Skip to main content
Log in

HIF-1α-dependent gene expression program during the nucleic acid-triggered antiviral innate immune responses

  • Published:
Molecules and Cells

Abstract

Recent studies suggest a novel role of HIF-1α under non-hypoxic conditions, including antibacterial and antiviral innate immune responses. However, the identity of the pathogen-associated molecular pattern which triggers HIF-1α activation during the antiviral response remains to be identified. Here, we demonstrate that cellular administration of double-stranded nucleic acids, the molecular mimics of viral genomes, results in the induction of HIF-1α protein level as well as the increase in HIF-1α target gene expression. Whole-genome DNA microarray analysis revealed that double-stranded nucleic acid treatment triggers induction of a number of hypoxia-inducible genes, and induction of these genes are compromised upon siRNA-mediated HIF-1α knock-down. Interestingly, HIF-1α knock-down also resulted in down-regulation of a number of genes involved in antiviral innate immune responses. Our study demonstrates that HIF-1α activation upon nucleic acid-triggered antiviral innate immune responses plays an important role in regulation of genes involved in not only hypoxic response, but also immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783–801.

    Article  PubMed  CAS  Google Scholar 

  • An, J., and Rettig, M.B. (2005). Mechanism of von Hippel-Lindau protein-mediated suppression of nuclear factor kappa B activity. Mol. Cell. Biol. 25, 7546–7556.

    Article  PubMed  CAS  Google Scholar 

  • An, J., Fisher, M., and Rettig, M.B. (2005). VHL expression in renal cell carcinoma sensitizes to bortezomib (PS-341). through an NF-kappaB-dependent mechanism. Oncogene 24, 1563–1570.

    Article  PubMed  CAS  Google Scholar 

  • Bolstad, B.M., Irizarry, R.A., Astrand, M., and Speed, T.P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Bosco, M.C., Puppo, M., Santangelo, C., Anfosso, L., Pfeffer, U., Fardin, P., Battaglia, F., and Varesio, L. (2006). Hypoxia modifies the transcriptome of primary human monocytes: modulation of novel immune-related genes and identification of CC-chemokine ligand 20 as a new hypoxia-inducible gene. J. Immunol. 177, 1941–1955.

    PubMed  CAS  Google Scholar 

  • Chi, J.T., Wang, Z., Nuyten, D.S., Rodriguez, E.H., Schaner, M.E., Salim, A., Wang, Y., Kristensen, G.B., Heiland, A., Borresen-Dale, A.L., et al. (2006). Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 3, e47.

    Article  PubMed  Google Scholar 

  • Choi, J.W., Park, S.C., Kang, G.H., Liu, J.O., and Youn, H.D. (2004). Nur77 activated by hypoxia-inducible factor-1alpha overproduces proopiomelanocortin in von Hippel-Lindau-mutated renal cell carcinoma. Cancer Res. 64, 35–39.

    Article  PubMed  CAS  Google Scholar 

  • Dennis, G., Jr., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C., and Lempicki, R.A. (2003). DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4, P3.

    Article  PubMed  Google Scholar 

  • Dery, M.A., Michaud, M.D., and Richard, D.E. (2005). Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int. J. Biochem. Cell Biol. 37, 535–540.

    Article  PubMed  CAS  Google Scholar 

  • Ebert, B.L, Firth, J.D., and Ratcliffe, P.J. (1995). Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J. Biol. Chem. 270, 29083–29089.

    Article  PubMed  CAS  Google Scholar 

  • Franovic, A., Gunaratnam, L., Smith, K., Robert, I., Patten, D., and Lee, S. (2007). Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its over-expression in human cancer. Proc. Natl. Acad. Sei. USA 104, 13092–13097.

    Article  CAS  Google Scholar 

  • Frede, S., Stockmann, C., Freitag, P., and Fandrey, J. (2006). Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. Biochem. J. 396, 517–527.

    Article  PubMed  CAS  Google Scholar 

  • Gotea, V., and Ovcharenko, I. (2008). DiRE: identifying distant regulatory elements of co-expressed genes. Nucleic Acids Res. 36, W133–139.

    Article  PubMed  CAS  Google Scholar 

  • Gross, C., Dubois-Pot, H., and Wasylyk, B. (2008). The ternary complex factor NefElk-3 participates in the transcriptional response to hypoxia and regulates HIF-1 alpha. Oncogene 27, 1333–1341.

    Article  PubMed  CAS  Google Scholar 

  • Hong, S.W., Kim, S., and Lee, D.K. (2008). The role of Bach2 in nucleic acid-triggered antiviral innate immune responses. Biochem. Biophys. Res. Commun. 365, 426–432.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, I.I., Watson, I.R., Der, S.D., and Ohh, M. (2006). Loss of VHL confers hypoxia-inducible factor (HIF).-dependent resistance to vesicular stomatitis virus: role of HIF in antiviral response. J. Virol. 80, 10712–10723.

    Article  PubMed  CAS  Google Scholar 

  • Irizarry, R.A., Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B., and Speed, T.P. (2003). Summaries of affymetrix genechip probe level data. Nucleic Acids Res. 31, e15.

    Article  PubMed  Google Scholar 

  • Kilani, M.M., Mohammed, K.A., Nasreen, N., Tepper, R.S., and Antony, V.B. (2004). RSV causes HIF-1 alpha stabilization via NO release in primary bronchial epithelial cells. Inflammation 28, 245–251.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K.S., Rajagopal, V., Gonsalves, C., Johnson, C., and Kalra, V.K. (2006). A novel role of hypoxia-inducible factor in cobalt chloride- and hypoxia-mediated expression of IL-8 chemokine in human endothelial cells. J. Immunol. 177, 7211–7224.

    PubMed  CAS  Google Scholar 

  • Kim, H.A., Kim, K., Kim, S.W., and Lee, M. (2007a). Transcriptional and post-translational regulatory system for hypoxia specific gene expression using the erythropoietin enhancer and the oxygen-dependent degradation domain. J. Control. Release 121, 218–224.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H.Y., Kim, Y.H., Nam, B.H., Kong, H.J., Kim, H.H., Kim, Y.J., An, W.G., and Cheong, J. (2007b). HIF-1alpha expression in response to lipopolysaccaride mediates induction of hepatic inflammatory cytokine TNFalpha. Exp. Cell Res. 373, 1866–1876.

    Article  Google Scholar 

  • Lee, M.S., and Kim, Y.J. (2007). Pattern-recognition receptor signaling initiated from extracellular, membrane, and cytoplasmic space. Mol. Cells 23, 1–10.

    PubMed  CAS  Google Scholar 

  • Liu, X.H., Yu, E.Z., Li, Y.Y., and Kagan, E. (2006). HIF-1alpha has an anti-apoptotic effect in human airway epithelium that is mediated via Mcl-1 gene expression. J. Cell. Biochem. 97, 755–765.

    Article  PubMed  CAS  Google Scholar 

  • Manalo, D.J., Rowan, A., Lavoie, T., Natarajan, L., Kelly, B.D., Ye, S.O., Garcia, J.G., and Semenza, G.L. (2005). Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 705, 659–669.

    Article  Google Scholar 

  • Masson, N., Willam, C., Maxwell, P.H., Pugh, C.W., and Ratcliffe, P.J. (2001). Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J. 20, 5197–5206.

    Article  PubMed  CAS  Google Scholar 

  • Nasimuzzaman, M., Waris, G., Mikolon, D., Stupack, D.G., and Siddiqui, A. (2007). Hepatitis C virus stabilizes hypoxia-inducible factor 1 alpha and stimulates the synthesis of vascular endothelial growth factor. J. Virol. 81, 10249–10257.

    Article  PubMed  CAS  Google Scholar 

  • Peyssonnaux, C., Cejudo-Martin, P., Doedens, A., Zinkernagel, A.S., Johnson, R.S., and Nizet, V. (2007). Cutting edge: Essential role of hypoxia inducible factor-1 alpha in development of lipopolysaccharide-induced sepsis. J. Immunol. 773, 7516–7519.

    Google Scholar 

  • Samanta, M., Iwakiri, D., Kanda, T., Imaizumi, T., and Takada, K. (2006). EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type IIFN. EMBO J. 25, 4207–4214.

    Article  PubMed  CAS  Google Scholar 

  • Sonna, L.A., Cullivan, M.L., Sheldon, H.K., Pratt, R.E., and Lilly, C.M. (2003). Effect of hypoxia on gene expression by human hepatocytes (HepG2). Physiol. Genomics 12, 195–207.

    PubMed  CAS  Google Scholar 

  • Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R., and Saigo, K. (2004). Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32, 936–948.

    Article  PubMed  CAS  Google Scholar 

  • van Uden, P., Kenneth, N.S., and Rocha, S. (2008). Regulation of hypoxia-inducible factor-1 alpha by NF-kappaB. Biochemistry 412, 477–484.

    Article  Google Scholar 

  • Walmsley, S.R., Print, C., Farahi, N., Peyssonnaux, C., Johnson, R.S., Cramer, T., Sobolewski, A., Condliffe, A.M., Cowburn, A.S., Johnson, N., et al. (2005). Hypoxia-induced neutrophil survival is mediated by HIF-1 alpha-dependent NF-kappaB activity. J. Exp. Med. 207, 105–115.

    Article  Google Scholar 

  • Wang, G.L., and Semenza, G.L. (1993). General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sei. USA 90, 4304–4308.

    Article  CAS  Google Scholar 

  • Wang, G.L., Jiang, B.H., Rue, E.A., and Semenza, G.L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular 02 tension. Proc. Natl. Acad. Sei. USA 92, 5510–5514.

    Article  CAS  Google Scholar 

  • Wykoff, C.C., Beasley, N.J., Watson, P.H., Turner, K.J., Pastorek, J., Sibtain, A., Wilson, G.D., Turley, H., Talks, K.L., Maxwell, P.H., et al. (2000). Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. 60, 7075–7083.

    PubMed  CAS  Google Scholar 

  • Yoo, J.W., Hong, S.W., Kim, S., and Lee, D.K. (2006). Inflammatory cytokine induction by siRNAs is cell type- and transfection reagent-specific. Biochem. Biophys. Res. Commun. 347, 1053–1058.

    Article  PubMed  CAS  Google Scholar 

  • Zamanian-Daryoush, M., Der, S.D., and Williams, B.R. (1999). Cell cycle regulation of the double stranded RNA activated protein kinase, PKR. Oncogene 18, 315–326.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J., Schmid, T., and Brune, B. (2003). Tumor necrosis factor-alpha causes accumulation of a ubiquitinated form of hypoxia inducible factor-1 alpha through a nuclear factor-kappaB-dependent pathway. Mol. Biol. Cell 14, 2216–2225.

    Article  PubMed  CAS  Google Scholar 

  • Zinkernagel, A.S., Johnson, R.S., and Nizet, V. (2007). Hypoxia inducible factor (HIF). function in innate immunity and infection. J. Mol. Med. 85, 1339–1346.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soyoun Kim or Dong-ki Lee.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Hong, S.W., Yoo, J.W., Kang, H.S. et al. HIF-1α-dependent gene expression program during the nucleic acid-triggered antiviral innate immune responses. Mol Cells 27, 243–250 (2009). https://doi.org/10.1007/s10059-009-0030-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0030-2

Keywords

Navigation