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Abstract The proof of Lemma 10 in [Awanou, G.: Quadratic mixed finite element
approximations of theMonge-Ampère equation in 2D.Calcolo 52(4), 503–518 (2015)]
is not correct. The purpose of this erratum is to give a correct proof of the main result
therein under the assumption of elliptic regularity.

1 Introduction

In [1, Lemma 10], we claimed a strict contraction property of a mapping T1 in the H1

seminorm. Unfortunately there was a mistake at the end of the proof of the lemma.
It was stated that ”Since γ < 1, and α = hk+2, for h sufficiently small, Ch +
Cαh|| cof Q||Hk+1(Th) + Cα < 1 − γ ”. However γ also depends on h, see [1, p. 6].
Moreover 1 − γ → 0 at a rate higher than h , and thus the argument as stated is not
correct. As a consequence, the strategy which consists in rescaling the equation does
not work.

In this erratum, using the same notation as in [1], we give a proof of the main
result therein under the assumption of W 2,p elliptic regularity. Our approach consists
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in adapting the proof in [3]. The main ingredient is a W 2,p discrete elliptic regularity
proved in [13].

The elliptic regularity assumption is known to hold if the domain is smooth. We
refer to [14, Remark 3.2] and [13] for the formulation of the method with the weak
imposition of the Dirichlet boundary condition using Nitsche’s method and the use of
curvilinear coordinates near the boundary. The arguments given here can be extended
to that setting.

On the other hand, W 2,p elliptic regularity holds for the Poisson equation on a
cube [17, Remark 9.1.1]. It is therefore reasonable to expect that one can prove a
W 2,p elliptic regularity result on cubes for second order equations in divergence form
with smooth coefficients using an antisymmetric extension as in the proof of [17,
Proposition 9.1.2].Wewish to address this issue, following theW 2,p elliptic regularity
approach in [11], in a separate work.

2 Preliminaries

We use the standard notationWk,p(�) for the Sobolev spaces and the notation |.|Wk,p

for its semi norm. We recall that W 1,p
0 (�) is the subset of W 1,p(�) of elements with

vanishing trace on ∂�. We will need the following mesh dependent norm on Vh

||v||p
˜W 2,p(Th)

= ||v||p
W 2,p(Th) + h1−p

∑

K∈Th
||Dv||pL p(∂K ), p ≥ 2.

We have by scaling

||v||
˜W 2,p(Th) ≤ C ||v||W 2,p(Th), ∀v ∈ Vh (2.1)

||v||
˜W 2,p(Th) ≤ Ch−1||v||W 1,p , ∀v ∈ Vh . (2.2)

Moreover, there exists an interpolation operator Ĩh such that for m ∈ Wk+1,p(�) ∩
W 1,p

0 (�), Ĩhm ∈ Vh ∩ W 1,p
0 (�) and

‖m − Ĩhm‖
˜W 2,p(Th) ≤ Chk−1|m|Wk+1,p (2.3)

‖m − Ĩhm‖W 1,p ≤ Chk |m|Wk+1,p . (2.4)

The proofs are essentially the same as the ones given for [4, Lemma 1], [4, Lemma 2]
and [4, Lemma 4]. It is important to note that the constant in the above inequalities are
independent of p. This follows from the fact that the constant in the Bramble-Hilbert
lemma [5, (4.3.9)] is independent of p.

We recall the scale-trace inequality

‖v‖L p(∂K ) ≤ Ch− 1
p ‖v‖L p(K ) ≤ Ch− 1

2 ‖v‖L p(K ), p ≥ 2, (2.5)

with a constant C independent of p.
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We also recall that ifw is in the Sobolev spaceWl+1,p(�), 1 ≤ p ≤ ∞, 0 ≤ l ≤ d

||w − Ihw||Wk,p(Th) ≤ Chl+1−k |w|Wl+1,p ,

for k = 0, 1, 2. The constant C is shown to be independent of p using [5, (4.4.5)] and
shape regularity.

We will often use the inverse estimates

||wh ||t,p,Th ≤ Ch
s−t+min

(

0, np − n
q

)

||wh ||s,q,Th , (2.6)

for 0 ≤ s ≤ t, 1 ≤ p, q ≤ ∞ and wh ∈ Vh . As stated in [5], the constant C in (2.6)
depends on p and q because the first step of the proof is to use a norm equivalence
on the reference element. However, inspection of the proof of the equivalence of
norms in a finite dimensional space reveals that the constant does not depend on q.
Moreover, it only depends on p through the Wt,p norm of the basis functions of the
finite dimensional space on the reference element. The latter are bounded by a scalar
multiple of their Wt,∞ norm. We conclude that the constant C in (2.6) can be chosen
independent of p.

Next, let φ be the solution of

− div
(

(cof D2u)Dφ
) = r in �, φ = 0 on ∂�. (2.7)

We make the following assumption

Assumption 2.1 For r ∈ L p(�), p ≥ 2, the weak solution φ of (2.7) is in W 2,p(�)

and
‖φ‖W 2,p ≤ Cp‖r‖L p . (2.8)

The result is known to hold for smooth domains, c.f. [14] and the references therein.
As suggested in [16, (1.7)] the linear dependence in p of the constant in (2.8) follows
by tracing constants in the proof given in [11]. Once can trace constants in the proof
of [11, Theorem 9.14] and use the maximum principle [11, Theorem 9.1]. See also
[7].

As pointed out in the introduction, it is reasonable to expect that the result also
holds for cubes.

We will refer to the result of the following lemma as discrete elliptic regularity.
The result is given as [13, Lemma 4.1]. For the convenience of the reader, we give the
proof.

Let Ph : W 1,p
0 (�) → Vh ∩ W 1,p

0 (�) be the projection defined by

∫

�

[(cof D2u)DPhv] ·Dw dx =
∫

�

[(cof D2u)Dv] ·Dw dx, ∀w ∈ Vh ∩W 1,p
0 (�).

We have the approximation property

||w − Phw||W 1,p ≤ Chk |w|Wk+1,p . (2.9)
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The result is a consequence of the stability of the Ritz projection, [15] and [12, Corol-
lary 5.6]. Since ‖Phw‖W 1,p ≤ C‖w‖W 1,p for w ∈ W 1,p

0 (�), using Ph Ihw = Ihw, we
obtain

||w − Phw||W 1,p ≤ ||w − Ihw||W 1,p + ||Ihw − Phw||W 1,p

= ||w − Ihw||W 1,p + ||Ph Ihw − Phw||W 1,p

≤ Chk |w|Wk+1,p + ||Ihw − w||W 1,p

≤ Chk |w|Wk+1,p ,

which proves (2.9).
The independence of the constant C in p may be traced through the proof given in

[12]. Alternatively, the independence of the constant C in p can be obtained through
an interpolation argument we outline.

Let 1 < p < ∞ and 1 ≤ q ≤ ∞. Using a notation similar to the one used in
[9], we denote by Wk,p,q(�) the interpolation space (Wk,1(�),Wk,∞(�))1−1/p,q,K

between Wk,1(�) and Wk,∞(�) as defined in [6, Definition 3.2.4]. The letter K , and
also K ′ to be used below, refers to the function norm [6, (3.2.9)]. We note that it is
assumed in [9] that the domain � is a minimally smooth domain, also known as a
Lipschitz domain.

By [6, Theorem 3.2.23], Wk,p,q(�) is an exact interpolation space of order θ =
1 − 1/p as defined in [6, Definition 3.2.22].

Moreover, by [6, Corollary 3.2.13 (a)], Wk,2,2(�) ⊂ Wk,2,∞(�). Thus since
Wk,2,2(�) is of order θ1 = 1/2 and Wk,∞,∞(�) is of order θ2 = 1, by [6, Proposi-
tion 3.2.16 (a)] and the reiteration theorem [6, Theorem 3.2.20],

Wk,p,q(�) = (Wk,2,2(�),Wk,∞,∞(�))1−2/p,q,K ′ , 1 ≤ q ≤ ∞.

On the other hand, it is shown in [9, p. 595] thatWk,p(�) = Wk,p,p(�)with equivalent
norms. It can be seen from [9, Theorem 1] that the constants in the norm equivalence
are independent of p. We conclude that Wk,p/2(�) is an exact interpolation space of
order 1− 2/p between Wk,2(�) and Wk,∞(�). By [6, Definition 3.2.22], this means
that since Ph is a bounded linear map fromWk,2(�) into itself with norm M1, and also
a bounded linear map from Wk,∞(�) into itself with norm M2, then Ph is a bounded
linearmap fromWk,p/2(�) into itself and its norm is bounded byM1−2/p

1 M2/p
2 ,which

is easily seen to be bounded above by a constant independent of p.

Lemma 2.2 Assume that Assumption 2.1 of elliptic regularity holds. Let
r ∈ L p(�), p ≥ 2 and let v ∈ Vh ∩ H1

0 (�) solve

∫

�

[(cof D2u)Dv] · Dw dx =
∫

�

rw dx, w ∈ Vh ∩ H1
0 (�). (2.10)

Then
||v||

˜W 2,p(Th) ≤ Cp||r ||L p . (2.11)
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Proof With these notation the solution v of (2.10) is given by v = Phφ. Let
w ∈ Vh ∩ H1

0 (�). We have by (2.2) and (2.3)

||v||
˜W 2,p(Th) = ||Phφ||

˜W 2,p(Th) ≤ ||Phφ − φ||
˜W 2,p(Th) + ||φ||

˜W 2,p(Th)

≤ ||φ − Ĩhφ||
˜W 2,p(Th) + || Ĩhφ − Phφ||

˜W 2,p(Th) + ||φ||
˜W 2,p(Th)

≤ C‖φ‖W 2,p + Ch−1|| Ĩhφ − Phφ||W 1,p + ||φ||
˜W 2,p(Th).

By (2.9) and (2.4)

|| Ĩhφ − Phφ||W 1,p ≤ || Ĩhφ − φ||W 1,p + ||φ − Phφ||W 1,p ≤ Ch‖φ‖W 2,p .

Using (2.1) we conclude by elliptic regularity that

||v||
˜W 2,p(Th) ≤ C‖φ‖W 2,p ≤ Cp||r ||L p .

This proves (2.11). 
�

Lemma 2.3 Let r ∈ Vh. Then for p ≥ 2

‖r‖L p ≤ C sup
z �=0
z∈Vh

|(r, z)|
‖z‖Lq

1

p
+ 1

q
= 1.

Proof We have

‖r‖L p = sup
w �=0
w∈Lq

|(r, w)|
‖w‖Lq

.

Let PVh be the L
2 projection into Vh . The projection is known to be stable in Lq [10],

i.e. for w ∈ Lq(�)

‖PVhw‖Lq ≤ Cθ‖w‖Lq , θ =
∣

∣

∣

∣

1 − 2

q

∣

∣

∣

∣

.

Since p ≥ 2, −1 < 1 − 2/q ≤ 2 and hence the constant Cθ is bounded uniformly in
q. Since r ∈ Vh, (r, w) = (r, PVhw) and therefore

|(r, w)|
‖w‖Lq

≤ C
|(r, PVhw)|
‖PVhw‖Lq

≤ C sup
z �=0
z∈Vh

|(r, z)|
‖z‖Lq

.

This concludes the proof. 
�
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3 Error analysis of the mixed method with the elliptic regularity
assumption

For this erratum the mapping T : Vh × �h → Vh × �h is defined by

T (wh, ηh) = (T1(wh, ηh), T2(wh, ηh)),

where T1(wh, ηh) and T2(wh, ηh) satisfy

(ηh − T2(wh, ηh), τ ) + (div τ, D(wh − T1(wh, ηh)))

− 〈D(wh − T1(wh, ηh)), τn〉 = (ηh, τ )

+ (div τ, Dwh) − 〈Dwh, τn〉, ∀ τ ∈ �h (3.1)

((cof D2u)D(wh − T1(wh, ηh)), Dv) = ( f, v) − (det ηh, v), ∀ v ∈ Vh ∩ H1
0 (�)

(3.2)

wh − T1(wh, ηh) = 0 on ∂�. (3.3)

It is shown in [3, Lemma 3.4] that a fixed point of (3.1)–(3.3) with wh = gh on ∂�

solves the nonlinear problem [1, (3)].
For this erratum we define

B̄h(ρ) = {(wh, ηh) ∈ Vh × �h, ‖wh − Ihu‖W 2,∞(Th) ≤ ρ, ‖ηh − Ihσ‖L∞ ≤ ρ}.

Recall that Bh(ρ) = B̄h(ρ) ∩ Zh with Zh defined on [1, p. 7].

Lemma 3.1 For a positive constant C0 and ρ = C0hk−1, we have Bh(ρ) �= ∅.
Proof It is shown in [3, Lemma3.5] that there existsηh ∈ �h such that (Ihu, ηh) ∈ Zh .
We estimate ‖ηh − Ihσ‖L∞ . We have

(ηh − Ihσ, τ) = (σ − Ihσ, τ) − (div τ, D(Ihu − u)) + 〈D(Ihu − u), τn〉.

Let p > 1 and q such that 1/p + 1/q = 1. We have by Lemma 2.3

‖ηh − Ihσ‖L p ≤ C sup
τ �=0
τ∈�h

|(ηh − Ihσ, τ)|
‖τ‖Lq

.

By Cauchy-Schwarz inequality, the scale-trace inequality (2.5), inverse estimates and
approximation properties of Ih

|(ηh − Ihσ, τ)| ≤ ‖σ − Ihσ‖L p‖τ‖Lq + ‖D(Ihu − u)‖L p‖ div τ‖Lq

+ C‖D(Ihu − u)‖L p(∂�)‖τ‖Lq (∂�)

≤ ‖σ − Ihσ‖L∞‖τ‖Lq + Ch−1‖D(Ihu − u)‖L∞‖τ‖Lq

+ Ch− 1
2 ‖D(Ihu − u)‖L∞‖τ‖Lq

≤ (Chk+1 + Chk−1)‖τ‖Lq ≤ Chk−1‖τ‖Lq .
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We conclude that ‖ηh − Ihσ‖L p ≤ Chk−1. By an inverse estimate

‖ηh − Ihσ‖L∞ ≤ Ch− 2
p ‖ηh − Ihσ‖L p ≤ Ch− 2

p hk−1.

Choosing p such that | ln h| ≤ p ≤ 2| ln h|, we obtain ‖ηh − Ihσ‖L∞ ≤ Chk−1. This
concludes the proof. 
�
Lemma 3.2 The mapping T does not move the center (Ihu, Ihσ ) of the ball B̄h(ρ)

too far, i.e. for h sufficiently small

‖Ihu − T1(Ihu, Ihσ)‖W 2,∞(Th) ≤ C1h
k (3.4)

‖Ihσ − T2(Ihu, Ihσ)‖L∞ ≤ C2h
k−1. (3.5)

Proof By [1, Lemma 2.1], on each element K

‖ det(Ihσ) − det σ‖L∞(K ) ≤ C‖1
2
Ihσ + 1

2
σ‖L∞(K )‖Ihσ − σ‖L∞(K ).

By approximation properties ‖Ihσ − σ‖L∞(K ) ≤ Chk+1, so ‖Ihσ‖L∞ ≤ C‖σ‖L∞ ,
and

‖ det(Ihσ) − det σ‖L∞(K ) ≤ C‖Ihσ − σ‖L∞(K ) ≤ Chk+1. (3.6)

By (3.2), (3.3), discrete elliptic regularity and (3.6)

‖Ihu − T1(Ihu, Ihσ)‖
˜W 2,p(Th) ≤ Cp‖ det Ihσ − f ‖L p = C‖ det Ihσ − det D2u‖L p

≤ Cp‖ det Ihσ − det D2u‖L∞ ≤ Cp hk+1.

Choosing p such that | ln h| ≤ p ≤ 2| ln h|, we obtain by an inverse estimate

‖Ihu − T1(Ihu, Ihσ)‖W 2,∞(Th) ≤ Ch− 2
p ‖Ihu − T1(Ihu, Ihσ)‖W 2,p(Th)

≤ Ch− 2
p ‖Ihu − T1(Ihu, Ihσ)‖

˜W 2,p(Th)
≤ C‖Ihu − T1(Ihu, Ihσ)‖

˜W 2,p(Th) ≤ Chk+1| ln h|.

We conclude that (3.4) holds.
Let p > 1 and q such that 1/p + 1/q = 1. We have by Lemma 2.3

‖Ihσ − T2(Ihu, Ihσ)‖L p ≤ C sup
τ �=0
τ∈�h

|(Ihσ − T2(Ihu, Ihσ), τ )|/‖τ‖Lq . (3.7)

Moreover by (3.1) and using

(σ, τ ) + (div τ, Du) − 〈Du, τn〉 = 0, ∀ τ ∈ H1(�),
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we get

(Ihσ − T2(Ihu, Ihσ), τ ) = −(div τ, D(Ihu − T1(Ihu, Ihσ)))

+〈D(Ihu − T1(Ihu, Ihσ)), τn〉
+(Ihσ − σ, τ) + (div τ, D(Ihu − u))

−〈D(Ihu − u), τn〉. (3.8)

By Cauchy-Schwarz inequality, an inverse estimate, the trace-inverse inequality and
approximation properties, we have

∣

∣(Ihσ − σ, τ) + (div τ, D(Ihu − u)) − 〈D(Ihu − u), τn〉∣∣ ≤ (Chk+1‖σ‖Wk+1,∞

+Chk−1‖u‖Wk+1,∞ + Chk−1‖u‖Wk+1,∞)||τ ||Lq ≤ Chk−1‖u‖Wk+3,∞||τ ||Lq .

(3.9)

Moreover

−(div τ, D(Ihu − T1(Ihu, Ihσ))) + 〈D(Ihu − T1(Ihu, Ihσ)), τn〉
=

∑

K∈Th
(τ, D2(Ihu − T1(Ihu, Ihσ)))K −

∑

K∈Th
〈D(Ihu − T1(Ihu, Ihσ)), τn〉∂K

+〈D(Ihu − T1(Ihu, Ihσ)), τn〉.

But by Cauchy-Schwarz inequality and the trace-inverse inequality

∣

∣ −
∑

K∈Th
〈D(Ihu − T1(Ihu, Ihσ)), τn〉∂K + 〈D(Ihu − T1(Ihu, Ihσ)), τn〉∣∣

≤
∑

K∈Th

∣

∣〈D(Ihu − T1(Ihu, Ihσ)), τn〉∂K
∣

∣

≤
∑

K∈Th
‖h− 1

q D(Ihu − T1(Ihu, Ihσ))‖L p(∂K )‖h
1
q τn‖Lq (∂K )

≤ C

(

∑

K∈Th
h− p

q ‖D(Ihu − T1(Ihu, Ihσ))‖p
L p(∂K )

) 1
p ||τ ||Lq .

Therefore by Cauchy-Schwarz inequality

∣

∣ − (div τ, D(Ihu − T1(Ihu, Ihσ))) + 〈D(Ihu − T1(Ihu, Ihσ)), τn〉∣∣
≤ C

(‖Ihu − T1(Ihu, Ihσ)‖W 2,p(Th)

+
⎛

⎝

∑

K∈Th
h1−p‖D(Ihu − T1(Ihu, Ihσ))‖p

L p(∂K )

⎞

⎠

1
p
⎞

⎟

⎠
||τ ||Lq . (3.10)
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We conclude from (3.7), (3.8), (3.9) and (3.10) that

|(Ihσ − T2(Ihu, Ihσ), τ )| ≤ (Chk−1 + C‖Ihu − T1(Ihu, Ihσ)‖
˜W 2,p(Th))‖τ‖Lq .

Thus using (2.1)

|(Ihσ − T2(Ihu, Ihσ), τ )| ≤ (Chk−1 + C‖Ihu − T1(Ihu, Ihσ)‖W 2,p(Th))‖τ‖Lq

≤ (Chk−1 + C‖Ihu − T1(Ihu, Ihσ)‖W 2,∞(Th))‖τ‖Lq .

Choosing p such that | ln h| ≤ p ≤ 2| ln h| and using (3.7), we obtain

‖Ihσ −T2(Ihu, Ihσ)‖L∞ ≤Ch− 2
p ‖Ihσ −T2(Ihu, Ihσ)‖L p ≤ Ch− 2

p hk−1 ≤ Chk−1.

This concludes the proof. 
�

Lemma 3.3 Let ρ > 0 and (w1, η1) and (w2, η2) in Bh(ρ). We have

||T2(w1, η1) − T2(w2, η2)||L∞ ≤ C3||T1(w1, η1) − T1(w2, η2)||W 2,∞(Th), (3.11)

for a constant C3 ≥ 1.

Proof For (w1, η1) and (w2, η2) in Bh(ρ). We have using (3.1)

(T2(w1, η1) − T2(w2, η2), τ ) = −(div τ, D(T1(w1, η1) − T1(w2, η2)))

+〈D(T1(w1, η1) − T1(w2, η2)), τn〉
=

∑

K∈Th
(τ, D2(T1(w1, η1) − T1(w2, η2))K

−
∑

K∈Th
〈τn, D(T1(w1, η1) − T1(w2, η2))〉∂K

+〈D(T1(w1, η1) − T1(w2, η2)), τn〉.

Let p ≥ 2 and q such that 1/p + 1/q = 1. We have

∣

∣

∣

∣

∑

K∈Th
(τ, D2(T1(w1, η1) − T1(w2, η2))K

∣

∣

∣

∣

≤ C ||T1(w1, η1)

− T1(w2, η2)||W 2,p(Th)‖τ‖Lq

≤ C ||T1(w1, η1)

− T1(w2, η2)||W 2,∞(Th)‖τ‖Lq .
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Moreover by Cauchy-Schwarz and the scale-trace inequality (2.5)
∣

∣

∣

∣

−
∑

K∈Th
〈τn, D(T1(w1, η1)−T1(w2, η2))〉∂K +〈D(T1(w1, η1)−T1(w2, η2)), τn〉

∣

∣

∣

∣

≤
∑

K∈Th
|〈τn, D(T1(w1, η1) − T1(w2, η2))〉∂K |

=
∑

K∈Th
|〈h 1

q τn, h− 1
q D(T1(w1, η1) − T1(w2, η2))〉∂K | ≤ C‖τ‖Lq

×
(

∑

K∈Th
h− p

q ‖D(T1(w1, η1) − T1(w2, η2))‖p
L2(∂K )

) 1
p

.

Since −p/q = 1 − p we obtain

|(T2(w1, η1) − T2(w2, η2), τ )| ≤ C ||T1(w1, η1) − T1(w2, η2)||˜W 2,p(Th)‖τ‖Lq .

And thus using (2.1)

|(T2(w1, η1) − T2(w2, η2), τ )| ≤ C ||T1(w1, η1) − T1(w2, η2)||W 2,p(Th)‖τ‖Lq

≤ C ||T1(w1, η1) − T1(w2, η2)||W 2,∞(Th)‖τ‖Lq .

We conclude that

‖Ihσ − T2(Ihu, Ihσ)‖L∞ ≤ Ch− 2
p ‖Ihσ − T2(Ihu, Ihσ)‖L p

≤ Ch− 2
p sup

τ �=0
τ∈�h

|(Ihσ − T2(Ihu, Ihσ), τ )|/‖τ‖Lq

≤ Ch− 2
p ||T1(w1, η1) − T1(w2, η2)||W 2,∞(Th)

≤ C ||T1(w1, η1) − T1(w2, η2)||W 2,∞(Th),

where we used Lemma 2.3 and choose p such that | ln h| ≤ p ≤ 2| ln h|. This
concludes the proof. 
�

For (wh, ηh) ∈ Zh we define


 = ((cof D2u) : ηh, v) + ((cof D2u)Dwh, Dv). (3.12)

We have the following analogue of [3, Lemma 3.7]

Lemma 3.4 Let (wh, ηh) ∈ Zh. Then

|((cof D2u) : ηh, v) + ((cof D2u)Dwh, Dv)| ≤ Ch
1
q ||wh ||˜W 2,p(Th)||v||Lq ,

(3.13)

for all v ∈ Vh ∩ H1
0 (�) and p ≥ 2, 1/p + 1/q = 1.
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Proof Denote by P�h the L2 projection into the space �h . Put A = cof D2u. It is
proven in the proof of [3, Lemma 3.7] that for v ∈ Vh ∩ H1

0 (�)


 = −
∑

K∈Th
(div (P�h (vA) − vA), Dwh)K + 〈(P�h (vA) − vA)n, Dwh〉∂�.

We have


 =
∑

K∈Th
(P�h (vA) − vA, D2wh)K −

∑

K∈Th
〈(P�h (vA) − vA)n, Dwh〉∂K

+〈(P�h (vA) − vA)n, Dwh〉∂�. (3.14)

By Cauchy-Schwarz inequality

∣

∣

∣

∣

∑

K∈Th
(P�h (vA) − vA, D2wh)K

∣

∣

∣

∣

≤ ‖P�h (vA) − vA‖Lq‖wh‖W 2,p(Th), (3.15)

and by Cauchy-Schwarz and the trace inequalities

∣

∣

∣

∣

−
∑

K∈Th
〈(P�h (vA) − vA)n, Dwh〉∂K + 〈(P�h (vA) − vA)n, Dwh〉∂�

∣

∣

∣

∣

≤
∑

K∈Th
|〈(P�h (vA) − vA)n, Dwh〉∂K |

=
∑

K∈Th
|〈h 1

q (P�h (vA) − vA)n, h− 1
q Dwh〉∂K |

≤ C
∑

K∈Th
‖h 1

q (P�h (vA) − vA)‖Lq (∂K )‖h− 1
q Dwh‖L p(∂K )

≤ Ch
1
q ‖P�h (vA) − vA‖W 1,q

(

∑

K∈Th
h1−p‖Dwh‖p

L p(∂K )

) 1
p

. (3.16)

Arguing as in the proof of [14, Lemma 4.4] we have for m = 0, 1

||P�h (vA) − vA||Wm,q ≤ Ch1−m ||v||Lq . (3.17)

This follows from the stability in Lq and W 1,q of the L2 projection [8], i.e. for
v ∈ Wm,q(�), v = 0 on ∂�, ‖P�h (vA)‖Wm,q ≤ C‖vA‖Wm,q .

As in the proof of Lemma 2.3, the constant in the Lq stability of the L2 projection
is independent of q. For the W 1,q stability, the independence in q of the constant is
obtained by tracing constants in the proof of [8, Theorem 4 and Theorem 3]. More
precisely, constants in the interpolation estimates and inverse estimates used therein
are independent of q, c.f. Sect. 2. In addition, the constant α in [8] is equal to 1 for
quasi uniform triangulations, making the constants in the estimates independent of q.
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Since P�h Ih(vA) = Ih(vA),

||P�h (vA) − vA||Wm,q ≤ ||P�h (vA) − Ih(vA)||Wm,q + ||Ih(vA) − vA||Wm,q

= ||P�h (vA) − P�h Ih(vA)||Wm,q + ||Ih(vA) − vA||Wm,q

≤ C‖Ih(vA) − vA‖Wm,q ≤ Chk+1−m ||v||Wk+1,q

= Chk+1−m ||v||Wk,q ≤ Ch1−m ||v||L2 ,

where in the last steps, we note that v is a piecewise polynomial of degree k and use
an inverse estimate. It therefore follows from (3.14)–(3.16) that (3.13) holds. 
�

The mapping T1 has a fixed contraction property, i.e.

Lemma 3.5 For h sufficiently small, we have for (w1, η1) and (w2, η2) in Bh(ρ)

||T1(w1, η1) − T1(w2, η2)||W 2,∞(Th) ≤ 1

4C3
||w1 − w2||W 2,∞(Th)

+
(

1

4C3
+ C | ln h|ρ

)

‖η1 − η2‖L∞ .

(3.18)

Proof The proof is a variant of [3, Lemma 3.10] and [3, Lemma 3.11]. Using (3.2)
we have

((cof D2u)D(T1(w1, η1) − T1(w2, η2)), Dv) = ((cof D2u)D(w1 − w2), Dv)

+(det η1 − det η2, v)+((cof D2u) : (η1 − η2), v)−((cof D2u) : (η1 − η2), v),

for all v ∈ Vh . Using the definition of 
, (3.12) with wh = w1 − w2, ηh = η1 − η2,
and Lemma 3.4, we have

((cof D2u)D(T1(w1, η1) − T1(w2, η2)), Dv) = −((cof D2u) : (η1 − η2), v)

+ (det η1 − det η2, v) + 
,

(3.19)

for all v ∈ Vh with

|
| ≤ h
1
q ||wh ||˜W 2,p(Th)||v||Lq , (3.20)

with p ≥ 2, 1/p + 1/q = 1.
By [1, Lemma 1], on each element K we have

det η1 − det η2 = cof

(

1

2
η1 + 1

2
η2

)

: (η1 − η2).
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Therefore on each element K

(cof D2u) : (η1 − η2) − (det η1 − det η2)

= (

(cof D2u) − cof
(1

2
η1 + 1

2
η2

) : (η1 − η2)

= cof
(

D2u − 1

2
η1 − 1

2
η2

) : (η1 − η2).

(3.21)

Let us define

A = (

cof σ − 1

2
η1 − 1

2
η2

) : (η1 − η2).

We have

σ −
(

1

2
η1 + 1

2
η2

)

= σ − Ihσ + 1

2
Ihσ + 1

2
Ihσ −

(

1

2
η1 + 1

2
η2

)

= σ − Ihσ + 1

2
(Ihσ − η1) + 1

2
(Ihσ − η2).

We conclude that

||σ −
(

1

2
η1 + 1

2
η2

)

||L∞(K ) ≤ ||σ − Ihσ ||L∞(K )

+ 1

2
||Ihσ − η1||L∞(K ) + 1

2
||Ihσ − η2||L∞(K )

≤ Chk+1 + Cρ.

It follows from (3.21) that

‖(cof D2u) : (η1 − η2) − (det η1 − det η2)‖L p ≤ (

Chk+1 + Cρ
)‖η1 − η2‖L∞ .

(3.22)

Let us define the linear form L on Vh by

L(v) = ((cof D2u)D(T1(w1, η1) − T1(w2, η2)), Dv).

By the Riesz representation theorem, there exists r ∈ Vh with L(v) = (r, v) for all
v ∈ Vh . Moreover by Lemma 2.3 ‖r‖L p ≤ C sup

v �=0
v∈Vh

|L(v)|/‖v‖Lq . We conclude from

(3.19), (3.20) and (3.22) that

‖r‖L p ≤ Ch
1
q ||w1 − w2||˜W 2,p(Th) + (

Chk+1 + Cρ
)‖η1 − η2‖L∞ .
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By discrete elliptic regularity and (2.1)

||T1(w1, η1) − T1(w2, η2)||˜W 2,p(Th) ≤ Cph
1
q ||w1 − w2||˜W 2,p(Th)

+ (

Chk+1 + Cρ
)

p‖η1 − η2‖L∞

≤ Cph
1
q ||w1 − w2||W 2,∞(Th)

+ (

Chk+1 + Cρ
)

p‖η1 − η2‖L∞ .

Since p ≥ 2 and 0 < h ≤ 1, we have h1/q ≤ h1/2. Choosing p such that | ln h| ≤ p ≤
2| ln h| we have ph1/2 ≤ C | ln h|h1/2 ≤ 1/(4C3) for h sufficiently small. Similarly
Chk+1| ln h| ≤ 1/(4C3) forh sufficiently small.Weconcludeusing an inverse estimate
that

||T1(w1, η1) − T1(w2, η2)||W 2,∞(Th) ≤ Ch− 2
p ||T1(w1, η1) − T1(w2, η2)||W 2,p(Th)

≤ Ch− 2
p ||T1(w1, η1) − T1(w2, η2)||˜W 2,p(Th)

≤ C ||T1(w1, η1) − T1(w2, η2)||˜W 2,p(Th)

≤ 1

4C3
||w1 − w2||W 2,∞(Th)

+
(

1

4C3
+ C | ln h|ρ

)

‖η1 − η2‖L∞ .

This completes the proof. 
�
Lemma 3.6 Let ρ(h) = 2C4hk−1 where C4 = max(C0,C1, 2C2) with C0 the con-
stant in Lemma 3.1 and C1,C2 the constants from Lemma 3.2. Then T maps Bh(ρ)

into itself for h sufficiently small.

Proof Let (wh, ηh) ∈ Bh(ρ). By definition, ||wh − Ihu||W 2,∞(Th) ≤ ρ and ||ηh −
Ihσ ||L∞ ≤ ρ. By (3.18) and (3.4), for h sufficiently small

||T1(wh, ηh) − Ihu||W 2,∞(Th) ≤ ||T1(wh, ηh) − T1(Ihu, Ihσ)||W 2,∞(Th)
+||T1(Ihu, Ihσ) − Ihu||W 2,∞(Th)

≤
(

1

4
+ C | ln h|hk−1

)

||ηh − Ihσ ||L∞

+1

4
||wh − Ihu||

˜H2(Th) + C1h
k

≤ 3ρ

4
+ C1h

k = 3ρ

4
+ C1h

2C5
ρ ≤ ρ.

In addition, by (3.18), (3.11) and (3.5) and a similar argument we get

||T2(wh, ηh) − Ihσ ||L∞

≤ ||T2(wh, ηh) − T2(Ihu, Ihσ)||L∞ + ||T2(Ihu, Ihσ) − Ihσ ||L∞
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≤ C3||T1(wh, ηh) − T1(Ihu, Ihσ)||W 2,∞(Th) + ||T2(Ihu, Ihσ) − Ihσ ||L∞

≤ 1

4
||ηh − Ihσ ||L∞ + C | ln h|ρ||ηh − Ihσ ||L∞

+ 1

4
||wh − Ihu||W 2,∞(Th) + C2h

k−1

≤ ρ,

for h sufficiently small. By (3.1) (T1(wh, ηh), T2(wh, ηh)) is in the space Zh . This
concludes the proof. 
�
We can now claim

Theorem 3.7 Let (u, σ ) ∈ Hk+3(�) × Hk+1(�)d×d denotes the unique convex
solution of [1, (1)] with k ≥ 2. Then the problem [1, (3)] has a unique solution in
Bh(ρ) ⊂ Vh × �h for h sufficiently small and with ρ(h) given in Lemma 3.6.

Proof The proof follows from the Brouwer fixed point theorem. For h sufficiently
small and for (w1, η1), (w2, η2) ∈ Bh(ρ), by (3.18) and (3.11)

||T1(w1, η1) − T1(w2, η2)||W 2,∞(Th) + ||T2(w1, η1) − T2(w2, η2)||L∞

≤ C ||T1(w1, η1) − T1(w2, η2)||W 2,∞(Th)
≤ C ||w1 − w2||W 2,∞(Th) + C ||η1 − η2||L∞ .

Hence the mapping T is continuous in Bh(ρ). Since for h sufficiently small and the
choice of ρ(h), the continuous mapping T maps the closed ball Bh(ρ) into itself, there
exists a fixed point (uh, σh) in Bh(ρ).

Assume that (w1
h, η

1
h) and (w2

h, η
2
h) are twofixedpoints ofT . ThenT1(w

1
h, η

1
h) = w1

h
and T1(w2

h, η
2
h) = w2

h . By (3.18) we have

||w1
h − w2

h ||W 2,∞(Th) ≤ 1

2C3
||η1h − η2h ||L∞ + 1

4
||w1

h − w2
h ||W 2,∞(Th),

and so

||w1
h − w2

h ||W 2,∞(Th) ≤ 2

3C3
||η1h − η2h ||L∞ .

We also have T2(w1
h, η

1
h) = η1h and T2(w2

h, η
2
h) = η2h . By (3.11)

||η1h − η2h ||L∞ ≤ C3||w1
h − w2

h ||W 2,∞(Th) ≤ 2

3
||η1h − η2h ||L2 .

This implies η1h = η2h and so w1
h = w2

h . This proves uniqueness. 
�
The following error estimates hold
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Theorem 3.8 Under the assumptions of Theorem 3.7, the solution (uh, σh) of (3.1)–
(3.3) satisfies

‖u − uh‖W 2,∞(Th) ≤ Chk−1 (3.23)

||σ − σh ||L∞ ≤ Chk−1. (3.24)

Proof By the definition of the ball Bh(ρ), the existence of the solution (uh, σh) in
Bh(ρ) with ρ = O(hk−1) given in Theorem 3.7, we have

||Ihu − uh ||W 2,∞(Th) ≤ Chk−1

||Ihσ − σh ||L∞ ≤ Chk−1.

The estimates (3.23) and (3.24) then follow from triangular inequalities and standard
interpolation inequalities. 
�
Remark 3.9 Since it is now known that T has a fixed point (uh, σh) with ‖uh −
Ihσ‖L∞ ≤ Chk−1, it should be possible to derive a O(hk) error estimate in the H1

norm for u − uh by using [3, Lemma 3.10] and [3, Lemma 3.11]. Note that in the
proof of [3, Lemma 3.10] an inverse estimate, used to estimate ‖uh − Ihσ‖L∞ from
‖uh − Ihσ‖L2 can now be avoided.

Acknowledgements The author was partially supported by NSF Grant DMS-1319640. The author thanks
Eric Malitz for many useful discussions about Reference [2] and Hengguang Li for discussions on the Ritz
projection.

References

1. Awanou, G.: Quadratic mixed finite element approximations of the Monge-Ampère equation in 2D.
Calcolo 52(4), 503–518 (2015)

2. Awanou, G.: Standard finite elements for the numerical resolution of the elliptic Monge-Ampère
equations: classical solutions. IMA J. Numer. Anal. 35(3), 1150–1166 (2015)

3. Awanou, G., Li, H.: Error analysis of a mixed finite element method for the Monge-Ampère equation.
Int. J. Numer. Anal. Model. 11, 745–761 (2014)

4. Babuška, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math.
Comput. 35(152), 1039–1062 (1980)

5. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, Texts in applied math-
ematics, vol. 15, 2nd edn. Springer-Verlag, New York (2002)

6. Butzer, P.L., Berens, H.: Semi-groups of operators and approximation. Die Grundlehren der mathe-
matischen Wissenschaften, Band, vol. 145. Springer-Verlag New York Inc, New York (1967)

7. Cameron, A.W.: Estimates for solutions of elliptic partial differential equations with explicit constants
and aspects of the finite element method for second-order equations. Dissertation, Cornell University
(2010)

8. Crouzeix,M., Thomée, V.: The stability in L p andW 1
p of the L2-projection onto finite element function

spaces. Math. Comput. 48(178), 521–532 (1987)
9. DeVore, R., Scherer, K.: Interpolation of linear operators on Sobolev spaces. Ann. Math. (2) 109(3),

583–599 (1979)
10. Douglas Jr., J., Dupont, T., Wahlbin, L.: The stability in Lq -projection into finite element function

spaces. Numer. Math 23, 193–197 (1974/75)
11. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathe-

matics. Springer-Verlag, Berlin (2001, Reprint of the 1998 edition)

123



Erratum to: Quadratic mixed finite element approximations. . . 297

12. Li, H.: The W 1
p stability of the Ritz projection on graded meshes. Math. Comput. (2016, To appear in)

13. Neilan, M.: Quadratic finite element approximations of the Monge-Ampère equation. J. Sci. Comput.
54(1), 200–226 (2013)

14. Neilan, M.: Finite element methods for fully nonlinear second order PDEs based on a discrete Hessian
with applications to the Monge-Ampère equation. J. Comput. Appl. Math. 263, 351–369 (2014)

15. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approxima-
tions. Math. Comput. 38(158), 437–445 (1982)

16. Schatz, A.H.: Pointwise error estimates and asymptotic error expansion inequalities for the finite
element method on irregular grids. I. Global estimates. Math. Comput. 67(223), 877–899 (1998)

17. Wu, Z., Yin, J., Wang, C.: Elliptic & parabolic equations. World Scientific Publishing Co. Pte. Ltd.,
Hackensack (2006). doi:10.1142/6238

123

http://dx.doi.org/10.1142/6238

	Erratum to: Quadratic mixed finite element approximations of the Monge-Ampère equation in 2D
	Erratum to: Calcolo (2015) 52:503--518   DOI 10.1007/s10092-014-0127-7
	1 Introduction
	2 Preliminaries
	3 Error analysis of the mixed method with the elliptic regularity assumption
	Acknowledgements
	References




