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Abstract The purpose of this study is to evaluate the

effect of growth rate on intra-tree variation in basic density

of hinoki cypress (Chamaecyparis obtusa) quantitatively

using the statistical modeling technique. Nineteen sample

trees were harvested from 50-year-old hinoki stand which

consists of two different growth rate plots. Disks were cut

from sample trees at height positions of 2, 4 m, and then

4 m intervals until 16 m position. Radial strips were cut

from the disks, and ring widths and basic density were

measured at 5-ring intervals. The basic density decreased

with age at any height positions. The linear mixed model

was fitted to the age trend data having two nested grouping

levels, i.e., tree and position within tree. Models having

various mean and covariance structures were tested in

devising an appropriate wood density model. The model,

consisting of the mean structure with quadratic function of

cambial age was able to describe the intra-tree variation in

basic density. The model containing the random effects

which consist of effect of the tree level and vertical stem

position level explained the density variation adequately.

The growth rate did not show the significant effect on the

basic density variation within the stem.

Keywords Basic density � Growth rate � Intra-tree

variation � Linear mixed-effect model � Chamaecyparis

obtusa

Introduction

Hinoki cypress (Chamaecyparis obtusa) is one of the most

important commercial species in Japan and its afforestation

area accounts for 25 % of all plantation forest area in Japan

[1]. Historically, hinoki has been used as building materials

because it shows remarkable mechanical properties and

durability [2]. For instance, it is well known that Horyuji,

the world’s oldest wooden architecture, was built more

than 1,300 years ago and hinoki was mainly used as its

construction member [3]. However, the wood resources

have shifted from natural forests to plantation forests

recently, and thus the wood properties of hinoki from

plantation forests would be different from the past situa-

tion. The correct recognition of the wood properties in

current hinoki resources should be necessary for the ade-

quate forest management and utilization.

Numerous studies have reported the variation of wood

properties in a number of species [4]. However, many of

these reports are not quantitative examinations but quali-

tative examinations, except for the genetic variation which

provides various genetic parameters. If the variation pat-

terns of wood properties can be formulated quantitatively,

one can interpolate the data or extrapolate the future situ-

ations based on the formulae.

There may be no discussed matter with regard to wood

quality variation than relationship between growth rate and

wood properties [4]. Especially, the effects of growth rate

on wood density have been studied intensively. In hinoki

cypress, Hirai reported that high growth rate would
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produce wood having low basic density [5]. Fujiwara et al.

[6] examined the variation of basic density of hinoki which

was obtained from nine test stands, and reported that there

were no significant differences between thinned stands and

un-thinned stands. Growth rate affects wood properties at

different tree ages, and ignoring this effect could result in

growth rate being incorrectly identified as the cause of

differing wood properties [7, 8].

Sequences of yearly measurements of wood character-

istics are considered as longitudinal (time series) data, and

the analysis of longitudinal data is able to evaluate the age

effect on variation of these characteristics. In this case,

these data are repeated measures made of the same char-

acteristic on the same observational unit (tree, disk, and

ring), and such data generally present temporal autocorre-

lation, heteroscedasticity, and nonstationarity of the mean

[9–11]. The mixed-effects analysis technique is frequently

used for such grouped data including longitudinal data,

repeated measures data, and multilevel data [12, 13].

Correlations among observations made on the same subject

or experimental unit can be modeled using random effects,

random regression coefficients, and through the specifica-

tion of a covariance structure. Recent studies have devel-

oped models predicting variation in wood properties within

a stem or cross section using the mixed-effects analysis for

many species, such as pine and spruce [14–21].

Although the general variation pattern of basic density

within stem is well known in hinoki, there is little infor-

mation available about the effects of growth rate on the

variation pattern of basic density. The objective of this

study is to evaluate the effect of growth rate on variation

pattern of basic density within stem. The linear mixed-

effects model was used to explain the variation pattern of

basic density quantitatively, and the effects of growth rate

on its variation were also assessed on the basis of statistical

manner.

Materials and methods

Sample materials were obtained from 50-year-old hinoki

cypress stands in Tottori University Forest located in

Maniwa, Okayama (35�160 N, 133�360 E; approximately

540 m elevation). The annual average precipitation and

temperature from 2002 to 2012 in the research forest were

1989 mm and 11.6 �C, respectively. Hinoki cypress seed-

lings were planted in 1962 at an initial plant density of

3333 trees/ha. The test stand consisted of four 10-m square

plots, which were two fast growth plots and two slow

growth plots. They were adjacent to each other. The

information of the test stand is summarized in Table 1.

Although the detailed archive of the stand is unclear, the

fast growth plots had been thinned several times. On the

other hand, the slow growth plots have never been thinned

previously. As a result, the stand density between them was

quite different.

From each plot, four or five, totally nineteen sample

trees, were felled in 2012. Height and height to the base of

live crown (BLC) of the sample trees were measured. The

average height, DBH and BLC of sample trees were

15.9 m, 20.7 cm and 9.1 m, respectively. The height ran-

ged from 10.2 to 18.6 m. DBH ranged from 11.9 to

30.9 cm. Analysis of variance confirmed the significant

difference of the DBH among plots (p = 0.006; data not

shown).

A 5-cm-thick, knot-free sample disks were cut from

each sample tree at height positions of 2, 4 m, and then 4 m

intervals until 16 m position. A 3-cm-thick radial strip was

cut from each disk and ring width was measured from pith

to outward in every five rings. Radial diameter of sample

strips ranged from 1.4 to 12.1 cm. The measurements were

carried out for two radial directions and ring width was

expressed as the mean of both values. After that, the strips

were cut into every 5 rings for basic density analysis.

Water displace method was used to determine the basic

density. The basic density was also determined as the mean

of both radial directions. Radial and longitudinal variations

of basic density for each plot are presented in Fig. 1.

Model development

The start model

The mixed model technique [12, 13] was used for modeling

the effects of growth rate on the intra-tree variation in basic

density. Figure 1 indicates that basic density can be rep-

resented by the quadratic function of cambial age, i.e., ring

number from pith. On the start model, the fixed effects

consisted of population mean and effects of plots deter-

mined by growth rate. The random effects consisted of

Table 1 Characteristics of the plots and sample trees in the test stand

Plot A Plot B

A1 A2 B1 B2

Stand density (tree/ha) 1000 1200 2100 2800

BA (m2/ha) 50.9 52.5 63.2 42.0

DBH (cm) 22.8 20.9 19.9 13.6

Height (m) 17.6 17.5 17.2 11.5

BLC (m) 11.2 9.1 11.1 5.5

The data were obtained when the sample trees were harvested. DBH,

Height, and BLC are the mean value of sample trees

BA basal area, DBH diameter at breast height, BLC, height to the base

of live crown
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effect of the tree level and vertical stem position level. The

model expressed as

BDhijk ¼ b0 þ b0h þ b0i þ b0i;j

� �
þ b1 þ b1h þ b1i þ b1i;j

� �
AGEk

þ b2 þ b2h þ b2i þ b2i;j

� �
AGE2

k þ ehijk;

bi ¼
b0i

b1i

b2i

2

64

3

75�N 0; W1ð Þ; bi;j ¼
b0i;j

b1i;j

b2i;j

2

64

3

75�N 0; W2ð Þ;

ehijk �N 0; r2
� �

;

ð1Þ

where BDhijk was the basic density of the kth cambial age

of the jth vertical stem position in the ith tree in the hth

plot; b0, b1 and b2 were the population mean of the basic

density; b0h, b1h and b2h were the fixed-effect parameters

of hth plot; bi was the tree-level random-effects vector; bi, j

was the position-level random-effects vector; ehijk was the

within-group error. The bi were assumed to be independent

for different i, the bi, j were assumed to be independent for

different i, j and independent of the bi, and the ehijk were

assumed to be independent for different i, j, k and inde-

pendent of the random effects. The large number of

parameters in Eq. (1) makes the optimization of the pro-

filed log-restricted-likelihood quite difficult and unstable

[12]. To make the optimization more stable during this

model building phase, we simplify Eq. (1) by assuming W1

and W2 as diagonal matrices. The models in this article

were fitted using the nlme package in R version 3.0.0 [22].

Selecting the fixed-effects structure

First, we evaluate whether the quadratic function of cam-

bial age is adequate to describe the observed data and also

test whether the growth rate has significant effect on the

intra-tree variation on the basic density. The result of fitting

indicated that both first- and second-order terms of age

were highly significant (p \ 0.001), and thus, the quadratic

function of cambial age well describes the radial variation

of basic density.

There were no clear effects in the terms of plot

(p = 0.087), plot-AGE interaction (p = 0.288), and plot-

AGE2 interaction (p = 0.079). The results indicate that

growth rate does not affect the variation pattern of basic

density within the stem in hinoki cypress. Consequently,

the fixed effect of the Eq. (1) could be simplified to the

structure without plot effects.

Determining the variance–covariance structure

of random effects

The age quadratic model without plot effects (model 1.1)

was examined to determine the variance–covariance

structure of random effects. The pair plot for the estimated

random effects in the tree level is shown in Fig. 2. There

was a weak positive correlation between the AGE and

AGE2 random effects, but no substantial correlation

between either of these random effects and the intercept
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Fig. 1 Radial and longitudinal variations of basic density from different growth rate plots

J Wood Sci (2014) 60:305–312 307

123



random effects. A blocked diagonal matrix can be used to

represent such covariance structure [12], with the intercept

random effect corresponding to one block and the AGE and

AGE2 random effects corresponding to another block.

There was no remarkable correlation found among the

random effects in the vertical stem position level.

Several models with different structures for the vari-

ance–covariance matrices of the estimated random effects

were fitted and compared using the log-likelihood ratio test

(LRT), the Akaike’s information criterion (AIC), and the

Schwarz’s Bayesian information criterion (BIC). Accord-

ing to the fit statistics presented on Table 2, model 1.2 with

the blocked diagonal matrix in the tree level was the best of

the variance–covariance structure of random effects.

Hence, the variance–covariance structure could be repre-

sented as

Var ðbiÞ ¼ W1 ¼
r00 0 0

0 r11 r12

0 r21 r22

2

4

3

5; Var ðbi;jÞ ¼ W2

¼
r00 0 0

0 r11 0

0 0 r22

2

4

3

5

ð2Þ

Determining the structure of the within-group error

The within-group error, ehijk, were assumed to be inde-

pendent for different i, j, k and independent of the random

effects in model 1.2. The plots of residuals against the fitted

values and other candidate variance covariates are useful

for investigating within-group heteroscedasticity [12]. In

this case, the cambial age is a natural candidate for the

variance covariate. Figure 3 shows the plots of residuals

versus AGE, indicating that the residuals decrease with

AGE. Thus, we proceed by specifying the variance struc-

ture of the within-group error to account for heterosced-

asticity. We use a conditional error variance [12, 23],

where we assume

Var eijk j bi;j; bij

� �
¼ r2G2 lijk; tijk; d

� �
; ð3Þ

where is lijk = E [yijk | bi,j, bij], tijk is a vector of variance

covariates, d is a vector of variance parameters and G(.) is

the variance function. A number of variance function can

be used in the nlme package, the following two variance

structures were tested in this study. The first is the power

model which is given as

Var eijk

� �
¼ r2 tijk

�� ��2d
; G tijk; d

� �
¼ tijk

�� ��d ð4Þ

The second is the exponential model which can be repre-

sented as

Var eijk

� �
¼ r2 exp 2dtijk

� �
; G tijk; d

� �
¼ exp dtijk

� �
ð5Þ

The parameter d is unrestricted, thus, the both variance

structures can model a case where the variance increases or

decreases with the variance covariate. There were signifi-

cant increases in the log-restricted-likelihood, as evidenced
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Fig. 2 Scatter plot of the estimated random effects in tree level from

model 1.1

Table 2 Comparisons of the model performance with different variance–covariance structures for the random effects

Model Var–Cov structure No. of parameters AIC BIC logLik LRT p value

Tree Position

1.1 Diag Diag 13 4808 4850 -2393.9

1.2 Block-diag Diag 11 4794 4840 -2386.1 15.7 0.00001

1.3 Diag Block-diag 11 4810 4856 -2393.9 \0.001 0.9996

1.4 Block-diag Block-diag 12 4796 4864 -2386.1 15.7 0.00004

Diag diagonal matrix structure, Block-Diag blocked diagonal matrix structure, logLik log-restricted-likelihood estimated by restricted maximum

likelihood method, AIC Akaike’s information criterion, BIC Schwarz’s Bayesian information criterion LRT likelihood ratio test calculated with

respect to model 1.1
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by the large value of the LRT, indicating that addition of

the variance function to the model significantly improves

on model 1.2 (Table 3). Based on AIC and BIC, power

function of age (model 1.2.1) will be used to represent

variance structure of the within-group error.

Since the age trend of basic density could be considered

as time series data, we need to pay attention to the temporal

autocorrelation. Serial correlation structures are used to

model dependence in time series data [24]. The empirical

autocorrelation function provides a useful tool for investi-

gating serial correlation in time series data. A plot of the

estimated autocorrelation coefficients against lags for

model 1.2.1 indicates that autocorrelations were significant

even at cambial age lag 3 and 4 (data not shown). The

following second-order moving average MA(2) was the

best of the candidate correlation structures based on the

statistics presented in Table 4.

et ¼
X2

j¼1

hjat�j þ at; ð6Þ

where et is the current within-subject error term, hj are the

moving-average parameters (j = 1, 2) and at is a homo-

scedastic noise term centered at 0 (E[at] = 0). The esti-

mated normalized autocorrelation structure for model

1.2.1.4 residuals was

q̂ ¼ q̂ð1Þ; q̂ð2Þ; q̂ð3Þ; q̂ð4Þ; q̂ð5Þ; q̂ð6Þ; q̂ð7Þ; q̂ð8Þ½ �T

¼ �0:198; �0:087; �0:112; �0:194; �0:098;½
�0:042; �0:097�T;

ð7Þ

where q̂ðlÞ is the empirical autocorrelation calculated at lag

l and the estimated parameters for the MA(2) model were

h1 = 0.348, and h2 = 0.256.

We selected the MA(2) model that is more adequate to

represent the autocorrelation at small lags even though the

second-order autoregressive model AR(2) model and the

MA(2) model indicated almost the same AIC, BIC and log-

restricted-likelihood. This is because the empirical auto-

correlation at larger lags tends to be less reliable due to the

estimation by fewer residuals pairs [12]. In our data, there

were differences of the ring number from pith among the

disks. For example, a total ring number of a disk was 42

while that of another was only 37, such disproportion of the
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Fig. 3 Plot of residuals versus cambial age for the model 1.2 having

homoscedastic within-group errors

Table 3 Comparisons of the model performance with different within-group error variance structures

Model Variance function No. of parameters AIC BIC LogLik LRT p value

1.2 No structure 11 4794 4840 -2386.1

1.2.1 Power 12 4646 4697 -2311.2 150.0 \0.0001

1.2.2 Exponential 12 4682 4732 -2329.2 113.8 \0.0001

Likelihood ratio test calculated with respect to model 1.2. Abbreviations are same in Table 2

Table 4 Comparisons of the model performance with different within-groups correlation structures

Model Correlation structure No. of parameters AIC BIC LogLik Test LRT p value

1.2.1 Independent 12 4646 4697 -2311.2

1.2.1.1 AR (1) 13 4623 4678 -2298.7 1.2.1 versus 1.2.1.1 25.0 \0.0001

1.2.1.2 AR (2) 14 4621 4680 -2296.6 1.2.1.1 versus 1.2.1.2 4.1 0.0419

1.2.1.3 MA (1) 13 4632 4686 -2303.0 1.2.1.2 versus 1.2.1.3 12.7 0.0004

1.2.1.4 MA (2) 14 4621 4680 -2296.7 1.2.1.3 versus 1.2.1.4 12.6 0.0004

1.2.1.5 ARMA (1,1) 14 4622 4681 -2297.2

1.2.1.6 ARMA (1,2) 15 4622 4685 -2296.0 1.2.1.5 versus 1.2.1.6 1.7 0.1872

1.2.1.7 ARMA (2,1) 15 4623 4685 -2296.4

AR autoregressive model, MA moving average correlation model, ARMA mixed autoregressive-moving average model, Other abbreviations are

same in Table 2
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data also might be possibly the cause of the autocorrelation

at larger lags.

Final model

We have tested the models having various mean and covari-

ance structures, and have finally obtained the following model

to describe the intra-tree variation in basic density.

BDijk ¼ b0 þ b0i þ b0i;j

� �
þ b1 þ b1i þ b1i;j

� �
AGEk

þ b2 þ b2i þ b2i;j

� �
AGE2

k þ eijk;

bi�N 0;

r00 0 0

0 r11 r12

0 r21 r22

0

B@

1

CA

0

B@

1

CA ; bi;j�N 0;

r00 0 0

0 r11 0

0 0 r22

0

B@

1

CA

0

B@

1

CA;

eijk�N 0; r2G
1=2
ijk tijk; d
� �

Hijk u; hð Þ G
1=2
ijk tijk; d
� �� �

;

Gijk tijk; d
� �

¼ AGEj jd; Hijk u; hð Þ ¼ ARMA 0; 2ð Þ;

ð8Þ

where Hijk (/, h) is the serial correlation function and

ARMA is mixed autoregressive-moving average model.

The remaining elements of the model have been described

previously. Parameter estimates, corresponding standard

errors and p values for fixed effects of model 1.2.1.4 [Eq.

(8)] are given in Table 5.

A final assessment of the adequacy of model 1.2.1.4 [eq.

(8)] is given by the plot of the augmented prediction [12,

19] for a chosen tree (Fig. 4). Observed values of basic

density, prediction by estimated fixed-effects parameters of

model 1.2.1.4, which random effects were excluded, and

that of containing random effects. The predictions con-

taining the random effects follow the observed values

closely, indicating that the final model explains the density

variation data well.

Discussion

This study applied the linear mixed model to evaluate the

effects of growth rate on the intra-tree variation in the basic

density. The basic density decreased from pith to outward

and the unique pattern was found in any height position

(Fig. 1). The results were consistent with the previous

reports in hinoki cypress [25, 26]. From Fig. 4, the final

model with the quadratic function of cambial age [Eq. (8)]

Table 5 The estimated fixed effects parameters of basic density with

the quadratic function of cambial age

Parameters Estimate Std. error p value

b0 598.8215 7.9846 \0.0001

b1 -13.1779 0.7004 \0.0001

b2 0.1978 0.0132 \0.0001
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Fig. 4 Population prediction (setting all random effects to 0),

subjects specified prediction (containing random effects) from the

final model 1.2.1.4 and observed values of basic density versus

cambial age. The solid lines, the dots line and filled circles indicate

the population prediction, subjects specified prediction and observed

values, respectively

310 J Wood Sci (2014) 60:305–312

123



explained the variation of basic density successfully. The

density variation pattern found in hinoki is different from

those of general coniferous tree, such as pine and larch,

where the wood density increases with age [4, 7]. Decrease

of wood density with age can be also found in sugi

(Cryptomeria japonica) [26, 27].

There were no significant effects in the terms of plot,

plot-AGE interaction, and plot-AGE2 interaction. The

results indicate that growth rate does not affect the varia-

tion pattern of basic density within the stem in hinoki

cypress. There were few studies about the effects of growth

rate on the variation pattern of basic density in hinoki

cypress in spite of its importance for forest management

and utilization. Fujiwara et al. [6] reported the similar

results, but Hirai’s report [5] is inconsistent with our result.

Growth rate affects wood density at different tree ages, and

the inconsistency of these results would be due to the

ignorance of age effects [4, 8]. The modeling approach

employed in this study can assess the effects of growth rate

on the variation of wood density quantitatively considering

the age effects. The effect of growth rate on wood density

varies greatly among species [4], and it can be confirmed

that hinoki shows the similar tendency as the hard pines,

Douglas-fir, and larch species.

The defining characteristics of mixed-effects models

are that they are applied to data where the observations

are grouped according to one or more levels of experi-

mental units and that they incorporate both fixed-effects

terms and random-effects term [12]. Moreover, they

present an inherent flexibility that allows for develop-

ment of a unique variance–covariance structure alleviat-

ing the problems of nonconstant variance and

autocorrelation among the repeated measurements. The

final model has two levels of mixed effects with random

effects at the tree and vertical position levels. The ran-

dom-effects estimates were found to be larger at the tree

level than the vertical position level (data not shown).

This means that the basic density values at each height

position are relatively consistent, but the variation among

trees is more noticeable, due to the unique patterns of

basic density corresponding to height level.

In this study, the variation of wood density within stem

was modeled using the linear mixed-effects model. The

methodology presented in this paper can easily extend for

other wood properties [16, 18–20, 28]. In this case, it

should be noted that the age trend of each traits is quite

different. For instance, tensile strength in hinoki increases

from pith to outward [29], and thus, the fitting model

function should be different from that of wood density. We

used the polynomial model that is linear in the parameters.

By increasing the order of a polynomial model, one can get

increasingly accurate approximations to the true regression

function within the observed range of the data [12]. These

empirical models are based only on the observed rela-

tionship between the response and the covariates and do

not include any theoretical considerations about the

underlying mechanism producing the data. As the next

step, it would be useful to apply the nonlinear model that is

based on a model for the mechanism producing the

response, and that also provides more reliable predictions

for the response variable outside the observed range of the

data [16, 19, 20].
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