Skip to main content
Log in

A solution procedure for constrained eigenvalue problems and its application within the structural finite-element code NOSA-ITACA

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

The paper presents an efficient and reliable implementation of numerical methods for constrained generalized eigenvalue problems, specialized for the modal analysis of linear elastic structures in a finite-element setting. The implementation, which takes into account the sparsity of the stiffness and mass matrices and the features of master-slave constraints, is based on open-source packages embedded in the finite-element code NOSA-ITACA. Numerical tests on historical building are performed, with the aims of calculating their vibration frequencies and mode shape vectors, comparing them to the results of a general purpose commercial code and assessing the accuracy of the tool developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arbenz, P., Drmac, Z.: On positive semidefinite matrices with known null space. SIAM J. Matrix Anal. Appl. 24(1), 132–149 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arbenz, P., Hetmaniuk, U.L., Lehoucq, R.B., Tumin, R.S.: A comparison of eigensolvers for large-scale 3D modal analysis using AMG-preconditioned iterative methods. Int. J. Numer. Methods Eng. 64, 204–236 (2005)

    Article  MATH  Google Scholar 

  3. Baker, C.G., Lehoucq, R.B.: Preconditioning constrained eigenvalue problems. Linear Algebra Appl. 431(3–4), 396–408 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bhardwaj, M., Pierson, K., Reese, G., Walsh, T., Day, D., Alvin, K., Peery, J.: Salinas: a scalable software for high-performance structural and solid mechanics simulation. In: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, 16 November 2002, Baltimore, Maryland, pp. 1–19

  5. Bergamaschi, L., Putti, M.: Numerical comparison of iterative eigensolvers for large sparse symmetric positive definite matrices. Comput. Methods Appl. Mech. Eng. 191(45), 5233–5247 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bathe, K.J., Wilson, E.L.: Numerical Methods in Finite Element Analysis. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  7. Campos, C., Roman, J.E.: Strategies for spectrum slicing based on restarted Lanczos methods. Numer. Algorithms 60(2), 279–295 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Davidson, E.R.: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17, 87–94 (1975)

    Article  MATH  Google Scholar 

  9. D.M. 14 gennaio 2008, Norme Tecniche per le Costruzioni, G.U. 4 febbraio 2008, n. 29

  10. Farhat, C., Lacour, C., Rixen, D.: Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm. Int. J. Numer. Methods Eng. 43(6), 997–1016 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Felippa, C.: Lectures Notes for Introduction to Finite Element Methods (ASEN 5007), Revised Fall (1997). http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/

  12. Gambolati, G., Sartoretto, F., Florian, P.: An orthogonal accelerated deflation technique for large symmetric eigenproblems. Comput. Methods. Appl. Mech. Eng. 94, 13–23 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gander, W., Golub, G.H., von Matt, U.: A constrained eigenvalue problem. Linear Algebra Appl. 114–115, 815–839 (1989)

    Article  Google Scholar 

  14. Gill, Ph.E., Murray, W., Wright, M.H.: Numerical Linear Algebra and Optimization, vol. I. Addison-Wesley, Reading (1991)

  15. Girardi, M., Padovani, C., Pasquinelli, G.: Numerical modelling of the static and seismic behaviour of historical buildings: the church of San Francesco in Lucca. In: Topping, B.H.V., Ivnyi, P. (eds.) CC2013—Fourteenth International Conference on Civil, Structural and Environmental Engineering Computing (Cagliari, Italy, 3–6 September 2013), Proceedings, Article N. 80. Civil-Comp Press, Stirling (2013)

  16. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, London (1996)

    MATH  Google Scholar 

  17. Golub, G., Zhang, Z., Zha, H.: Large sparse symmetric eigenvalue problems with homogeneous linear constraints: the Lanczos process with inner-outer iterations. Linear Algebra Appl. 309(1–3), 289–306 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hernández, V., Román, J.E., Tomás, A., Vidal, V.: A Survey of Software for Sparse Eigenvalue Problems. SLEPc Technical Report STR-6

  19. Hestenes, M.R., Stiefel, E.: Methods of Conjugate Gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied Mathematics. SIAM, Philadelphia (1995)

    Book  Google Scholar 

  21. Knyazev, A.V., Skorokhodov, A.L.: The preconditioned gradient-type iterative methods in a subspace for partial generalized symmetric eigenvalue problem. SIAM J. Numer. Anal. 31, 1226–1239 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lehoucq, R.B., Scott, J.A.: An Evaluation of Software for Computing Eigenvalues of Sparse Nonsymmetric Matrices. Preprint MCS-P547-1195, Argonne National Laboratory (1996)

  24. Lehoucq, R.B., Sorensen, D.C.: Deflation techniques for an implicit restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl. 17, 789–821 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users Guide. Solution of Large Scale Eigenvalue Problem with Implicit Restarted Arnoldi Methods. SIAM, Philadelphia (1998)

  26. Lidström, P., Olsson, P.: On the natural vibrations of linear structures with constraints. J. Sound Vib. 301(1–2), 341–354 (2007)

    Google Scholar 

  27. Lin, C.J., Moré, J.J.: Incomplete Cholesky factorizations with limited memory. SIAM J. Sci. Comput. 21, 24 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lucchesi, M., Padovani, C., Pasquinelli, G., Zani, N.: Masonry Constructions: Mechanical Models and Numerical Applications. Lecture Notes in Applied and Computational Mechanics, vol. 39. Springer, Berlin (2008)

  29. Notay, Y.: Combination of Jacobi–Davidson and conjugate gradients for the partial symmetric eigenproblem. Numer. Linear Algebra Appl. 9, 2144 (2002)

    Google Scholar 

  30. Nour-Omid, B., Parlett, B.N., Taylor, R.L.: Lanczos versus subspace iteration for solution of eigenvalue problems. Int. J. Numer. Methods Eng. 19, 859–871 (1983)

    Article  MATH  Google Scholar 

  31. Parlett, B.N.: The software scene in the extraction of eigenvalues from sparse matrices. SIAM J. Sci. Stat. Comput. 5(3), 590–604 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pasquinelli, G.: On the modeling of the reinforcement rings in masonry buildings: an example. In: Proceedings of the Third International Conference on Contact Mechanics, Contact Mechanics III, Madrid (1997)

  33. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Manchester University Press, New York (1992)

    MATH  Google Scholar 

  34. Saad, Y.: SPARSKIT: a basic tool kit for sparse matrix computations. Technical Report RIACS-90-20, Research Institute for Advanced Computer Science, NASA Ames Research Center, Moffett Field, CA (1990)

  35. Simoncini, V.: Algebraic formulations for the solution of the nullspace-free eigenvalue problem using the inexact Shift-and-Invert Lanczos method. Numer. Linear Algebra Appl. 10(4), 357–375 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi–Davidson method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401–425 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  37. Sloan, S.W.: A Fortran program for profile and wavefront reduction. Int. J. Numer. Methods Eng. 28, 2651–2679 (1989)

    Article  MATH  Google Scholar 

  38. Sorensen, D.C.: Numerical methods for large eigenvalue problems. Acta Numer. 11, 519–584 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referees for constructive comments that significantly improved the presentation. This research was supported by the Region of Tuscany (Project “Tools for modelling and assessing the structural behaviour of ancient constructions: the NOSA-ITACA code”, PAR-FAS 2007-2013). Moreover, the work of the first author was supported by National Group of Computing Science (GNCS-INDAM) (GNCS 2013 Project “Strategie risolutive per sistemi lineari tipo KKT con uso di informazioni strutturali”, GNCS 2013-2014 Project “Identificazione automatica dei parametri algoritmici ottimali”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margherita Porcelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porcelli, M., Binante, V., Girardi, M. et al. A solution procedure for constrained eigenvalue problems and its application within the structural finite-element code NOSA-ITACA. Calcolo 52, 167–186 (2015). https://doi.org/10.1007/s10092-014-0112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-014-0112-1

Keywords

Mathematics Subject Classification

Navigation