a }}$	Percent (95\% CI)
Amphotericin formulation				
$\begin{aligned} & \text { AmB }\left[14,15,16^{\mathrm{b}}, 17,18,19^{\mathrm{b}}, 20,21^{\mathrm{b}}, 23,24,25^{\mathrm{b}},\right. \\ & \left.26,27^{\mathrm{b}}, 28^{\mathrm{b}}, 30^{\mathrm{b}}, 32,33^{\mathrm{b}}, 43,45^{\mathrm{b}}, 62,64^{\mathrm{b}}\right] \end{aligned}$	1,249	33.2 (30.8-36.0)	1,850	4.8 (4.3-6.3)
$\begin{aligned} & \operatorname{ABLC}\left[16^{\mathrm{b}}, 31^{\mathrm{b}}, 34,36^{\mathrm{b}}, 47,52,53,57-59,63,\right. \\ & \left.65,66^{\mathrm{b}}, 69\right] \end{aligned}$	2,072	16.5 (14.8-18.3)	3,067	1.0 (0.8-1.8)
ABCD [$\left.27^{\text {b }}, 30,49^{\text {b }}, 55\right]$	323	21.1 (17.2-26.2)	456	0.4 (0.3-2.8)
$\begin{aligned} & \text { L-Amb }\left[21^{\mathrm{b}}, 22,25^{\mathrm{b}}, 28^{\mathrm{b}}, 31^{\mathrm{b}}, 34,37,39,40,46,54,\right. \\ & 61-63,69] \end{aligned}$	797	14.6 (12.4-17.5)	1,554	0.3 (0.3-1.6)
Azoles				
Fluconazole [15, 17-20, 24, 26, 32, 43, 48]	-	-	650	0.0 (0.0-2.3)
Itraconazole [14, 33 $\left.{ }^{\text {b }}, 35,41,60,67\right]$	192	5.2 (2.5-9.4)	462	0.6 (0.4-3.2)

$A m B$ conventional amphotericin $\mathrm{B}, A B L C$ amphotericin B lipid complex (Abelcet), $A B C D$ amphotericin B colloidal dispersion (Amphocil), $L-A m B$ liposomal amphotericin B (AmBisome)
${ }^{\text {a }}$ All patients included in studies reporting any nephrotoxicity
${ }^{\mathrm{b}}$ Articles in which nephrotoxicity was reported as defined in the table. Unmarked references used other definitions
receiving conventional AmB [33.2\%; 95\% confidence interval (CI) 30.7-36.0]. Least nephrotoxic among the lipid-soluble AmB formulations was L-AmB, with nearly of 15% of 797 patients doubling their baseline creatinine over 8-21 days on therapy, which still represents a sizeable morbidity associated with this drug. Severe renal injury requiring discontinuation of the study medication was reported in 4.8% of all 1,850 patients in the data set receiving AmB. In contrast, less than 1% of patients on LAmB and $A B C D$ were taken off the study drug due to nephrotoxicity.

In addition to different definitions of nephrotoxicity, a wide variety of dosing regimens were used. AmB was prescribed at $0.6-1 \mathrm{mg} / \mathrm{kg} /$ day for 7-22 days (cumulative doses of $360-1,200 \mathrm{mg}$). ABLC was prescribed in all four studies at $5 \mathrm{mg} / \mathrm{kg} /$ day for $7-20$ days (cumulative doses of $1,500-4,920 \mathrm{mg}$). ABCD was given to patients in four subgroups at $4 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ and at $6 \mathrm{mg} / \mathrm{kg} /$ day in one subgroup. L-AmB was given in three dosages: $1 \mathrm{mg} / \mathrm{kg}$ / day, $3 \mathrm{mg} / \mathrm{kg} /$ day, and $5 \mathrm{mg} / \mathrm{kg} /$ day, with cumulative doses ranging from $1,500 \mathrm{mg}$ to $3,865 \mathrm{mg}$ for the latter two clinically relevant dosages. The lowest dose of L-AmB had the lowest rate of nephrotoxicity (8%). Similarly, the highest dosage of ABCD ($6 \mathrm{mg} / \mathrm{kg} /$ day $)$ had the highest rate of nephrotoxicity for that lipid formulation (29%) (data not shown). No other dose relationships or trends were apparent.

In the meta-analysis, we included five randomized controlled trials that reported nephrotoxicity as a doubling of the serum creatinine level. Of these, two compared ABCD with $\mathrm{AmB}[27,70]$ and were clinically homogeneous but were too statistically heterogeneous to be pooled. Three others compared L-AmB with AmB among neutropenic patients (ANC <500 cells $/ \mathrm{mm}^{3}$), showing that LAmB was less nephrotoxic than conventional therapy [odds ratio (OR) 0.40 ($95 \% \mathrm{CI}, 0.30-0.54$)] [21, 25, 28].

Hypokalemia

Most studies reported hypokalemia either without defining the severity or by describing potassium replacement requirements. Today, potassium monitoring and replacement in patients on antifungal agents is the standard of care. In our analysis, no patients were taken off the study drug due to hypokalemia, although one patient receiving ABCD died from cardiac arrhythmias that may have been hypokalemia-induced [27]. Details of the analysis of the specific drugs can be provided on request.

Hepatotoxicity

Hepatotoxicity was defined in a variety of different ways, though generally as an increase in serum transaminase, alkaline phosphatase, and/or total bilirubin concentrations. The degree of reported increase varied from 1.5 to 5 times the baseline values, and in some studies depended on whether "baseline" was within the normal range (Table 4). Others used a peak total bilirubin value that ranged from 3 to $8 \mathrm{mg} / 100 \mathrm{ml}$. Most often, hepatotoxicity was defined as an increase in serum transaminase or bilirubin concentrations 1.5 times (1,424 patients) and 3 times (705 patients) baseline values. No criteria were given to describe liver injury for 2,695 evaluable patients, although 30 studies did report if patients required discontinuation of the study drug due to hepatotoxicity. For this analysis, we report increases in hepatic enzymes or total bilirubin greater than three times the baseline value or increases requiring discontinuation of the study drug, which was one of the two most common definitions and which we felt to be clinically relevant.

Patients were excluded from itraconazole studies if they had underlying liver damage or had taken certain

Table 4 Patients experiencing hepatotoxicity

| Study drug [references] | Hepatotoxicity (baseline bilirubin or
 transaminases $\times 3)$ | Discontinuation due to hepatotoxicity |
| :--- | :---: | :---: | :---: | :---: |
| | | |
| Number of patients Percent $(95 \% \mathrm{CI})$ | | |

$A m B$ conventional amphotericin $\mathrm{B}, A B L C$ amphotericin B lipid complex (Abelcet), $A B C D$ amphotericin B colloidal dispersion (Amphocil), $L-A m B$ liposomal amphotericin B (AmBisome)
${ }^{\mathrm{a}}$ All patients included in studies reporting any hepatotoxicity
${ }^{\mathrm{b}}$ Articles in which hepatotoxicity was reported as defined in the table. Unmarked references used other definitions
medications metabolized by the liver, such as oral anticoagulants, barbiturates, and some oral hypoglycemics, among others. Despite such precautions, itraconazole was stopped due to hepatotoxicity in 1.6% of patients $(95 \% \mathrm{CI}$, $1.0-4.2$), as reported in five studies (442 patients).

In the meta-analysis, four randomized controlled trials reported hepatotoxicity in terms of increased bilirubin and serum transaminase concentrations three times above baseline levels. One study compared fluconazole with AmB and the second compared ABLC with L-AmB. The two trials comparing $\mathrm{L}-\mathrm{AmB}$ and AmB among neutropenic patients (ANC <500 cells $/ \mathrm{mm}^{3}$) showed no difference in the rate of hepatotoxicity between the study medications [21, 25].

Discussion

In this analysis, we highlight the problems of heterogeneous patient groups, inconsistent definitions, and incomplete reporting of adverse effects in patients receiving systemic antifungal agents, all of which limit the significance of cross-study comparisons.

To obtain a larger sample size, many studies enrolled heterogeneous patient populations that had differing underlying risks for adverse events (e.g., patients with baseline renal or hepatic insufficiency). Furthermore, concomitant use of nephrotoxic and hepatotoxic medications was frequently mentioned but was not systematically assessed, and most studies were open-label, which may have allowed for information biases in reporting outcomes. Allocation concealment was rarely described in the randomized controlled trials used in the meta-analysis. In addition, the use of the Q test to determine statistical heterogeneity loses power when the number of studies included is less than 30 , which was the case in this analysis.

We encountered difficulty in combining patient data sets due to the range of criteria and methods used to define drug-related adverse events. This heterogeneity was particularly marked with regard to infusion-related reac-
tions, which resulted in rates that ranged widely for all study drugs. For the sake of analysis, we were required to group respiratory complications under the heading "bronchospasm or cough with or without dyspnea or hypoxia," as no study distinguished between patients with one or multiple associated symptoms. This grouping creates a serious problem regarding confounding reasons for cough in patients who may have pulmonary fungal infections or other comorbidities. As a result, our analysis suggests that patients treated with itraconazole have a higher rate of respiratory adverse effects than those treated with conventional AmB, which is clearly not accurate. Furthermore, that no such respiratory adverse effects were reported with fluconazole could be due to the fact that fluconazole is not a drug used in the treatment of pulmonary fungal infections. Concerning nephrotoxicity, many patients could not be included in this analysis due to nonstandard or undefined criteria for reporting.

In addition to varying protocols, certain studies had outlying values that affect the rates of certain adverse effects reported in this analysis. We report infusion-related reactions requiring discontinuation of ABCD at about 4%. This value includes the patient data of a prematurely stopped clinical trial in which prophylactic $A B C D$, administered at $2 \mathrm{mg} / \mathrm{kg} /$ day, was observed to have unacceptably high rates of infusion-related toxicity, despite the use of antihistamine and antipyretic premedications in most patients [29]. Our analysis showed that 0.3% of patients receiving $\mathrm{L}-\mathrm{AmB}$ required discontinuation of the medication due to nephrotoxicity. The discontinuation rate reported in one of the studies included was over 13%, however [34]. The authors explained this high rate by citing the concomitant use of nephrotoxic drugs (e.g., aminoglycosides or Foscarnet), which were given to seven of ten patients on $\mathrm{L}-\mathrm{AmB}$ who developed nephrotoxicity. Finally, we report hepatotoxicity requiring discontinuation of the study drug as occurring in 1% of patients receiving ABLC. There were no reports of hepatotoxicity requiring ABLC discontinuation among five subgroups consisting of 637 patients receiving ABLC. In contrast, Ringden et al.
[65] reported a case series in which ABLC was discontinued in 14 of 19 (74\%) patients due to adverse effects, including 36.8% for liver damage. The authors were unable to explain this high rate, which has been refuted in subsequent correspondence to the same journal. We chose to keep these outliers for the present analysis to avoid further selection bias in our data set.

Aside from phase I/II trials, we identified few published reviews that report comprehensive rates of adverse effects due to antifungal therapies for comparison. Certain data are, however, reassuring. Our pooled analysis showed that fever occurred in one-third to one-half of patients receiving AmB, ABLC, and ABCD, which is consistent with previous reports [5, 71]. On the basis of similar definitions, our findings regarding nephrotoxicity were also similar to findings in other analyses [5, 8, 71, 72].

Our analysis of clinical studies leaves many clinical questions unanswered. While we demonstrate that L-AmB is the least toxic and best tolerated of the four AmB preparations, the difference is not significant from a clinical point of view. More important, but missing from the study reports, are the clinical characteristics and outcomes of patients who switched medications due to toxicity once other therapeutic options were available. Were these patients on concomitant nephrotoxic medications? Did they have baseline renal insufficiency? How many required dialysis? Fluconazole is also "safe" compared to conventional AmB, although direct comparisons may not be legitimate given the different indications and different patient risk groups for Aspergillus vs Candida infections. Itraconazole, on the other hand, carries a considerable risk of hepatotoxicity, which should be of concern in certain patient groups. The clinical question "which patients?" remains to be answered definitively, despite growing experience with the medications. Investigators should clearly identify which patients developed elevated liver values and if these were the same patients with underlying hepatic risks (e.g., venous occlusive disease, graft-vs-host disease, baseline hepatic injury, concomitant hepatotoxic medications, etc.). From the data presented in the studies, we are unable to comment on adverse effects among patients with baseline renal and hepatic impairment, which could affect the clinical choice of an agent for a given patient.

More studies are needed to identify patient profiles that make one antifungal medication clearly less harmful than another. These should be double-blinded studies in which patients, investigators, and outcome assessors remain unaware of the drug assignment for the duration of the study. These studies should have adequate sample sizes and should employ sound randomization and allocation concealment methods to minimize bias. Descriptions of patient demographics, including renal and hepatic insufficiency, should be explicit. Authors should report prescribed doses and observed doses of the antifungal agents along with the mean and median durations of treatment and the cumulative doses. Concomitant nephrotoxic and heptatotoxic medications or confounders, such as preinfusion medications, should be analyzed in relation to corresponding
toxicities. Finally, there needs to be a standardization of the definitions of adverse outcomes. On the basis of the frequency that the following terms are used in the available literature, the simplicity of monitoring these variables, and the specific clinical relevance of each event, we propose the following definitions of adverse effects.

Infusion-related reactions, which commence during infusion or up to 1 h after infusion of the study medication, should be reported in the following categories:

- General: flushing, rigors
- Respiratory: cough, dyspnea without hypoxia, dyspnea with hypoxia
- Gastrointestinal: nausea without vomiting, vomiting, abdominal pain
- Neurological: headache, confusion
- Dermatologic: maculopapular rash, urticaria
- Other events

Specificity of symptoms and signs is important to distinguish a drug-related reaction from those associated with the underlying fungal infection or condition. Furthermore, certain specific adverse effects have clinical implications when associated with a particular drug for the selection of an antifungal agent in a given patient. From our analysis, we conclude that "fever" and "adverse reaction requiring discontinuation of the study drug," while important to note, are weak criteria with many confounders in severely ill patients. In addition, "rash" is nonspecific and may describe a variety of skin manifestations, including local skin irritation at the infusion site. These, therefore, should not be used to describe acute drug reactions in clinical trials.

Nephrotoxicity due to AmB therapy is mediated through direct toxic effects on renal tubular cells, as well as through vasoconstriction. Both processes reduce glomerular filtration [73]. Serum creatinine concentration, which is the measure most frequently used to assess renal function, has inherent variability with regard to individual patients due to the influence of muscle mass and the tubular secretion of creatinine. In addition, this measure can underestimate the true degree of renal impairment in terms of glomerular filtration rate. A more accurate estimate of renal function is the creatinine clearance. The Cockroft-Gault formula used to estimate creatinine clearance in patients with stable kidney function has been shown to correlate reasonably well with a patient's actual glomerular filtration rate and may also be more appropriate than serum creatinine concentration for tracking acute changes in renal function during antifungal therapy [74]. We therefore suggest that "nephrotoxicity," measured during the treatment period and up to 3 days after discontinuation of the study drug, be defined as an increase in serum creatinine of greater than two times the baseline value or a 50% decrease in creatinine clearance from baseline, as estimated by the CockroftGault formula: creatinine clearance $=([140-$ age $] \times$ weight in kilograms $) /(72 \times$ serum creatinine $[\mathrm{mg} / \mathrm{dl}])$ [74]. Ideally, both values should be reported to allow for comparisons between studies. Baseline refers to the value just prior to the initiation of antifungal therapy.

On the basis of this review, we recommend that "hepatotoxicity," measured during the treatment period and up to 3 days after discontinuation of the study drug, be defined as an increase in serum total bilirubin or transaminase concentrations greater than two and three times the upper limit of normal concentrations in patients with baseline normal liver functions. Patients with comorbidities such as graft-vs-host-disease, venous occlusive disease, and shock should be identified in studies where there is an association with elevated liver values.

In summary, numerous problems and inconsistencies exist regarding study protocols and the reporting of toxicity data for available systemic antifungal agents. Results of this and other comparative reviews remain questionable, given such heterogeneity. To clarify relative toxicities, standard definitions that are universally applicable and clinically relevant are warranted. Furthermore, toxicities should be stratified by patient characteristics, and the use of concomitant nephrotoxic, hepatotoxic, and preinfusion medications should be explicit.

Acknowledgements Financial support was provided by the Programme Hospitalier de Recherche Clinique 1993 on aspergillosis, the University sClaude Bernard Lyon 1, the Groupe de Recherche sur les Infections Fongiques, and Merck and Co.

References

1. Le Dictionnaire Vidal (2000) Vidal. Issy les Moulineaux, France
2. Hay RJ (1994) Liposomal amphotericin B. AmBisome. J Infect 28(Suppl 1):35-43
3. Hiemenz JW, Walsh TJ (1996) Lipid formulations of amphotericin B: recent progress and future directions. Clin Infect Dis 22 (Suppl 2):S133-S144
4. Lopez-Berestein G, Fainstein V, Hopfer R, Mehta K, Sullivan MP, Keating M, Rosenblum MG, Mehta R, Luna M, Hersh EM et al (1985) Liposomal amphotericin B for the treatment of systemic fungal infections in patients with cancer: a preliminary study. J Infect Dis 151:704-710
5. Wong-Beringer A, Jacobs RA, Guglielmo BJ (1998) Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis 27:603-618
6. Lister J (1996) Amphotericin B lipid complex (Abelcet) in the treatment of invasive mycoses: the North American experience. Eur J Haematol (Suppl 57):18-23
7. Herbrecht R, Letscher V, Andres E, Cavalier A (1999) Safety and efficacy of amphotericin B colloidal dispersion. An overview. Chemotherapy 45 (Suppl 1):67-76
8. Linden P, Williams P, Chan KM (2000) Efficacy and safety of amphotericin B lipid complex injection (ABLC) in solid-organ transplant recipients with invasive fungal infections. Clin Transplant 14:329-339
9. Ringden O, Meunier F, Tollemar J, Ricci P, Tura S, Kuse E, Viviani MA, Gorin NC, Klastersky J, Fenaux P et al(1991) Efficacy of amphotericin B encapsulated in liposomes (AmBisome) in the treatment of invasive fungal infections in immunocompromised patients. J Antimicrob Chemother 28 (Suppl B):73-82
10. Rapp RP, Gubbins PO, Evans ME (1997) Amphotericin B lipid complex. Ann Pharmacother 31:1174-1186
11. Product insert (2000) Sporanox (itraconazole). Janssen Pharmaceutica Products, Titusville NJ
12. Cucherat M (1997) Méta-analyse des essais thérapeutiques. Collection évaluation et statistique. Masson, Paris, p 390
13. Waller JL, Addy CL, Jackson KL, Garrison CZ (1994) Confidence intervals for weighted proportions. Stat Med 13:1071-1082
14. van't Wout JW, Novakova I, Verhagen CA, Fibbe WE, de Pauw BE, van der Meer JW (1991) The efficacy of itraconazole against systemic fungal infections in neutropenic patients: a randomised comparative study with amphotericin B. J Infect 22:45-52
15. Rex JH, Bennett JE, Sugar AM, Pappas PG, van der Horst CM, Edwards JE, Washburn RG, Scheld WM, Karchmer AW, Dine AP et al (1994) A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. N Engl J Med 331:1325-1330
16. Anaissie EJ, White MH, Uzun O, Singer C, Bodey GP, Azarnia N, Lopez-Berestein G, Matzke D (1995) Abelcet (Amphotericin B lipid complex) vs amphotericin B for treatment of invasive candidiasis: a prospective, randomized multicenter trial. In: Program and abstracts of the 35th Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract number LM-21
17. Abele-Horn M, Kopp A, Sternberg U, Ohly A, Dauber A, Russwurm W, Buchinger W, Nagengast O, Emmerling P (1996) A randomized study comparing fluconazole with amphotericin B/5-flucytosine for the treatment of systemic Candida infections in intensive care patients. Infection 24:426-432
18. Viscoli C, Castagnola E, Van Lint MT, Moroni C, Garaventa A, Rossi MR, Fanci R, Menichetti F, Caselli D, Giacchino M, Congiu M (1996) Fluconazole versus amphotericin B as empirical antifungal therapy of unexplained fever in granulocytopenic cancer patients: a pragmatic, multicentre, prospective and randomised clinical trial. Eur J Cancer 32A:814-820
19. Anaissie EJ, Darouiche RO, Abi-Said D, Uzun O, Mera J, Gentry LO, Williams T, Kontoyiannis DP, Karl CL, Bodey GP (1996) Management of invasive candidal infections: results of a prospective, randomized, multicenter study of fluconazole versus amphotericin B and review of the literature. Clin Infect Dis 23:964-972
20. Phillips P, Shafran S, Garber G, Rotstein C, Smaill F, Fong I, Salit I, Miller M, Williams K, Conly JM, Singer J, Ioannou S (1997) Multicenter randomized trial of fluconazole versus amphotericin B for treatment of candidemia in non-neutropenic patients. Eur J Clin Microbiol Infect Dis 16:337-345
21. Prentice HG, Hann IM, Herbrecht R, Aoun M, Kvaloy S, Catovsky D, Pinkerton CR, Schey SA, Jacobs F, Oakhill A, Stevens RF, Darbyshire PJ, Gibson BE (1997) A randomized comparison of liposomal versus conventional amphotericin B for the treatment of pyrexia of unknown origin in neutropenic patients. Br J Haematol 98:711-718
22. Ellis M, Spence D, de Pauw B, Meunier F, Marinus A, Collette L, Sylvester R, Meis J, Boogaerts M, Selleslag D, Krcmery V, von Sinner W, MacDonald P, Doyen C, Vandercam B (1998) An EORTC international multicenter randomized trial (EORTC no. 19923) comparing two dosages of liposomal amphotericin B for treatment of invasive aspergillosis. Clin Infect Dis 27:1406-1412
23. Schoffski P, Freund M, Wunder R, Petersen D, Kohne CH, Hecker H, Schubert U, Ganser A (1998) Safety and toxicity of amphotericin B in glucose 5% or intralipid 20% in neutropenic patients with pneumonia or fever of unknown origin: randomised study. BMJ 317:379-384
24. Silling G, Fegeler W, Roos N, Boes C, Schomaker R, Essink M, Buchner T (1998) Traitement empirique précoce chez des patients neutropéniques en hématologie: étude comparative randomisée fluconazole versus amphotéricine $\mathrm{B} / 5$-flucytosine. Hématologie 4 (Suppl II, No. 3):19-23
25. Leenders AC, Daenen S, Jansen RL, Hop WC, Lowenberg B, Wijermans PW, Cornelissen J, Herbrecht R, van der Lelie H, Hoogsteden HC, Verbrugh HA, de Marie S (1998) Liposomal amphotericin B compared with amphotericin B deoxycholate in the treatment of documented and suspected neutropeniaassociated invasive fungal infections. Br J Haematol 103:205-212
26. Malik IA, Moid I, Aziz Z, Khan S, Suleman M (1998) A randomized comparison of fluconazole with amphotericin B as empiric antifungal agents in cancer patients with prolonged fever and neutropenia. Am J Med 105:478-483
27. White MH, Bowden RA, Sandler ES, Graham ML, Noskin GA, Wingard JR, Goldman M, van Burik JA, McCabe A, Lin JS, Gurwith M, Miller CB (1998) Randomized, double-blind clinical trial of amphotericin B colloidal dispersion vs amphotericin B in the empirical treatment of fever and neutropenia. Clin Infect Dis 27:296-302
28. Walsh TJ, Finberg RW, Arndt C, Hiemenz J, Schwartz C, Bodensteiner D, Pappas P, Seibel N, Greenberg RN, Dummer S, Schuster M, Holcenberg JS (1999) Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. N Engl J Med 340:764-771
29. Timmers GJ, Zweegman S, Simoons-Smit AM, van Loenen AC, Touw D, Huijgens PC (2000) Amphotericin B colloidal dispersion (Amphocil) vs fluconazole for the prevention of fungal infections in neutropenic patients: data of a prematurely stopped clinical trial. Bone Marrow Transplant 25:879-884
30. Sandler ES, Mustafa MM, Tkaczewski I, Graham ML, Morrison VA, Green M, Trigg M, Abboud M, Aquino VM, Gurwith M, Pietrelli L (2000) Use of amphotericin B colloidal dispersion in children. J Pediatr Hematol Oncol 22:242-246
31. Wingard JR, White MH, Anaissie E, Raffalli J, Goodman J, Arrieta A (2000) A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. Clin Infect Dis 31:1155-1163
32. Winston DJ, Hathorn JW, Schuster MG, Schiller GJ, Territo MC (2000) A multicenter, randomized trial of fluconazole versus amphotericin B for empiric antifungal therapy of febrile neutropenic patients with cancer. Am J Med 108:282-289
33. Boogaerts M, Winston DJ, Bow EJ, Garber G, Reboli AC, Schwarer AP, Novitzky N, Boehme A, Chwetzoff E, De Beule K (2001) Intravenous and oral itraconazole versus intravenous amphotericin B deoxycholate as empirical antifungal therapy for persistent fever in neutropenic patients with cancer who are receiving broad-spectrum antibacterial therapy. A randomized, controlled trial. Ann Intern Med 135:412-422
34. Fleming RV, Kantarjian HM, Husni R, Rolston K, Lim J, Raad I, Pierce S, Cortes J, Estey E (2001) Comparison of amphotericin B lipid complex (ABLC) vs AmBisome in the treatment of suspected or documented fungal infections in patients with leukemia. Leuk Lymphoma 40:511-520
35. De Beule K, De Doncker P, Cauwenbergh G, Koster M, Legendre R, Blatchford N, Daunas J, Chwetzoff E (1988) The treatment of aspergillosis and aspergilloma with itraconazole: clinical results of an open international study (1982-1987). Mycoses 31:476-485
36. Baddour L (1999) Dosing experience with amphotericin B lipid complex (ABLC). In: Program and abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy. Poster presentation
37. Meunier F, Prentice HG, Ringden O (1991) Liposomal amphotericin B (AmBisome): safety data from a phase II/III clinical trial. J Antimicrob Chemother 28 (Suppl B):83-91
38. Ringden O, Tollemar J, Dahllof G, Tyden G (1994) High cure rate of invasive fungal infections in immunocompromised children using AmBisome. Transplant Proc 26:175-177
39. Ringden O, Andstrom E, Remberger M, Svahn BM, Tollemar J (1994) Safety of liposomal amphotericin B (AmBisome) in 187 transplant recipients treated with cyclosporin. Bone Marrow Transplant 14 (Suppl 5):S10-S14
40. Mills W, Chopra R, Linch DC, Goldstone AH (1994) Liposomal amphotericin B in the treatment of fungal infections in neutropenic patients: a single-centre experience of 133 episodes in 116 patients. Br J Haematol 86:754-760
41. Denning DW, Lee JY, Hostetler JS, Pappas P, Kauffman CA, Dewsnup DH, Galgiani JN, Graybill JR, Sugar AM, Catanzaro A et al (1994) NIAID Mycoses Study Group multicenter trial of oral itraconazole therapy for invasive aspergillosis. Am J Med 97:135-144
42. Andstrom EE, Ringden O, Remberger M, Svahn BM, Tollemar J (1996) Safety and efficacy of liposomal amphotericin B in allogeneic bone marrow transplant recipients. Mycoses 39:185193
43. Anaissie EJ, Vartivarian SE, Abi-Said D, Uzun O, Pinczowski H, Kontoyiannis DP, Khoury P, Papadakis K, Gardner A, Raad II, Gilbreath J, Bodey GP (1996) Fluconazole versus amphotericin B in the treatment of hematogenous candidiasis: a matched cohort study. Am J Med 101:170-176
44. Noskin G, Pietrelli L, Gurwith M, Bowden R (1999) Treatment of invasive fungal infections with amphotericin B colloidal dispersion in bone marrow transplant recipients. Bone Marrow Transplant 23:697-703
45. Wingard JR, Kubilis P, Lee L, Yee G, White M, Walshe L, Bowden R, Anaissie E, Hiemenz J, Lister J (1999) Clinical significance of nephrotoxicity in patients treated with amphotericin B for suspected or proven aspergillosis. Clin Infect Dis 29:1402-1407
46. Emminger W, Graninger W, Emminger-Schmidmeier W, Zoubek A, Pillwein K, Susani M, Wasserer A, Gadner H (1994) Tolerance of high doses of amphotericin B by infusion of a liposomal formulation in children with cancer. Ann Hematol 68:27-31
47. Lister J (1994) Amphotericin B lipid complex in the management of serious systemic mycoses in patients intolerant to amphotericin B therapy. In: Program and abstracts of the 36th Annual Meeting \& Exposition of the American Society of Hematology. Poster number 1209
48. De Pauw BE, Raemaekers JM, Donnelly JP, Kullberg BJ, Meis JF (1995) An open study on the safety and efficacy of fluconazole in the treatment of disseminated Candida infections in patients treated for hematological malignancy. Ann Hematol 70:83-87
49. Oppenheim BA, Herbrecht R, Kusne S (1995) The safety and efficacy of amphotericin B colloidal dispersion in the treatment of invasive mycoses. Clin Infect Dis 21:1145-1153
50. Bowden RA, Cays M, Gooley T, Mamelok RD, van Burik JA (1996) Phase I study of amphotericin B colloidal dispersion for the treatment of invasive fungal infections after marrow transplant. J Infect Dis 173:1208-1215
51. Troke PF (1997) Large-scale multicentre study of fluconazole in the treatment of hospitalised patients with fungal infections. Eur J Clin Microbiol Infect Dis 16:287-295
52. Mehta J, Kelsey S, Chu P, Powles R, Hazel D, Riley U, Evans C, Newland A, Treleaven J, Singhal S (1997) Amphotericin B lipid complex (ABLC) for the treatment of confirmed or presumed fungal infections in immunocompromised patients with hematologic malignancies. Bone Marrow Transplant 20:39-43
53. Wingard JR (1997) Efficacy of amphotericin B lipid complex injection (ABLC) in bone marrow transplant recipients with life-threatening systemic mycoses. Bone Marrow Transplant 19:343-347
54. Kruger WH, Kroger N, Russmann B, Renges H, Kabisch H, Zander AR (1998) Treatment of mycotic infections after haemopoietic progenitor cell transplantation with liposomal amphotericin-B. Bone Marrow Transplant 22 (Suppl 4):S10S13
55. Anaissie EJ, Mattiuzzi GN, Miller CB, Noskin GA, Gurwith MJ, Mamelok RD, Pietrelli LA (1998) Treatment of invasive fungal infections in renally impaired patients with amphotericin B colloidal dispersion. Antimicrob Agents Chemother 42:606611
56. Walsh TJ, Yeldandi V, McEvoy M, Gonzalez C, Chanock S, Freifeld A, Seibel NI, Whitcomb PO, Jarosinski P, Boswell G, Bekersky I, Alak A, Buell D, Barret J, Wilson W (1998) Safety, tolerance, and pharmacokinetics of a small unilamellar liposomal formulation of amphotericin B (AmBisome) in neutropenic patients. Antimicrob Agents Chemother 42:23912398
57. Walsh TJ, Hiemenz JW, Seibel NL, Perfect JR, Horwith G, Lee L, Silber JL, DiNubile MJ, Reboli A, Bow E, Lister J, Anaissie EJ (1998) Amphotericin B lipid complex for invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis 26:1383-1396
58. Martino R, Subira M, Domingo-Albos A, Sureda A, Brunet S, Sierra J (1999) Low-dose amphotericin B lipid complex for the treatment of persistent fever of unknown origin in patients with hematologic malignancies and prolonged neutropenia. Chemotherapy 45:205-212
59. Walsh TJ, Seibel NL, Arndt C, Harris RE, Dinubile MJ, Reboli A, Hiemenz J, Chanock SJ (1999) Amphotericin B lipid complex in pediatric patients with invasive fungal infections. Pediatr Infect Dis J 18:702-708
60. Caillot D, Bassaris H, McGeer A, Arthur C, Prentice HG, Seifert W, De Beule K (2001) Intravenous itraconazole followed by oral itraconazole in the treatment of invasive pulmonary aspergillosis in patients with hematologic malignancies, chronic granulomatous disease, or AIDS. Clin Infect Dis 33:e83-e90
61. Lequaglie C (2002) Liposomal amphotericin B (AmBisome): efficacy and safety of low-dose therapy in pulmonary fungal infections. J Antimicrob Chemother 49 (Suppl 1):49-50
62. Tollemar J, Andersson S, Ringden O, Tyden G (1992) A retrospective clinical comparison between antifungal treatment with liposomal amphotericin B (AmBisome) and conventional amphotericin B in transplant recipients. Mycoses 35:215-220
63. Clark AD, McKendrick S, Tansey PJ, Franklin IM, Chopra R (1998) A comparative analysis of lipid-complexed and liposomal amphotericin B preparations in haematological oncology. Br J Haematol 103:198-204
64. Popp AI, White MH, Quadri T, Walshe L, Armstrong D (1999) Amphotericin B with and without itraconazole for invasive aspergillosis: a three-year retrospective study. Int J Infect Dis 3:157-160
65. Ringden O, Jonsson V, Hansen M, Tollemar J, Jacobsen N (1998) Severe and common side-effects of amphotericin B lipid complex (Abelcet). Bone Marrow Transplant 22:733-734
66. Furebring M, Oberg G, Sjolin J (2000) Side-effects of amphotericin B lipid complex (Abelcet) in the Scandinavian population. Bone Marrow Transplant 25:341-343
67. Utili R, Zampino R, De Vivo F, Maiello C, Andreana A, Mormone G, Marra C, Tripodi MF, Sarnataro G, Cione P, Cuccurullo S, Cotrufo M (2000) Improved outcome of pulmonary aspergillosis in heart transplant recipients with early diagnosis and itraconazole treatment. Clin Transplant 14:282-286
68. Barquist E, Fein E, Shadick D, Johnson J, Clark J, Shatz D (1999) A randomized prospective trial of amphotericin B lipid emulsion versus dextrose colloidal solution in critically ill patients. J Trauma 47:336-340
69. Kontoyiannis DP, Andersson BS, Lewis RE, Raad II (2001) Progressive disseminated aspergillosis in a bone marrow transplant recipient: response with a high-dose lipid formulation of amphotericin B. Clin Infect Dis 32:e94-e96
70. Ellis M, Shamoon A, Gorka W, Zwaan F, al-Ramadi B (2001) Severe hepatic injury associated with lipid formulations of amphotericin B. Clin Infect Dis 32:e87-e89
71. Gurwith M (1999) Clinical efficacy of amphotericin B colloidal dispersion against infections caused by Aspergillus spp. Chemotherapy 45 (Suppl 1):34-38
72. Kontoyiannis DP, Bodey GP, Mantzoros CS (2001) Fluconazole vs amphotericin B for the management of candidaemia in adults: a meta-analysis. Mycoses 44:125-135
73. Walker RJ, Duggin GG (1988) Drug nephrotoxicity. Annu Rev Pharmacol Toxicol 28:331-345
74. Cockroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31-41

[^0]: $I R R$ infusion-related reaction, $R C T$ randomized controlled trial, blind blinded for randomized controlled trials, heme hematologic disorders, $B M T$ bone marrow transplant/peripheral stem cell transplant, $T x p$ solid organ transplant, other other conditions, $A m B$ conventional amphotericin B, $L-A m B$ liposomal amphotericin (AmBisome), $A B L C$ amphotericin B lipid complex (Abelcet), $A B C D$ amphotericin B colloidal dispersion (Amphocil), ITR itraconazole, FLU fluconazole
 ${ }^{\text {a }}$ Allocation concealment for randomized controlled trials
 ${ }^{\mathrm{b}}$ Not all patients enrolled in the studies were used for toxicity analyses

