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Abstract
We explore the convergence rate of the Kačanov iteration scheme for different mod-
els of shear-thinning fluids, including Carreau and power-law type explicit quasi-
Newtonian constitutive laws. It is shown that the energy difference contracts along 
the sequence generated by the iteration. In addition, an a posteriori computable con-
traction factor is proposed, which improves, on finite-dimensional Galerkin spaces, 
previously derived bounds on the contraction factor in the context of the power-law 
model. Significantly, this factor is shown to be independent of the choice of the cut-
off parameters whose use was proposed in the literature for the Kačanov iteration 
applied to the power-law model. Our analytical findings are confirmed by a series of 
numerical experiments.
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1 Introduction

In this work, we focus on the iterative solution of nonlinear partial differential equations 
that arise in models of steady flows of incompressible shear-thinning fluids, including 
models with explicit constitutive relations of Carreau and power-law type. In particular, 
we consider the following quasi-Newtonian fluid flow problem: find (�, p) such that

where Ω ⊂ ℝ
d , d ∈ {2, 3} , is a bounded Lipschitz domain, the source term 

� ∈ L2(Ω)d is a given external force, � is the velocity vector, p denotes the pressure, 
and e(�) is the d × d rate-of-strain tensor defined by

here |e(�)| denotes the Frobenius norm of e(�) , and the (real-valued) viscosity coef-
ficient � is assumed to satisfy the following structural assumptions: 

 (A1) � ∈ C(Ω ×ℝ≥0) and it is differentiable in the second variable;
 (A2) There exist constants m𝜇,M𝜇 > 0 such that 

 (A3) � is decreasing in the second variable, i.e., ��(x, t) ≤ 0 for all t ≥ 0 and all 
x ∈ Ω , where �′ denotes the derivative of � with respect to the variable t.

The assumption (A3) asserts that the viscosity decreases with increasing strain rate, in 
line with our assumption that the fluid under consideration is shear-thinning. Moreover, 
(A2) immediately implies that � is bounded from above and below; indeed, by setting 
s = 0 , we obtain

The bounds m� and M� are, in general, closely related to the infinite and zero shear 
viscosity plateau, respectively. In the sequel, the dependence of � on x ∈ Ω will be 
suppressed.

Upon defining V ∶= {� ∈ H1
0
(Ω)d ∶ ∇ ⋅ � = 0} , the weak formulation of (1) is as 

follows:

(1)
−∇ ⋅ {�(x, |e(�)|2)e(�)} + ∇p = � in Ω,

∇ ⋅ � = 0 in Ω,

� = � on �Ω,

eij(�) ∶=
1

2

(
�ui

�xj
+

�uj

�xi

)
, i, j = 1,… , d.

(2)m�(t − s) ≤ �(x, t2)t − �(x, s2)s ≤ M�(t − s), t ≥ s ≥ 0, x ∈ Ω;

(3)m� ≤ �(x, t) ≤ M� for all x ∈ Ω, t ≥ 0.

(4)

find � ∈ V such that ∫Ω

�(|e(�)|2)e(�) ∶ e(�) �x = ∫Ω

� ⋅ � �x for all � ∈ V ,
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where e(�) ∶ e(�) denotes the Frobenius inner product of e(�) and e(�) ; we refer to 
[2] Sect.  2 for more details concerning the weak formulation  (4). The space V is 
endowed with the inner product

and the induced norm |||�|||2
Ω
= (�, �)V , � ∈ V  . We emphasize that

i.e., the norm |||⋅|||Ω is equivalent to the standard norm on H1
0
(Ω)d ; the first inequal-

ity is a special case of Korn’s inequality (see, e.g.,  inequality (1.7) in [17]), while 
the second can be easily verified by invoking the Cauchy–Schwarz inequality. In 
particular, V endowed with the inner product of  (5) and induced norm |||⋅|||Ω is a 
Hilbert space.

The weak form (4) of the boundary-value problem under consideration is known 
to have a unique solution �⋆ ∈ V  , which will be shown, nonetheless, in Sect.  2; 
moreover, this element �⋆ ∈ V  is the unique minimiser of the energy functional

where

Indeed, a straightforward calculation reveals that, for a given � ∈ V ,

where �′ denotes the Gâteaux derivative; we refer to [1, Prop.  2.1] for details. In 
particular, the weak formulation (4) is the Euler–Lagrange equation for the minimi-
sation of � over V.

A prominent iterative solver for the nonlinear problem (4) is Kačanov’s scheme, 
which, in simple terms, fixes the nonlinearity at the previous iterate: for a given 
�n ∈ V  find �n+1 ∈ V  such that

where �0 ∈ V  is an arbitrary initial guess. Early references concerning this iterative 
method include [14], where it was used to compute a stationary magnetic field in 
nonlinear media, and [5], where the convergence of the Kačanov iteration was inves-
tigated in the context of Galerkin methods; Fučík, Kratochvíl and Nečas point in 

(5)(�, �)V = ∫Ω

e(�) ∶ e(�) �x, �, � ∈ V ,

1

2

d∑
i=1

�Ω

|∇ui|2 �x ≤ �Ω

|e(�)|2 �x ≤
d∑
i=1

�Ω

|∇ui|2 �x for all � ∈ V ,

(6)�(�) ∶= ∫Ω

�

(||e(�)||2
)
�x − ∫Ω

� ⋅ � �x, � ∈ V ,

�(s) ∶=
1

2 ∫
s

0

�(t) dt.

(7)�
�(�)(�) = ∫Ω

�

(||e(�)||2
)
e(�) ∶ e(�) �x − ∫Ω

� ⋅ � �x, � ∈ V ,

(8)
∫Ω

�

(||e(�n)||2
)
e(�n+1) ∶ e(�) �x = ∫Ω

� ⋅ � �x for all � ∈ V , n = 0, 1,… ,
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their work [5] to pages 369–370 of Michlin’s 1966 monograph [15] for a description 
of the iterative method introduced by Kačanov in [13], in the context of variational 
methods for plasticity problems. Kačanov’s iteration scheme has been, by now, care-
fully examined; see, e.g., the monographs [16, Sect. 4.5] and [21, Sect. 25.14], or 
the papers [7, 8, 10]. More recently, it was shown in the articles [9] and [4] that 
the energy � from (6) contracts along the sequence generated by the Kačanov itera-
tion (8). Indeed, the first of these two papers established the energy contraction for 
a more general iteration scheme, and the latter focuses on the Kačanov scheme for 
a ‘relaxed p-Poisson problem’ involving a truncation of the nonlinearity from below 
and from above using a pair of positive cut-off parameters �− and �+ . The derived 
upper bound on the contraction factor depends on the quotient m�∕M� involving �− 
and �+ , and may be extremely close to 1 in certain situations; interestingly, this unfa-
vourable predicted dependence of the contraction factor on the ratio m�∕M� has not 
been observed in numerical experiments. It is this mismatch between the observed 
behaviour of the method and the rather more pessimistic results of the analysis 
reported in the literature that motivated the work outlined herein.

We will establish an improved upper bound on the contraction factor of the Kačanov 
iteration for a general class of shear-thinning fluids. The resulting bound will then be 
further examined for fluids obeying either the Carreau law or a relaxed power-law, to 
be specified in the lines below. It will be shown that for (finite-dimensional) Galerkin 
approximations of the relaxed power-law model it is the power-law exponent, rather 
than the ratio m�∕M� , that is responsible for the rate of convergence of the iteration. Spe-
cifically, we will show that the contraction factor of the iteration on finite-dimensional 
spaces is independent of the choice of the lower and upper cut-off parameters featuring 
in the so-called relaxed Kačanov iteration, where a truncation of the power-law nonlin-
earity from below and above is carried out by means of these two positive truncation 
parameters. To the best of our knowledge the proof of such a result was an open ques-
tion in the literature.

The paper is structured as follows. In Sect. 2 we will show that the weak formula-
tion  (4) of the problem under consideration has a unique solution, which, in turn, is 
the unique minimiser of � in V. The proof is based on auxiliary results, which will also 
be decisive for the derivation of the contraction factor in Sect. 3. In Sect. 4 we will 
perform a series of numerical experiments, which confirm our theoretical results. The 
paper closes with concluding remarks recorded in Sect. 5.

2  Existence and uniqueness of the solution

We will show in this section that the weak formulation (4) has a unique solution. To 
this end we define, for given � ∈ V , the linear operator 𝖠[�] ∶ V → V⋆ , where V⋆ 
denotes the dual space of V, by

and the linear form � ∈ V⋆ by

(9)�[�](�)(�) ∶= ∫Ω

�(|e(�)|2)e(�) ∶ e(�) �x, �,� ∈ V ,
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In terms of these, the weak formulation (4) can be restated in the following equiva-
lent form:

and the Kačanov iteration (8) takes the form: given �0 ∈ V ,

By (7) and the definitions of � and � we further have that

We will now show that the operator � ↦ 𝖠[�](�) is Lipschitz continuous and 
strongly monotone, since, in that case, the theory of strongly monotone operators 
implies that the weak equation  (10) has a unique solution �⋆ ∈ V  ; see, e.g., [16, 
Sect. 3.3] or [21, Sect. 25.4]. For the proof of Lipschitz continuity and strong mono-
tonicity of the operator � ↦ 𝖠[�](�) we require the following result, which, as well 
as its proof, is largely borrowed from [2, Lemma 3.1]. However, we place emphasis 
on sharp bounds, since these will be crucial for our convergence analysis below, 
leading to the improved factors appearing in (15) and (16).

Lemma 2.1 Let � satisfy the assumptions (A1)–(A3) and define �(t) ∶= �(t2)t , t ≥ 0. 
Then, for any �, � ∈ ℝ

d×d, the following inequalities hold:

and

where

Proof We will only prove (14), since the contraction factor will strongly rely on this 
bound, but not on (13). For the proof of the latter, we refer to [2].

A simple and straightforward calculation reveals that

𝓁(�) ∶= ∫Ω

� ⋅ � �x, � ∈ V .

(10)find � ∈ V such that �[�](�)(�) = �(�) for all � ∈ V ,

(11)
find �

n+1 ∈ V such that �[�n](�n+1)(�) = �(�) for all � ∈ V , n = 0, 1,… .

(12)�
�(�) = �[�](�) − �.

(13)|||�(|�|
2)� − �(|�|2)�|||

2 ≤ C(�, �)|� − �|2 ≤ 3M2
�
|� − �|2

(14)(�(|�|2)� − �(|�|2)�) ∶ (� − �) ≥ c(�, �)|� − �|2 ≥ m�|� − �|2,

(15)C(�, �) ∶=

(
sup
t∈(0,1)

��(|�| + t(|�| − |�|))
)2

+ 2�(|�|2)�(|�|2),

(16)c(�, �) ∶= inf
t∈(0,1)

��(|�| + t(|�| − |�|)).
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We note that the summand in  (17) can be written as (�(|�|) − �(|�|))(|�| − |�|) , 
since �(t) = �(t2)t for t ≥ 0 . Then, the mean value theorem implies that

Furthermore, since ��(t) ≤ 0 for all t ≥ 0 by (A3), and, in turn, 
��(t) = �(t2) + 2t2��(t2) ≤ �(t2) , we find that

Consequently, the summand in (18) can be bounded from below as follows

since |�||�| − � ∶ � ≥ 0 by the Cauchy–Schwarz inequality. Hence, using the estab-
lished bounds (19) and (20) for the summands in (17) and (18), respectively, yields

Finally we note that dividing (2) by (t − s) , for t > s , and taking the limit s → t yields 
that m� ≤ ��(t) ≤ M� for all t ≥ 0 , i.e., c(�, �) ≥ m� .   ◻

Now we are ready to show that the operator � , cf. (9), is strongly monotone and 
Lipschitz continuous, which implies the unique solvability of (4).

Proposition 2.2 Let � be defined as in (9), with � satisfying (A1)–(A3). 

(a) For given � ∈ V  , �[�](⋅)(⋅) is a uniformly bounded and coercive, symmetric 
bilinear form on V × V . In particular, the following inequalities hold: 

 and 

 for any �, �,� ∈ V .

(17)
(�(|�|2)� − �(|�|2)�) ∶ (� − �) = �(|�|2)|�|2 + �(|�|2)|�|2 − �(|�|2)� ∶ � − �(|�|2)� ∶ �

=
(
�(|�|2)|�| − �(|�|2)|�|)(|�| − |�|)

(18)+ (�(|�|2) + �(|�|2))(|�||�| − � ∶ �).

(19)
(�(|�|) − �(|�|))(|�| − |�|) ≥ inf

t∈(0,1)
��(|�| + t(|�| − |�|))(|�| − |�|)2 = c(�, �)(|�| − |�|)2.

c(�, �) = inf
t∈(0,1)

��(|�| + t(|�| − |�|)) ≤ min
{
�

(||�||2
)
,�

(||�||2
)}

.

(20)
(
�

(||�||2
)
+ �

(||�||2
))

(|�||�| − � ∶ �) ≥ 2c(�, �)(|�||�| − � ∶ �),

(
�

(||�||2
)
� − �

(||�||2
)
�

)
∶ (� − �) ≥ c(�, �)

(
(|�| − |�|)2 + 2

(|�||�| − � ∶ �
))

= c(�, �)
(|�|2 + |�|2 − 2� ∶ �

)

= c(�, �)|� − �|2.

�[�](�)(�) ≤ M�|||�|||Ω|||�|||Ω

(21)�[�](�)(�) ≥ m�|||�|||2Ω
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(b) The mapping � ↦ 𝖠[�](�) is Lipschitz continuous with 

 and strongly monotone with 

 Consequently, the problem (4) has a unique solution �⋆ ∈ V .

Proof Ad (a): By invoking the definition of � , cf. (9), the boundedness of the viscos-
ity coefficient � , cf. (3), and applying the Cauchy–Schwarz inequality twice, first for 
the Frobenius inner product and subsequently for the L2(Ω)-inner product, we obtain

Similarly, the inequality (3) implies the uniform coercivity (21).
Ad (b): The definition of � , cf. (9), and the Cauchy–Schwarz inequality yield

Hence, by (13) and the linearity of e(⋅) , this leads to

Applying once more the Cauchy–Schwarz inequality implies that

Similarly, by the definition of � , cf. (9), and (14) we obtain

(22)�[�](�)(�) − �[�](�)(�) ≤ √
3M����� − ����Ω�������Ω, �, �,� ∈ V

(23)�[�](�)(� − �) − �[�](�)(� − �) ≥ m�|||� − �|||2
Ω
, �, � ∈ V .

�[�](�)(�) = �Ω

�(|e(�)|2)e(�) ∶ e(�) �x

≤ M� �Ω

|e(�) ∶ e(�)| �x

≤ M�

(
�Ω

|e(�)|2 �x
)1∕2(

�Ω

|e(�)|2 �x
)1∕2

= M�|||�|||Ω|||�|||Ω.

�[�](�)(�) − �[�](�)(�) = �Ω

[
�(|e(�)|2)e(�) − �(|e(�)|2)e(�)] ∶ e(�) �x

≤ �Ω

|�(|e(�)|2)e(�) − �(|e(�)|2)e(�)||e(�)| �x.

�[�](�)(�) − �[�](�)(�) ≤ √
3M� �Ω

�e(� − �)��e(�)� �x.

�[�](�)(�) − �[�](�)(�) ≤ √
3M�

�
�Ω

�e(� − �)�2 �x
�1∕2�

�Ω

�e(�)�2 �x
�1∕2

=
√
3M����� − ����Ω�������Ω.
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The existence and uniqueness of a solution to the Eq. (4) now follows from the the-
ory of monotone operators, cf. [16, Sect. 3.3] or [21, Sect. 25.4].   ◻

Remark 2.3 Since (4) is the Euler–Lagrange equation of the minimisation problem

the above proposition yields that �⋆ ∈ V  is the unique minimiser of the functional 
� ; we emphasise that � is strictly convex thanks to the strong monotonicity  (23), 
cf. [21, Prop. 25.10]. Moreover, the Kačanov scheme (11) is well defined thanks to 
Proposition 2.2 (a) and the Lax–Milgram theorem.

3  Energy contraction

In this section, we will show that the energy error, given by �(�n) − �(�⋆) , contracts 
along the sequence {�n} generated by the Kačanov iteration (11). To this end, we need 
an auxiliary result.

Lemma 3.1 Let � and � be defined as in (9) and (6), respectively, with � satisfying 
(A1)–(A3). Then

This result is well-known for the Kačanov iteration in the given setting, and the 
proof can be found, e.g., in [21, Sect. 25.12] or [16, Sect. 4.5]. However, as it is stated 
in a slightly different form in those references, and also for the sake of completeness, 
we will include the proof of this statement nonetheless.

Proof It can be shown that

see, e.g., [10, Sect. 5.1], and therefore

�[�](�)(� − �) − �[�](�)(� − �) = �Ω

(
�(|e(�)|2)e(�) − �(|e(�)|2)e(�)) ∶ (e(�) − e(�)) �x

≥ m� �Ω

|e(� − �)|2 �x
= m�|||� − �|||2

Ω
.

min
�∈V

�(�),

(24)�(�) − �(�) ≥ 1

2
�[�](�)(�) −

1

2
�[�](�)(�) − �(�) + �(�), �, � ∈ V .

�(t) − �(s) ≥ 1

2
�(t)(t − s), t, s ≥ 0,
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for any �, � ∈ V  . Hence, by the definition of � , cf. (6), we find that

which completes the proof of the claim.   ◻

Now we are in a position to prove the contraction of the energy along the 
sequence generated by the Kačanov scheme (11). We note that similar results can 
be found, e.g., in [9, Thm. 2.1] or [4, Cor. 19].

Theorem 3.2 Assume that (A1)–(A3) hold and let � be defined as in (6). Then, the 
energy error contracts along the sequence {�n} generated by the Kačanov itera-
tion (11) in the sense that

where

and �(t) = �(t2)t for t ≥ 0.

Proof We largely proceed along the lines of [4]. However, as we want to improve the 
contraction factor from that reference and, in addition, remove any unknown con-
stants, some non-trivial modifications are necessary in the second part of the proof.

Let us define the real-valued function 𝜓(t) ∶= �(�⋆ + t(�n − �⋆)) , t ∈ [0, 1] . 
Then, by invoking the fundamental theorem of calculus, we obtain

We will first show that � �(t), t ∈ [0, 1] , is increasing. A straightforward calculation 
reveals that

�Ω

�

(||e(�)||2
)
− �

(||e(�)||2
)
�x ≥ 1

2 �Ω

�

(||e(�)||2
)(||e(�)||2 − ||e(�)||2

)
�x

=
1

2
(�[�](�)(�) − �[�](�)(�)),

�(�) − �(�) = �Ω

�

(||e(�)||2
)
�x − �Ω

�

(||e(�)||2
)
�x − �(�) + �(�)

≥ 1

2
�[�](�)(�) −

1

2
�[�](�)(�) − �(�) + �(�),

0 ≤ �(�n+1) − �(�⋆) ≤ q(n)
(
�(�n) − �(�⋆)

)
,

(25)

q(n) ∶= 1 −
1

4

⎧⎪⎨⎪⎩
ess sup

x∈Ω

𝜇

���e(�n)��2
�

inft∈(−1,1) 𝜉
�
�
max

�
0, ��e(�⋆)�� + t��e(�n) − e(�⋆)��

��
⎫⎪⎬⎪⎭

−1

,

�(�n) − �(�⋆) = ∫
1

0

𝜓 �(t) dt.
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By assumption (A3) we have that ��(t) ≤ 0 for t ≥ 0 , and thus, by the Cauchy–
Schwarz inequality,

where �(t) = �(t2)t as before. Finally, since 𝜉�(t) ≥ m𝜇 > 0 for all t ≥ 0 , see the end 
of the proof of Lemma 2.1, we find that � ��(t) ≥ 0 , i.e., � �(t) is increasing. As a con-
sequence, we immediately get that

Moreover, by the definition of the Kačanov scheme (11), we have that

Consequently, the above inequality becomes

Let us recall that, for a, b ≥ 0 , ab ≤ 1

2�
a2 +

�

2
b2 for all 𝛾 > 0 : Indeed, this holds true 

as the function � ↦
1

2�
a2 +

�

2
b2 takes its minimum ab at � = a∕b . Consequently, we 

obtain

We will now examine the two summands on the right-hand side above separately.
The first summand can be bounded from above in a similar manner as in the proof 

of [4, Thm. 18]. First, we note that

and thus, by the definition of the operator � , cf. (9),

𝜓 ��(t) =∫Ω

2𝜇�
(||e(�⋆ + t(�n − �

⋆))||2
)(

e(�⋆ + t(�n − �
⋆)) ∶ e(�n − �

⋆)
)2

�x

+ ∫Ω

𝜇

(||e(�⋆ + t(�n − �
⋆))||2

)||e(�n − �
⋆)||2 �x.

𝜓 ��(t) ≥ �Ω

(
𝜇

(||e(�⋆ + t(�n − �
⋆))||2

)
+ 2𝜇�

(||e(�⋆ + t(�n − �
⋆))||2

)||e(�⋆ + t(�n − �
⋆))||2

)

⋅ |e(�n − �
⋆)|2 �x

= �Ω

𝜉�(|e(�⋆ + t(�n − �
⋆))|)|e(�n − �

⋆)|2 �x,

�(�n) − �(�⋆) ≤ 𝜓 �(1) = �
�(�n)(�n − �

⋆) = �[�n](�n)(�n − �
⋆) − �(�n − �

⋆).

�[�n](�n+1)(�n − �
⋆) = �(�n − �

⋆).

�(�n) − �(�⋆) ≤ �[�n](�n − �
n+1)(�n − �

⋆) = �Ω

𝜇

(||e(�n)||2
)
e(�n − �

n+1) ∶ e(�n − �
⋆) �x.

(26)

�(�n) − �(�⋆) ≤ 1

2𝛾 �Ω

𝜇

(||e(�n)||2
)
|e(�n − �

n+1)|2 �x + 𝛾

2 �Ω

𝜇

(||e(�n)||2
)||e(�n − �

⋆)||2 �x.

∫Ω

�

(||e(�n)||2
)||e(�n − �

n+1)||2 �x = ∫Ω

�

(||e(�n)||2
)||e(�n)||2 �x − ∫Ω

�

(||e(�n)||2
)||e(�n+1)||2 �x

− 2∫Ω

�

(||e(�n)||2
)
e(�n+1) ∶ e(�n) �x

+ 2∫Ω

�

(||e(�n)||2
)
e(�n+1) ∶ e(�n+1) �x,



1 3

Kačanov’s scheme for shear-thinning fluids Page 11 of 27 4

Recall that �[�n](�n+1)(�) = �(�) for all � ∈ V  , cf. (11), which leads to

and hence, by (24),

Next, we will take care of the second summand in  (26). As was done in [4], 
we want to bound this summand in terms of the energy difference �(�n) − �(�⋆) . 
However, in order to improve the contraction factor whilst removing all unknown 
constants, some modifications to the argument presented in [4] are necessary. For 
𝜓(t) = �(�⋆ + t(�n − �⋆)) , the fundamental theorem of calculus implies that

Recall that ��(�)(�) = �[�][�](�) − �(�) , cf.  (12), and, since �⋆ ∈ V  is the unique 
solution of (10), �(�) = �[�⋆](�⋆)(�) for any � ∈ V  . As a consequence, we have that

Invoking the definition of � , cf. (9), and (14) further implies that

Moreover, by the definition of c(⋅, ⋅), cf. (16), and a brief argument based on reflec-
tion we get

for all s ∈ [0, 1] , where �(t) = �(t2)t ; indeed, it is easily verified that, for any 
�, � ∈ ℝ

d×d , we have c(�, �) = c(�, �) , and, in turn,

The triangle inequality yields that

∫Ω

�(|e(�n)|2)|e(�n − �
n+1)|2 �x = �[�n](�n)(�n) − �[�n](�n+1)(�n+1)

− 2�[�n](�n+1)(�n) + 2�[�n](�n+1)(�n+1).

∫Ω

�(|e(�n)|2)|e(�n − �
n+1)|2 �x = �[�n](�n)(�n) − �[�n](�n+1)(�n+1) − 2�(�n) + 2�(�n+1),

(27)
1

2 �Ω

�(|e(�n)|2)|e(�n − �
n+1)|2 �x ≤ �(�n) − �(�n+1).

�(�n) − �(�⋆) = ∫
1

0

𝜓 �(t) dt = ∫
1

0

�
�(�⋆ + t(�n − �

⋆))(�n − �
⋆) dt.

�(�n) − �(�⋆) = ∫
1

0

(
�[�⋆ + t(�n − �

⋆)](�⋆ + t(�n − �
⋆)) − �[�⋆](�⋆)

)
(�n − �

⋆) dt.

(28)

�(�n) − �(�⋆) ≥ �
1

0

t �Ω

c(e(�⋆) + t(e(�n) − e(�⋆)), e(�⋆))|e(�n − �
⋆)|2 �x dt.

(29)

c(e(�⋆) + s(e(�n) − e(�⋆)), e(�⋆)) ≥ inf
t∈(−1,1)

𝜉�
(
max

{
0, |e(�⋆)| + t|e(�n) − e(�⋆)|})

(30)c(� + s(� − �), �) = inf
t∈(0,1)

��((1 − t)|�| + t|� + s(� − �)|), s ∈ [0, 1].

|�| − ts|� − �| ≤ (1 − t)|�| + t|� + s(� − �)| ≤ |�| + ts|� − �| for all t ∈ (0, 1),
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and thus

This further implies that, for any s ∈ [0, 1] , we have

and consequently, in regard of (30), 

c(� + s(� − �), �) ≥ inf
t∈(−1,1) �

�
(
max

{
0, |�|+ts|� − �|}) , 

which immediately implies (29). Combining the equalities (28) and (29) yields

Since, in addition,

the lower bound (31) implies that

where

Finally, combining (26), (27), and (32) yields

and, in turn,

It is straightforward to verify that the contraction factor is minimal for � = 1∕2Q(n) , 
and, in that case, one has that

(1 − t)|�| + t|� + s(� − �)| = |�| + (2r − 1)st|� − �| for some r ∈ [0, 1].

{(1 − t)|𝜅| + t|𝜅 + s(𝜏 − 𝜅)| ∶ t ∈ (0, 1)} ⊆ {|𝜅| + t|𝜅 − 𝜏| ∶ t ∈ (−1, 1)},

(31)

�(�n) − �(�⋆) ≥ 1

2 �Ω

inf
t∈(−1,1)

𝜉�
(
max

{
0, ||e(�⋆)|| + t||e(�n) − e(�⋆)||

})||e(�n − �
⋆)||2 �x.

1

2 ∫Ω

𝜇

(||e(�n)||2
)||e(�n − �

⋆)||2 �x

=
1

2 ∫Ω

𝜇

(||e(�n)||2
)

inf
t∈(−1,1) 𝜉

�
(
max

{
0, ||e(�⋆)|| + t

||e(�n) − e(�⋆)||
})

⋅ inf
t∈(−1,1)

𝜉�
(
max

{
0, ||e(�⋆)|| + t

||e(�n) − e(�⋆)||
})||e(�n − �

⋆)||2 �x,

(32)
1

2 �Ω

𝜇

(||e(�n)||2
)||e(�n − �

⋆)||2 �x ≤ Q(n)
(
�(�n) − �

(
�
⋆
))
,

Q(n) ∶= ess sup
x∈Ω

𝜇

(||e(�n)||2
)

inft∈(−1,1) 𝜉
�
(
max

{
0, ||e(�⋆)|| + t||e(�n) − e(�⋆)||

}) .

𝛾(1 − 𝛾Q(n))
(
�(�n) − �(�⋆)

) ≤ �(�n) − �(�n+1),

�(�n+1) − �(�⋆) = �(�n) − �(�⋆) −
(
�(�n) − �

(
�
n+1

)) ≤ (1 − 𝛾(1 − 𝛾Q(n)))
(
�(�n) − �(�⋆)

)
.
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which proves the claim.   ◻

Remark 3.3 Since m� ≤ �(t) ≤ M� as well as m� ≤ ��(t) ≤ M� for all t ≥ 0 , we get 
the following crude uniform bound on the contraction factor:

We note that, in the context of the relaxed power-law model, cf. Sect.  3.2, this 
bound, in principle, coincides with the contraction factor from [4].

We note that the contraction factor (25) is not computable as it involves �⋆ , and 
the uniform upper bound from Remark 3.3 is rather pessimistic. In the following, we 
will establish an improved computable bound, up to higher order error terms, for the 
contraction factor on finite-dimensional subspaces.

Theorem 3.4 Assume that (A1)–(A3) hold, let W ⊂ V  be a finite-dimensional sub-
space, and let � be defined as in (6) (restricted to W). Then, the energy error con-
tracts along the sequence {�n} ⊂ W generated by the Kačanov iteration (11) on W 
in the sense that

where now �⋆ denotes the unique minimiser of � in W,

and oW(|||� − �n|||2
Ω
) denotes a remainder term depending on W.

Proof This result follows, in principle, from the proof of Theorem  3.2 with a 
modification of the bound from  (32). Consider the map 𝜔 ∶ W → W⋆ given by 
�(�) ∶= �[�](�) for � ∈ W . A lengthy, but straightforward calculation reveals that 
the Gâteaux derivative of � exists and is given by

Since W is a finite-dimensional space and 𝜔 ∶ W → W⋆ is Lipschitz continuous by 
Proposition  2.2, the Gâteaux derivative coincides with the Fréchet derivative, see 
[19, Prop. 3.5]. By definition of the Fréchet derivative, one has that

0 ≤ �(�n+1) − �(�⋆) ≤
(
1 −

1

4Q(n)

)(
�(�n) − �(�⋆)

)
,

q(n) ≤
(
1 −

m�

4M�

)
∈ [0.75, 1), n ≥ 0.

0 ≤ �(�n+1) − �(�⋆) ≤ qA(n)
(
�(�n) − �(�⋆)

)
+ oW

(||||||�⋆ − �
n||||||2Ω

)
,

(33)qA(n) ∶= 1 −
1

4

{
ess sup

x∈Ω

�(|e(�n)|2)
2��(|e(�n)|2)|e(�n)|2 + �(|e(�n)|2)

}−1

,

��(�)(�)(�) =∫Ω

2��
(||e(�)||2

)
(e(�) ∶ e(�))(e(�) ∶ e(�))

+ �

(||e(�)||2
)(

e(�) ∶ e(�)
)
�x, �,� ∈ W.
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here, oW(|||� − �n|||Ω) denotes a remainder in the dual space W⋆ . Combining these 
two observations yields

Recall that, by assumption (A3), ��(t) ≤ 0 for all t ≥ 0 . Therefore, the Cauchy–
Schwarz inequality implies that

Consequently,

and thus

The rest follows as in the proof of Theorem 3.2. We note, however, that the factor of 
the remainder term oW

(||||||�⋆ − �n||||||2Ω
)
 above cancels by the multiplication with � 

in (26).   ◻

Remark 3.5 We emphasize that the contraction factor qA from  (33) is independent 
of the finite-dimensional subspace W ⊂ V  . However, the remainder term oW may 
depend on the choice of the given discrete subspace, as indicated by the subscript.

Finally we remark that the energy error is equivalent to the norm error, i.e., the 
norm error contracts, up to some uniform constant, along the sequence generated by 
the Kačanov scheme as well. This equivalence was already established in a similar 

�(�) = �(�n) + ��(�n)(� − �
n) + oW

(|||� − �
n|||Ω

)
;

(
�[�⋆ + t(�n − �

⋆)](�⋆ + t(�n − �
⋆)) − �[�⋆](�⋆)

)
(�n − �

⋆)

=
(
𝜔(�⋆ + t(�n − �

⋆)) − 𝜔(�⋆)
)
(�n − �

⋆)

= t𝜔�(�n)(�n − �
⋆)(�n − �

⋆) + oW

(||||||�⋆ − �
n||||||2Ω

)

= t ∫Ω

2𝜇�(|e(�n)|2)(e(�n) ∶ e(�n − �
⋆))2

+ 𝜇(|e(�n)|2)|e(�n − �
⋆)|2 �x + oW

(||||||�⋆ − �
n||||||2Ω

)
.

(
�[�⋆ + t(�n − �

⋆)](�⋆ + t(�n − �
⋆)) −�[�⋆](�⋆)

)
(�n − �

⋆)

≥ t �Ω
{
2𝜇�(|e(�n)|2)|e(�n)|2 + 𝜇(|e(�n)|2)

}
|e(�n − �

⋆)|2 �x

+ o
W

(||||||�⋆ − �
n||||||2Ω

)
.

�(�n) − �(�⋆) = �
1

0

(
�[�⋆ + t(�n − �

⋆)](�⋆ + t(�n − �
⋆)) − �[�⋆](�⋆)

)
(�n − �

⋆) dt

≥ 1

2 �Ω
{
2𝜇�

(|e(�n)|2)|e(�n)|2 + 𝜇
(|e(�n)|2)}|e(�n − �

⋆)|2 �x + o
W

(||||||�⋆ − �
n||||||2Ω

)
,

1

2 �Ω 𝜇

(||e(�n)||2
)||e(�n − �

⋆)||2 �x ≤ ess sup
x∈Ω

𝜇(|e(�n)|2)
2𝜇�(|e(�n)|2)||e(�n)||2 + 𝜇(|e(�n)|2)

((
�(�n) − �

(
�
⋆
))

+ o
W

(||||||�⋆ − �
n||||||2Ω

))
.
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setting, e.g., in [11, Lem. 2.3] and [6, Lem. 5.1]. The proof can also be found in 
those references.

Proposition 3.6 Let � be defined as in (6), with � satisfying (A1)–(A3), and let �⋆ be 
the unique minimiser of � in V;  then,

An analogous result holds on any finite-dimensional subspace W ⊂ V , with V 
replaced by W in the assertion above.

3.1  Application to the Carreau model

A widely used model for the flow of incompressible non-Newtonian fluids is the 
Carreau law, cf. [3]. In that case the viscosity coefficient � in (1) is of the form

where for shear-thinning fluids, r ∈ (1, 2) , 𝜆 > 0 is the relaxation time, and 
0 < 𝜇∞ < 𝜇0 < ∞ denote the infinite and zero shear rate, respectively. The func-
tion � from (35) is smooth, decreasing since r ∈ (1, 2) , and satisfies the structural 
assumption (A2), cf. (2), thanks to the following lemma.

Lemma 3.7 Let r ∈ (1, 2) , 𝜆 > 0 , and 0 < 𝜇∞ < 𝜇0 < ∞ . Then, the following ine-
qualities hold:

Proof Define �(t) ∶= �(t2)t , t ≥ 0 . The mean value theorem yields

and thus we need to show that �∞ = inf�≥0 ��(�) and �0 = sup�≥0 ��(�) . A straight-
forward calculation reveals that ���(�) ≠ 0 for all � ≥ 0 , i.e., �′ has no local extrema 
in the interval (0,∞) . Since, in addition, lim�→0 �

�(�) = �0 and lim�→∞ ��(�) = �∞ , 
the lemma is established.   ◻

In particular, we may apply Theorems 3.2 and 3.4 to the Carreau model. In this case, 
the computable contraction factor from (33) reads as follows, with �n ∈ W:

(34)

m𝜇

2
�������⋆ − �������2Ω ≤ �(�) − �(�⋆) ≤

√
3M𝜇

2
�������⋆ − �������2Ω for all � ∈ V .

(35)�(t) = �∞ + (�0 − �∞)(1 + �t)
r−2

2 ,

�∞(t − s) ≤ �(t2)t − �(s2)s ≤ �0(t − s), t ≥ s ≥ 0.

inf
�≥0 �

�(�)(t − s) ≤ �(t) − �(s) ≤ sup
�≥0

��(�)(t − s),
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Let us further examine this factor. First we note that

which is optimal from the point of view of contraction. Consequently, we do not 
expect a significant deterioration of the convergence rate if the rate-of-strain tensor 
of the solution, i.e., e(�⋆) , is unbounded, cf. Experiment 4.1.1.

Moreover, an elementary calculation reveals that

and therefore

In combination with Remark 3.3, we get

i.e., the convergence rate may only deteriorate drastically if r → 1 and, in addition, 
�∞∕�0 → 0.

3.2  Application to the relaxed power‑law model

Another prominent model for non-Newtonian fluids, e.g., in polymer processing, is 
the power-law model, see, e.g., [20, Ch.  3.3]. For this model, the weak formula-
tion (4) of the boundary-value problem under consideration is as follows:

qA(n) ∶= 1 −
1

4

(
ess sup

x∈Ω

�∞ + (�0 − �∞)(1 + �|e(�n)|2) r−2

2

�∞ + (�0 − �∞)(1 + �|e(�n)|2)−1+ r−2

2 (1 + �(r − 1)|e(�n)|2)

)−1

= 1 −
1

4
ess inf
x∈Ω

�∞ + (�0 − �∞)(1 + �|e(�n)|2)−1+ r−2

2 (1 + �(r − 1)|e(�n)|2)
�∞ + (�0 − �∞)(1 + �|e(�n)|2) r−2

2

.

�∞ + (�0 − �∞)(1 + �t2)−1+
r−2

2 (1 + �(r − 1)t2)

�∞ + (�0 − �∞)(1 + �t2)
r−2

2

→ 1 as t → ∞,

�∞ + (�0 − �∞)(1 + �t2)−1+
r−2

2

(
1 + �(r − 1)t2

)

�∞ +
(
�0 − �∞

)
(1 + �t2)

r−2

2

≥ 1 + �(r − 1)t2

1 + �t2
for all t ≥ 0,

qA(n) = 1 −
1

4
ess inf
x∈Ω

�∞ +
(
�0 − �∞

)(
1 + �||e(�n)||2

)−1+
r−2

2
(
1 + �(r − 1)||e(�n)||2

)

�∞ +
(
�0 − �∞

)(
1 + �||e(�n)||2

) r−2

2

≤ 1 −
1

4
ess inf
x∈Ω

1 + �(r − 1)||e(�n)||2
1 + �||e(�n)||2

≤ 1 −
1

4
(r − 1).

(36)qA(n) ≤ min

{
1 −

1

4

�∞

�0

, 1 −
1

4
(r − 1)

}
,
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here X ∶= {� ∈ W
1,r

0
(Ω)d ∶ ∇ ⋅ � = 0} and � ∈ X⋆ , where, for shear-thinning fluids, 

r ∈ (1, 2) . In particular, the viscosity coefficient is given by

Clearly, 𝜇 ∶ ℝ>0 → ℝ>0 is neither bounded away from zero nor bounded from 
above, i.e., (A2) is not satisfied. Therefore, as was proposed in the work [4], we con-
sider a relaxed version of � : for 0 < 𝜀− < 𝜀+ < ∞ we define the viscosity coefficient

The function �� is decreasing, strictly positive, bounded, globally Lipschitz continu-
ous, and satisfies (A2) with

it is, furthermore, differentiable at all t ∈ [0,∞) ⧵ {�2
−
, �2

+
} and has finite left- 

and right-derivatives at t = �2
−
 and t = �2

+
 , respectively. Hence, even though 

�� is not continuously differentiable on [0,∞) , Theorem  3.2 can, neverthe-
less, be applied in the given setting. Moreover, in the generic case when the set 
Ωn

S
∶= {x ∈ Ω ∶ |e(�n(x))| ∈ {�−, �+}} , for every n ≥ 0 , has Lebesgue meas-

ure zero, the operator � from the proof of Theorem 3.4 is Fréchet differentiable at 
�n ∈ W . Thus, in turn, Theorem 3.4 can then also be applied to the relaxed power-
law model1. A simple calculation reveals that the computable contraction factor 
from (33) can again be bounded; indeed,

Moreover, one even has that qA(n) = 1 − 4−1(r − 1) if the set 
{x ∈ Ω ∶ �− ≤ |e(�n(x))| ≤ �+} is of positive Lebesgue measure. We further remark 
that

since r ∈ (1, 2) . This shows that the bound  (39) is, for every value r ∈ (1, 2) , 
sharper than the bound from Remark 3.3. Furthermore, this bound predicts that it 

(37)

find � ∈ X such that ∫Ω

|e(�)|r−2e(�) ∶ e(�) �x = �(�) for all � ∈ X;

�(t) = t
r−2

2 .

(38)𝜇𝜀(t) ∶=

⎧
⎪⎨⎪⎩

𝜀r−2
−

for 0 ≤ t < 𝜀2
−
,

t
r−2

2 for 𝜀2
−
≤ t ≤ 𝜀2

+
,

𝜀r−2
+

for t ≥ 𝜀2
+
.

(r − 1)�r−2
+

(t − s) ≤ �(t2)t − �(s2)s ≤ �r−2
−

(t − s), t ≥ s ≥ 0;

(39)qA(n) ≤ 1 −
1

4
(r − 1).

m𝜇

M𝜇

=
(r − 1)𝜀r−2

+

𝜀r−2
−

< (r − 1),

1 Nonetheless we will present a continuously differentiable version of the viscosity coefficient (38) in the 
Appendix.
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is the physical parameter r that affects the convergence rate of the iteration, in the 
finite-dimensional setting at least, rather than the quotient �r−2+ ∕�r−2

−
 implied by exist-

ing bounds on the contraction factor, cf. [4, Cor. 19]. Significantly, the upper bound 
(r − 1) on the contraction factor appearing of the right-hand side of (39) is independ-
ent of the relaxation parameters �± . This is of importance as we are interested in the 
power-law model  (37) and we thus need to let �− → 0 and �+ → ∞ . We note that 
the existence of a bound independent of �± on the contraction factor of the relaxed 
Kačanov iteration applied to the power-law model with r ∈ (1, 2) was stated in the 
infinite-dimensional case as an open problem in [4, Ex. 20].

We further note that the energy functional �� corresponding to the viscosity 
from  (38) coincides with the energy functional J� from [4] up to a constant shift 
depending on �− . To be precise, one has that

and thus the results established in [4] may be directly applied in our setting. In par-
ticular, this implies that the sequence of unique minimisers �⋆

𝜀
∈ V  of �� converges 

in W1,r

0
(Ω)d to the unique minimiser �⋆ ∈ X of

cf. [4, Cor. 10].

Remark 3.8 The relaxed power-law model could also be solved by using a (damped) 
Newton method, cf. [10, Prop. 5.3]. However, it is unclear whether and how the con-
vergence rate will deteriorate as �− → 0 and �+ → ∞ . For an application of New-
ton’s method to the power-law model with a different regularisation approach we 
refer to [12]; however, the convergence rate in relation to the choice of the regulari-
sation parameter � is not examined in that work.

Remark 3.9 We emphasise that our analysis does also apply to a variable (measura-
ble) exponent r ∶ Ω → (1, 2) for both the relaxed power-law model as well as the 
Carreau model. Then, in (39) and (36), respectively, we need to replace 1 − 1∕4(r − 1) 
by 1 − 1∕4(ess inf

x∈Ω
r(x) − 1).

4  Experiments

In this section, we will perform some numerical tests to assess our findings. To this 
end, we consider the simplified problem

where Ω ∶= (−1, 1)2 ⧵ [0, 1] × [−1, 0] ⊂ ℝ
2 is an L-shaped domain, f ∈ L2(Ω) , and 

the coefficient � either obeys the Carreau law (35) or the relaxed power-law (38). We 

��(�) = J�(�) +
(
1

2
−

1

r

)
�r
−
, � ∈ V ,

�(�) =
1

r ∫Ω

|e(�)|r �x − �(�),

find u ∈ H1
0
(Ω) such that ∫Ω

�(|∇u|2)∇u ⋅ ∇v = ∫Ω

fv �x for all v ∈ H1
0
(Ω),
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remark that the theory derived before equally applies to this simpler case. In all our 
experiments below, we use a conforming P1-finite element discretisation, where the 
mesh consists of O(106) triangles, except where explicitly stated otherwise.

4.1  Error decay in dependence on r

First, we will examine how the convergence rate of the error depends on the expo-
nent r−2

2
 ; recall that the norm error is equivalent to the energy error, cf.  Proposi-

tion 3.6. This will be done for both the Carreau and the relaxed power-law model, 
for smooth and irregular solutions.

4.1.1  Error decay for the Carreau model

Let the function � obey the Carreau law  (35), with �∞ = 1 , �0 = 100 , � = 2 , and 
varying values of r ∈ (1, 2) . The source term f is chosen so that the unique solution 
is given by 

(a) The smooth function u⋆(x, y) = sin(𝜋x) sin(𝜋y) , where (x, y) ∈ ℝ
2 denote the 

Euclidean coordinates;
(b) The function 

 where R and � are polar coordinates, which exhibits a singularity at the origin 
(0, 0).

In the smooth case (a) the mesh is uniform, and in the singular case (b) the mesh is 
increasingly refined in the vicinity of the singularity point (0,0). In Fig. 1 we plot the 
error ‖‖∇un − ∇u⋆‖‖L2(Ω)

 against the number of iterative steps n. We can clearly see 
that the convergence rate deteriorates with decreasing r, as was predicted in Sect. 3. 
We further note that the irregularity of the solution in (b) does not affect the conver-
gence rate, as was conjectured in Sect. 3.1.

u⋆(R,𝜑) = R
2∕3 sin (2𝜑∕3)(1 − R cos(𝜑))(1 + R cos(𝜑))(1 − R sin(𝜑))(1 + R sin(𝜑)) cos(𝜑),

Fig. 1  Carreau model: Influence of the physical parameter r on the convergence rate in the smooth case 
(left) and irregular case (right), where �∞ = 1 , �0 = 100 , and � = 2
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4.1.2  Error decay for the relaxed power‑law model

Now consider the relaxed power-law model, cf. (38), with �− = 10−6 and �+ = 106 . 
As before, the source term f is chosen so that (a) u⋆ is smooth, and (b) u⋆ exhib-
its a singularity at the origin (0,0). In Fig. 2, the error ‖‖∇un − ∇u⋆‖‖L2(Ω)

 is plotted 
against the number of iterative steps n. We observe that for the power-law model the 
dependence of the convergence rate on the exponent is even stronger than for the 
Carreau model.

4.1.3  Error decay for close to constant viscosity

In the experiments before we had that the ratio of the infinite and zero shear 
rates was much smaller than (r − 1) , cf. (36). Now we choose the parameters so 
that the ‘shear stress’ depends almost linearly on the ‘shear rate’, and we fur-
ther let the source term f be such that the unique solution of (4) is given by the 
smooth function u⋆(x, y) = sin(𝜋x) sin(𝜋y) . For the Carreau law we set �∞ = 1 , 
�0 = 2 , � = 2 , and take again varying values of r ∈ (1, 2) ; we emphasize that, in 

Fig. 2  Relaxed power-law model: Influence of the physical parameter r on the convergence rate in the 
smooth case (left) and irregular case (right)

Fig. 3  Influence of the physical parameter r for almost constant viscosity. Left: Carreau model. Right: 
Relaxed power-law model
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this test, we consider even smaller values of r than in the experiments before. In 
view of the a posteriori computable contraction factor  (36) we expect that the 
convergence rate will not deteriorate drastically for r close to one, which is con-
firmed by our numerical experiment, cf. Fig. 3 (left). In the case of the relaxed 
power-law model, we set �− = 1 , �+ = 2 , and test the same values r ∈ (1, 2) as for 
the Carreau model. We note that these choices of the relaxation parameters �± 
are in practice of no interest, as one is, rather, interested in �− → 0 and �+ → ∞ . 
Nonetheless, we still presume that the convergence deteriorates for r close to 
one by our analysis in Sect. 3.2. This is indeed the case, as illustrated in Fig. 3 
(right).

4.2  Error decay in dependence on the zero and infinite shear rates

Next, we will show that, for fixed r ∈ (1, 2) , the convergence rate does not essen-
tially deteriorate when the ratio of the infinite and zero shear rates decreases. As 
in the experiment before, we choose the source term f so that the unique solution 
is given by the smooth function u⋆(x, y) = sin(𝜋x) sin(𝜋y) . For the Carreau model 
we set � = 2 , r = 1.5 , �0 = 10a , and �∞ = 10−a for a ∈ {1, 2, 3, 4, 5} . As we can 
see from Fig. 4 (left), the convergence rate is (almost) independent of a, i.e., the 
convergence does not deteriorate for a decreasing quotient �∞∕�0 . For the relaxed 
power-law model we set r = 1.5 , �− = 10−a , and �+ = 10a for a ∈ {1, 2, 3, 4, 5} . 
Even though the plots differ for the various values of a, the convergence rate is 
almost the same for all of them; indeed, no significant deterioration of the con-
vergence rate can be observed in Fig. 4 (right) for increasing a.

Fig. 4  Influence of the ratio of the infinite and zero shear rates on the convergence. Left: Carreau model 
with � = 2 , r = 1.5 , �0 = 10a , and �∞ = 10−a . Right: Relaxed power-law model with r = 1.5 , �− = 10−a , 
and �+ = 10a
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4.3  Energy decay and the contraction factor

We now focus on the energy decay, and compare the exact contraction factor, 
cf.  (40), the a posteriori computable factor  (41), and the worst case factor from 
Remark 3.3, cf. (42). Again, this will be done for the Carreau and the relaxed power-
law models. In our figures below, we plot the energy decay �(un) − �(u⋆) , as well as 
the aforementioned factors

against the number of iteration steps n.

4.3.1  Energy contraction for the Carreau model

We consider the Carreau model, cf. (35), for �∞ = 1 , �0 = 100 , � = 2 , and r = 1.3 , 
respectively r = 1.1 . In both cases, we approximate the discrete solution for the 
source term f from case (a) before by performing seventy steps of the Kačanov itera-
tion (11), and subsequently use this approximation for the determination of the ref-
erence energy �(u⋆) ; here, u⋆ denotes the unique minimiser in the finite element 
space. We can clearly observe in Fig. 5 that, on the one hand, the a posteriori com-
putable factor qA(n) , cf. (41), is much larger than the actual factor qE(n) , cf. (40). On 
the other hand, however, the factor qA(n) clearly still improves the worst case factor 
qW(n) from Remark 3.3, cf. (42).

(40)qE(n) =
�(un) − �(u⋆)

�(un−1) − �(u⋆)
,

(41)qA(n) = 1 −
1

4

⎧⎪⎨⎪⎩
ess sup

x∈Ω

�

���e(�n)��2
�

2��

���e(�n)��2
���e(�n)��2 + �

���e(�n)��2
�
⎫⎪⎬⎪⎭

−1

,

(42)qW (n) = 1 −
1

4

m�

M�

,

Fig. 5  Energy decay and the contraction factors for the Carreau model with r = 1.3 (left) and r = 1.1 
(right)
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4.3.2  Energy contraction for the relaxed power‑law model

Let the coefficient � obey the relaxed power-law model with �− = 10−6 , �+ = 106 , 
and r = 1.3 , respectively r = 1.1 . In this experiment, we approximate the discrete 
solution u⋆ by performing fifty and one hundred iteration steps for r = 1.3 and 

Fig. 6  Energy decay and the contraction factors for the power-law model with r = 1.3 (left) and r = 1.1 
(right)

Fig. 7  Energy decay and the contraction factors for the power-law model with r = 1.3 (left) and r = 1.1 
(right) in the coarser mesh

Fig. 8  Energy decay and the contraction factors for the power-law model with r = 1.3 (left) and r = 1.1 
(right)
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r = 1.1 , respectively. As before, the a posteriori computable contraction factor 
qA(n) is noticeably larger than the exact factor qE(n) , however, this is less marked 
than before; see Fig. 6. Moreover, it considerably improves the worst case con-
traction factor qW(n) ≈ 1 − 10−12.

We now repeat this experiment on a coarser mesh consisting of O(105) uni-
form triangles. In Fig. 7 we plot the factors qA(n) , qE(n) , as well as q(n) from (25) 
against the number of iteration steps. We observe that the (non-computable) fac-
tor q(n) from  (25) has a similar trend as the exact factor qE(n) , cf.  (40), and 
approximates the computable factor qA(n) , cf.  (41), as the number of iteration 
steps increases.

Finally, we remark that, in the context of fixed point iterations, the contrac-
tion factor can be (heuristically) approximated by

as n → ∞ , see, e.g., [18]; we emphasize that qH(n) ≥ 0 , for n ≥ 2 , thanks to  (27). 
As can be observed in Fig. 8, the factor qH(n) , cf. (43), does indeed approximate the 
exact factor qE(n) from (40) well for sufficiently large n. However, in contrast with 
the bound qA(n) from Theorem 3.4, the computable factor qH(n) does not provide 
any guaranteed a priori information.

4.4  Energy decay for different mesh sizes

We conclude this section with a comparison of the energy decay for different 
mesh sizes. For the Carreau model, cf.  (35), we set �∞ = 1 , �0 = 100 , � = 2 , 
and r = 1.3 . In the case of the relaxed power-law model, let �− = 10−6 , �+ = 106 , 
and r = 1.3 . In each case we approximated the discrete solution, and, in turn, the 
corresponding energy by performing one hundred iteration steps. As we can see 
from Fig. 9, the asymptotic convergence rates (almost) coincide for the different 
mesh sizes.

(43)qH(n) ∶= min

{
1,

�(un) − �(un−1)

�(un−1) − �(un−2)

}

Fig. 9  Energy decay for the Carreau model (left) and relaxed power-law model (right) for different mesh 
sizes
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5  Conclusion

In this article, we established an a posteriori computable (energy) contraction fac-
tor for the Kačanov scheme (on finite-dimensional Galerkin spaces), motivated by 
applications to quasi-Newtonian fluid flow problems. For the relaxed power-law 
model, this factor is independent of the relaxation parameters �± ; we also demon-
strated that it is, instead, the power-law exponent that affects the convergence rate 
of the iteration. In contrast, existing bounds on the contraction factor of the relaxed 
Kačanov iteration depend on the relaxation parameters �± in an unfavourable man-
ner, in the sense that they tend to 1 as �− → 0 and/or �+ → ∞ . A series of numerical 
tests have confirmed that our a posteriori computable contraction factor improves, 
on finite-dimensional Galerkin spaces, existing bounds, and that, as predicted by our 
analysis, for the power-law model it is in fact the closeness of the power-law expo-
nent r ∈ (1, 2) to 1 that influences the convergence rate of the iteration. However, 
our experiments revealed that the theoretically derived bound on the contraction fac-
tor of the Kačanov scheme is still too pessimistic.

Appendix

A Smoothly relaxed power‑law model

In this appendix, we will introduce a continuously differentiable approximation of 
the relaxed power-law viscosity (38). In particular, for 0 < 𝛿 < 𝜀2

−
< 𝜀2

+
 , we want to 

define a function ��,� ∶ ℝ≥0 → ℝ≥0 which 

(a) Is continuously differentiable;
(b) Coincides with �� , cf. (38), in the domain [�2

−
+ �, �2

+
− �];

(c) Is constant on [0, �2
−
− �] ∪ [�2

+
+ �,∞);

(d) Converges pointwise to �� for � → 0 (Fig. 10).

Fig. 10  Comparison of �� and 
��,� for r = 1.3, �− = 1, �+ = 2 , 
and � = 0.1
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The idea is to identify quadratic functions g±
�,�

 on [�2
±
− �, �2

±
+ �] , respectively, 

which smoothly connect the constant parts of �� with the map t ↦ t
r−2

2 = �(t) on 
[�2

−
+ �, �2

+
− �] , i.e.,

A straightforward calculation reveals that the properties (a)–(d) are satisfied for

and
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