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Abstract Benoît and Ok (Games Econ Behav 64:51–67, 2008) show that in a society
with at least three agents any weakly unanimous social choice correspondence (SCC)
is Maskin’s monotonic if and only if it is Nash-implementable via a simple stochastic
mechanism (Benoît-Ok’s Theorem). This paper fully identifies the class of weakly
unanimous SCCs that are Nash-implementable via a simple stochastic mechanism
endowed with Saijo’s message space specification (Saijo in Econometrica 56:693–
700, 1988). It is shown that this class of SCCs is equivalent to the class of SCCs that
are Nash-implementable via Benoît-Ok’s Theorem.

Keywords Nash implementation · Strategy space reduction · Informational
efficiency · Simple stochastic mechanisms

JEL Classification C72 · D71

1 Introduction

A central theorem in implementation theory when there are at least three agents is
that Maskin monotonicity and the property of no-veto power are sufficient condi-
tions for (exact) Nash implementability of social choice correspondences (SCCs)
(Maskin 1999). Yet, unlikely Maskin monotonicity, a Nash-implementable SCC does
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not necessarily meet the condition of no-veto power.1 Moreover, a number of interest-
ing SCCs do not satisfy this condition. For example, individual rational, weak core,
no-envy SCC s violate the condition of no-veto power. This has, in turn, motivated
the study of the implications of modifying the canonical (Maskin-) mechanisms in
various ways, and has turned in a number of alternatives to it.

By retaining the standard definition of Nash implementation, Benoît and Ok
(2008) introduce mechanisms which allow for randomizations among social out-
comes, labeled simple stochastic mechanisms. While these mechanisms allow for
randomizations, these randomizations can take place only off the equilibrium path; in
equilibrium, only pure social outcomes are chosen. As each agent must be able to eval-
uate uncertain prospects when lotteries are employed, Benoît and Ok (2008) extend
each agent’s preference relation defined over (pure) social outcomes in the following
natural way: an agent prefers a social outcome x to a randomization between that
outcome and a dispreferred outcome y, and that randomization to the dispreferred
outcome y. Under this preference extension and a domain restriction (top-coincidence
condition), which is satisfied by typical environments arising in economic analysis,
they show that any weakly unanimous SCC is Nash-implementable if and only if it is
Maskin monotonic;2 that is Benoît-Ok’s Theorem. Therefore, they characterize Nash
implementability without appealing to the auxiliary condition of no-veto power.

In this paper, we deal with the informational efficiency issue pertaining to Benoît-
Ok’s Theorem. These authors constructed game forms which are rather general. Not
surprisingly, this generality comes to a price in terms of the informational demands
imposed on agents in order to guarantee Nash implementability: Every agent is
required to reveal not only his own preferences but also the preferences of all other
agents, a social outcome and a positive integer not exceeding the number of agents
(agent index). As the message space has efficiency implications for informational
decentralization, we modify Benoît and Ok’s mechanism in which these demands are
significantly decreased.

Following Saijo (1988), we can image arranging agents in a clockwise circle facing
inward, and require that each agent � announces, a social outcome, an agent index, her
own preferences and the preferences of the agent standing immediately to her left, that
is, of agent �+1. Based on this idea, the paper shows that any weakly unanimous SCC
is Maskin monotonic if and only if it is Nash-implementable via a simple stochastic
mechanism endowed with Saijo’s message space specification, under the mild domain
restriction of top-coincidence condition.

From this result, it follows that there is an equivalence relationship between
Nash implementation via simple stochastic mechanisms endowed with Saijo’s mes-
sage space specification and Benoît-Ok’s Theorem. This result is in line with other
results of Nash implementation theory. In particular, the reported equivalence rela-
tionship is analogous to the equivalence relationship between Nash implementation

1 An SCC satisfies the condition of no-veto power if it selects all social outcomes which are top-ranked
by all except at most one agent.
2 A social outcome is weakly unanimous if it is top-ranked by all agents and it is the unique top-ranked
outcome for at least one agent. An SCC is weakly unanimous if it selects socially weakly unanimous
outcomes.
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by s-mechanisms and Nash implementation by canonical mechanisms (Lombardi and
Yoshihara 2010).

The paper is organized as follows. In Sect. 2, we introduce notation and definitions.
In Sect. 3, Nash implementation via simple stochastic mechanisms is defined, a simple
stochastic mechanism with the aforesaid strategy space reduction is constructed, and,
finally, our Theorem is stated and proved. Section 4 concludes briefly.

2 Preliminaries

The environment is (N , X,Rn), where N := {1, . . . , n} is a set of n ≥ 3 agents,
X := {x, y, z, . . .} is the set of attainable alternatives (or outcomes), and Rn is the
set of admissible preference profiles (or states of the world). Henceforth, we assume
that the cardinality of X is #X ≥ 2. Let R (X) be the set of all complete preorders on
X .3 Then Rn := R1 × · · ·×Rn is a nonempty subset of the n-fold Cartesian product
Rn (X) := R1 (X)×· · ·×Rn (X), where each Ri (X) is a copy of R (X). An element
of Rn is denoted by �:= (�1, . . . ,�n), where its i th component is �i∈ Ri (i ∈ N ).
The symmetric and asymmetric factors of any �i∈ Ri are denoted ∼i and �i , respec-
tively. As usual, for any x, y ∈ X and �i∈ Ri (i ∈ N ) we write (x, y) ∈�i as x �i y.
For any preference profile �∈ Rn and any i ∈ N , let (�)−i be the list of elements
of � for all agents except i , i.e., (�)−i = (�1, . . . ,�i−1,�i+1, . . . ,�n). Given a
list (�)−i and �i∈ Ri of agent i , we denote by

(
(�)−i ,�i

)
the preference profile

consisting of these �i and (�)−i . For any (�i , x) ∈ Ri × X let L (�i , x) denote
agent i’s lower section of �i at x , that is, L (�i , x) := {y ∈ X |x �i y}. For any
�i∈ Ri (i ∈ N ), let max�i X be the set of maximal alternatives according to �i , that
is, max�i X := {x ∈ X |x �i yfor ally ∈ X}.

Fix an environment (N , X,Rn). A social choice correspondence (SCC) on Rn is
a correspondence F : Rn ⇒ X with ∅ �= F (�) � X for all �∈ Rn . An SCC F on
Rn is monotonic if, for all �,�′∈ Rn with x ∈ F (�), we have that x ∈ F

(
�′)

whenever L (�i , x) � L
(
�′

i , x
)

for all i ∈ N .4 It satisfies no-veto power if, for all
�∈ R, we have that x ∈ F (�) whenever x ∈ max�i X for at least n − 1 agents. It is
said weakly unanimous if, for all �∈ Rn, {x} = ⋂

i∈N max�i X implies x ∈ F (�).
A (canonical) mechanism is a pair (M, h), where M := M1 × · · · × Mn , with

each Mi being a (nonempty) set, and h : M → X . It consists of a message space
M , where Mi is the message space for agent i ∈ N , and an outcome function h. Let
mi ∈ Mi denote a generic message (or strategy) for agent i . A message profile is
denoted m = (m1, . . . , mn) ∈ M . For any message profile m ∈ M and i ∈ N , let
m−i be the list

(
m j

)
j∈N\{i} ∈ × j∈N\{i}M j of elements of m for all agents except i ,

i.e., m−i = (m1, . . . , mi−1, mi+1, . . . , mn). Denote the set of such m−i by M−i for
each i ∈ N . Given a list m−i ∈ M−i and a message mi ∈ Mi of agent i , we denote by
(mi , m−i ) the message profile consisting of these mi and m−i . Given the environment
(N , X,Rn), a mechanism (M, h) induces a class of (non-cooperative) normal form
games {(M, h, R (�)) | �∈ Rn}, where (M, h, R (�)) is a normal form game in which

3 A preorder is a reflexive and transitive binary relation.
4 Weak set inclusion is denoted by �.
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N is the set of agent, Mi is agent i’s message space, and R (�) is a list (R (�i ))i∈N of
complete preorders R (�i ), where each R (�i ) is defined on M as m R (�i ) m◦ if and
only if h (m) �i h (m◦). Given a normal form game (M, h, R (�)), we say that m ∈ M
is a pure strategy Nash equilibrium (Nash equilibrium, hereafter) at the state � if and
only if, for all i ∈ N , m R (�i )

(
m◦

i , m−i
)

for all m◦
i ∈ Mi . Let N (M, h, R (�)) denote

the set of Nash equilibria of (M, h, R (�)), whereas Nh (M, h, R (�)) represents its
corresponding set of Nash equilibrium outcomes.

Given the environment (N , X,Rn), a mechanism (M, h) is said to implement F in
Nash equilibria, or simply Nash-implements F , if and only if

Nh (M, h, R (�)) = F (�) for all �∈ Rn .

If such a mechanism exists then F is Nash-implementable.
In his seminal paper, given an environment (N , X,Rn) (in which at least three

agents operate), Maskin (1999) proves that any SCC F is monotonic whenever it is
Nash-implementable. Moreover, any SCC F which satisfies monotonicity and no-
veto power is Nash-implementable; this is Maskin’s Theorem. Moore and Repullo
(1990), Dutta and Sen (1991), Danilov (1992), Sjöström (1991) and Yamato (1992)
refined Maskin’s Theorem, providing necessary and sufficient conditions for Nash
implementation.

3 Nash implementation by simple stochastic mechanisms

3.1 Notations and definitions

For any distinct x, y ∈ X , let x ⊕ y be an object which is not in X . Let x := x ⊕ x .
Following Benoît and Ok (2008) x ⊕ y can be thought as a lottery that gives x with
probability 1/2 and y with probability 1/2. Let X∗ := {x ⊕ y|x, y ∈ X}. For any
i ∈ N and �i∈ Ri (X), a preorder �∗

i ∈ Ri (X∗) is said to be a monotonic extension
of �i if, for all x, y ∈ X ,

i. x �i y ⇔ x �∗
i y;

ii. x �i y ⇒ x �∗
i x ⊕ y �∗

i y and x ∼i y ⇒ x ∼∗
i x ⊕ y ∼∗

i y.

Condition i. and part of condition ii. mean that �∗
i is an extension of �i as they

require that �i��∗
i and �i��∗

i . Condition ii. also requires that an agent i prefers an
outcome x to a randomization between x and the dispreferred outcome y, and that
randomization to the dispreferred outcome y.

Let μ (�i ) be the set of all monotonic extensions of �i∈ Ri . Given a prefer-
ence profile �∈ Rn define μ (�) := {(

�∗
1, . . . ,�∗

n

) | �∗
i ∈ μ (�i ) for i ∈ N

}
. Thus

a generic element of μ (�) is �∗:= (
�∗

1, . . . ,�∗
n

)
which is a listing of monotonic

extended preorders, one for each agent. Finally, for any Rn � Rn (X), let μ (Rn) :=⋃ {μ (�) | �∈ Rn}.
A simple stochastic mechanism is a pair (M, η), where M := M1 × · · · × Mn ,

with each Mi being a (nonempty) set, and η : M → X∗. It consists of a mes-
sage space M , where Mi is the message space for agent i ∈ N , and an outcome
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function η. Then, the mechanism (M, η) assigns to each message profile m ∈ M
either an outcome in X or a mixing of two outcomes in X . Given a simple stochas-
tic mechanism (M, η) and a message profile m ∈ M , for each agent i ∈ N let
η (Mi , m−i ) := {

η
(
m′

i , m−i
) ∈ X∗| for some m′

i ∈ Mi
}

be the set outcomes attain-
able by this agent when all other agents are reporting m−i .

Given the environment (N , X,Rn), a simple stochastic mechanism (M, η) induces
a class of (non-cooperative) normal form games {(M, η, R (�∗)) | �∗∈ μ (Rn)},
where (M, η, R (�∗)) is a normal form game in which N is the set of agents, Mi is
agent i’s message space, and R (�∗) is a list

(
R

(
�∗

i

))
i∈N of preorders R

(
�∗

i

)
, where

each R
(
�∗

i

)
is defined on M as m R

(
�∗

i

)
m◦ if and only if η (m) �∗

i η (m◦). Given
a normal form game (M, η, R (�∗)), the set of Nash equilibrium strategy profiles is
denoted by N (M, η, R (�∗)), whereas Nη (M, η, R (�∗)) represents the correspond-
ing set of Nash equilibrium outcomes. We omit formal definitions.

Given the environment (N , X,Rn), a simple stochastic mechanism (M, η) is said
to implement F in Nash equilibria, or simply Nash-implements F , if and only if

Nη

(
M, η, R

(
�∗)) = F (�) for all �∈ Rn and �∗∈ μ (�)

If such a simple stochastic mechanism exists then F is Nash-implementable by a
simple stochastic mechanism.

We make the following very weak regularity assumptions on environments
(N , X,Rn). An environment (N , X,Rn) is said to satisfy the top-coincidence condi-
tion if, for any �∈ Rn and any I � N , with #I = n − 1, the set

⋂
i∈I max�i X is at

most a unit set (Benoît and Ok 2008). Next, we state Benoît-Ok’s Theorem.

Theorem Theorem (Benoît and Ok 2008). Let (N , X,Rn) be an environment satis-
fying the top-coincidence condition. Then, any weakly unanimous SCC F on Rn is
monotonic if and only if it is Nash-implementable by a simple stochastic mechanism
with message space Mi = Rn × X × N for each agent i ∈ N.

3.2 Theorem

Fix the environment (N , X,Rn) and let (M, η) be a simple stochastic mechanism,
where the message space of agent i (∈ N ) is Mi = Ri × Ri+1 × X × N . Fix any
m ∈ M,� ∈ Rn , and x ∈ X , and let mi = (

�i
i ,�i

i+1, xi , ki
) ∈ Mi , where i + 1 = 1

if i = n, and where the announcement of agent i ∈ N about agent j’s preferences is
�i

j . We say that the message profile m ∈ M is:

i. consistent with � and x if, for all j ∈ N ,� j
j = � j−1

j = � j and x j = x , where
j − 1 = n if j = 1.

ii. m−i consistent with x and �, where i ∈ N , if for all j ∈ N : x j = x , and
for all j ∈ N\{i, i + 1} : � j

j = � j−1
j = � j ,�i−1

i = �i ,�i+1
i+1 = �i+1, and

[�i
i �= �i or �i

i+1 �= �i+1], where � − 1 = n if � = 1 for � ∈ {i, j}.
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iii. m−i quasi-consistent with x and �, where i ∈ N , if for all j ∈ N\{i} : x j =
x �= xi , and for all j ∈ N\{i, i + 1} : � j

j = � j−1
j = � j ,�i−1

i = �i and

�i+1
i+1 = �i+1, where � − 1 = n if � = 1 for � ∈ {i, j}.

The idea of our simple stochastic mechanism is similar in structure to the one used
in Saijo (1988). Let us define the outcome function η : M → X∗ as follows: For any
m ∈ M ,

Rule 1: m is consistent with x and � ∈ Rn , where x ∈ F (�), then η (m) = x .
Rule 2: For some i ∈ N , m is m−i consistent with x and � ∈ Rn , where x ∈ F (�),

then η (m) = x
Rule 3: For some i ∈ N , m is m−i quasi-consistent with x and � ∈ Rn , where

x ∈ F (�), and L
(
�i−1

i , x
)

�= X , then

η (m) =
{

xi ⊕ x if xi ∈ L
(
�i−1

i , x
)

x otherwise.
(1)

Rule 4: Otherwise, η (m) = x�(m) where � (m) := ∑

j∈N
k j (mod n).5

The following properties are implied by the above rules:

1. If all agents make the same outcome announcement, then the unanimously
announced outcome is the outcome of the mechanism;

2. In Rules 2–3, agent i is a deviator. In Rule 2, agent i is not necessarily the only
deviator whenever there is exactly one break in the preference announcement
profile between agent i’s preference announcement and that of agent i − 1, i.e.,
�i

i �= �i−1
i = �i and �i

i+1 = �i+1
i+1 = �i+1. Indeed, agents i − 1 and i could be

deviators if

x ∈ F
(
�1

1, . . . ,�i−1
i−1,�

i−1
i ,�i+1

i+1, . . . ,�
n
n

)

and

x ∈ F
(
�1

1, . . . ,�i−2
i−2,�

i−2
i−1,�

i
i , . . . ,�n

n

)
.

In Rule 3, however, as agent i is the only agent reporting an outcome different from
that reported by all others the mechanism identifies him as the unique deviator;

3. In Rule 3, deviator i’s preference announcement
(
�i

i ,�i
i+1

)
does not affect the

evaluation of the SCC F as it does not enter into the evaluation of the preference
announcement profile

(
�1

1, . . . ,�i−1
i−1,�

i−1
i ,�i+1

i+1, . . . ,�
n
n

)
= (�1, . . . ,�i−1,�i ,�i+1, . . . ,�n) ;

5 It is clear that if the remainder is zero the winner of the game is agent n.
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4. If Rule 3 applies to m, then the outcome is a lottery xi ⊕ x whenever deviator i’s
outcome is no better than the outcome x announced by others under the preference
for i announced by the agent i − 1, i.e., �i−1

i ;
5. In Rule 4, agent i can appropriately choose an integer index to designate himself

or some other agent as the winner of the modulo game given other agents’ integer
announcements.

The mechanism employs the idea due to Saijo (1988) to cover twice each agent’s
preferences: agent i’s preferences are covered by his own announcement and by that
of agent i − 1. This allows us to find a preference profile which is unaffected by the
deviator’s preference announcement. In Rules 2–3, even though the deviator sends a
different message announcement he can never induce Rule 4. The outcome is con-
fined to a lottery between the outcome x announced by others and that announced

by the deviator whenever the latter is in L
(
�i−1

i , x
)

. As usual the deviator’s lower

contour set is evaluated not by his own preference announcement �i
i , but by that of

his neighbor �i−1
i .

We are now ready to verify that the above simple stochastic mechanism Nash-imple-
ments every weakly unanimous SCC F whenever the implementation environment
satisfies the condition of top-coincidence.

Theorem Let (N , X,Rn) be an environment satisfying the top-coincidence condi-
tion. Let F be a weakly unanimous SCC. Then, F is monotonic if and only if a sim-
ple stochastic mechanism (M, η) defined by Rules 1–4 with message space Mi =
Ri × Ri+1 × X × N implements F in Nash equilibria.

3.3 Proof of Theorem

Let (N , X,Rn) be an environment satisfying the top-coincidence condition. The proof
of the “If” part of Theorem is checked in Benoît and Ok (2008). Let F on Rn be a
weakly unanimous SCC satisfying monotonicity. Let � ∈ N be an arbitrary integer.
We show that for any �∈ Rn and any �∗∈ μ (�): F (�) = Nη (M, η, R (�∗)).

Lemma 1 Let �∈ Rn and �∗∈ μ (�). Then, F (�) � Nη (M, η, R (�∗)).

Proof of Lemma 1 Let x ∈ F (�). Let mi = (
�i

i ,�i
i+1, xi ,�) = (�i ,�i+1, x,�)

for each i ∈ N . By Rule 1 it follows that η (m) = x . Moreover, for each i ∈ N

as L
(
�i−1

i , x
)

= L (�i , x) and �∗
i is a monotonic extension of �i it follows that

x �∗
i x i ⊕ x for any xi ∈ L (�i , x). Therefore, η (Mi , m−i ) � L

(
�∗

i , x
)

and so
x ∈ Nη (M, η, R (�∗)), as sought. ��
Lemma 2 Let (N , X,Rn) be an environment satisfying the top-coincidence condi-
tion. Let F on Rn be a weakly unanimous and monotonic SCC. Then, for any �∈ R
and any �∗∈ μ (�): Nη (M, η, R (�∗)) � F (�).

Proof of Lemma 2 Let m be a Nash equilibrium message profile of N (M, η, R (�∗)).
We show that η (m) ∈ F (�). Consider the following cases. ��
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Suppose that m falls into Rule 1. Then, m is consistent with x and � ∈ Rn , where

x ∈ F (�). Thus, η (m) = x . Take any agent i ∈ N . Suppose that L
(
�i−1

i , x
)

�= X .

For any y ∈ L
(
�i−1

i , x
)

\{x}, changing his message announcement mi into m◦
i =

(
�◦i

i ,�◦i
i+1, y,�) ∈ Mi agent i can alter the current outcome to a lottery x ⊕ y =

η
(
m◦

i , m−i
)

by Rule 3. However, x �∗
i x ⊕ y as m ∈ N (M, η, R (�∗)). Since �∗

i
is a monotonic extension of �i , we have that x �i y. Otherwise, let us consider the

case that L
(
�i−1

i , x
)

= X . Thus, for any y ∈ L
(
�i−1

i , x
)

\{x} , by changing the

announcement mi into m◦
i = (

�◦i
i ,�◦i

i+1, y, k◦i
) ∈ Mi agent i can trigger the mod-

ulo game. To attain the outcome y agent i has only to adjust the integer index so
that he becomes the winner of the modulo game. Since m ∈ N (M, η, R (�∗)) and
�∗

i is a monotonic extension of �i , it follows x �i y. Because it holds for any y ∈
L (�i , x) \{x} and any i ∈ N , it follows that L

(
�i−1

i , x
)

= L (�i , x) � L (�i , x)

for all i ∈ N . Monotonicity implies that x ∈ F (�).

Suppose that m falls into Rule 2. Then m is m−i consistent with x and � ∈ Rn , where
x ∈ F (�). Thus, η (m) = x . We proceed according to the following sub-cases:
(1) �i

i �= �i and �i
i+1 �= �i+1, (2) �i

i �= �i and �i
i+1 = �i+1 and (3) �i

i = �i and
�i

i+1 �= �i+1.

Sub-case 2.1. �i
i �= �i and �i

i+1 �= �i+1

Then agent i ∈ N is the unique deviator. Any other agent j ∈ N\ {i} can attain
any y ∈ X\ {x} by inducing Rule 4, so that x ∈ max�j X by our supposition that

m ∈ N (M, η, R (�∗)). Let us consider agent i . Suppose that L
(
�i−1

i , x
)

�= X .

Take any y ∈ L
(
�i−1

i , x
)

\{x}. By changing his message announcement mi into

m◦
ı́ = (

�◦i
i ,�◦i

i+1, y,�) ∈ Mi agent i can alter the current outcome to a lottery
x ⊕ y = η

(
m◦

i , m−i
)

by Rule 3. However, x �∗
i x ⊕ y as m ∈ N (M, η, R (�∗)).

It follows from the definition of �∗
i that x �i y. Otherwise, let L

(
�i−1

i , x
)

= X .

Thus, for any y ∈ L
(
�i−1

i , x
)

\{x}, by changing the announcement mi into m◦
i =

(
�◦i

i ,�◦i
i+1, y, k◦i

) ∈ Mi agent i can trigger the modulo game. To attain the outcome
y agent i has only to adjust the integer index k◦i so that η

(
m−i , m◦

i

) = y. Since
m ∈ N (M, η, R (�∗)) and �∗

i is a monotonic extension of �i , it follows x �i y.

Since it holds for any y ∈ L (�i , x) \{x}, it follows that L
(
�i−1

i , x
)

= L (�i , x) �
L (�i , x). Again, monotonicity implies that x ∈ F (�).

Sub-case 2.2. �i
i �= �i and �i

i+1 = �i+1

We distinguish whether x ∈ F
(
�′), where �′ := (

(�)−i ,�i
i

)
, or not. Suppose that

x �∈ F
(
�′). Then agent i is the unique deviator. The same reasoning used above
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for sub-case 2.1 carries over into this sub-case, so that x ∈ F (�). Otherwise, let
x ∈ F

(
�′). Agent j ∈ N\ {i − 1, i} can attain any other y ∈ X\ {x} by inducing

Rule 4, so that x ∈ max�j X by our supposition that m ∈ N (M, η, R (�∗)). Consider

agent i − 1. Suppose that L
(
�i−2

i−1, x
)

�= X . For any y ∈ L
(
�i−2

i−1, x
)

\{x}, chang-

ing his message announcement mi−1 into m◦
i−1 =

(
�◦i−1

i−1 ,�◦i−1
i , y,�

)
∈ Mi−1

agent i − 1 can alter the current outcome to a lottery x ⊕ y = η
(
m◦

i−1, m−(i−1)

)

by Rules 3. Since m ∈ N (M, η, R (�∗)) we have that x �∗
i−1 x ⊕ y, and so

x �i−1 y as �∗
i−1 is a monotonic extension of �i−1. Otherwise, let L

(
�i−2

i−1, x
)

= X .

Thus, for any y ∈ L
(
�i−2

i−1, x
)

\{x}, by changing the announcement mi−1 into

m◦
i−1 =

(
�◦i−1

i−1 ,�◦i−1
i , y, k◦i−1

)
∈ Mi−1 agent i − 1 can trigger the modulo

game. To attain the outcome y agent i − 1 has only to adjust the integer index
k◦i−1 so that η

(
m−(i−1), m◦

i−1

) = y. Since m ∈ N (M, η, R (�∗)) and �∗
i−1

is a monotonic extension of �i−1, it follows x �i−1 y. Since it holds for any

y ∈ L
(
�i−2

i−1, x
)

= L
(
�i−1

i−1, x
)

, it follows that L (�i−1, x) � L (�i−1, x). By

applying the same reasoning for agent i where y ∈ L
(
�i−1

i , x
)

= L (�i , x) we have

that L (�i , x) � L (�i , x). Maskin monotonicity implies that x ∈ F (�).

Sub-case 2.3. �i
i = �i and �i

i+1 �= �i+1

We distinguish whether x ∈ F
(
�′), where �′ := (

(�)−(i+1) ,�i
i+1

)
, or not. Again,

if x �∈ F
(
�′) then agent i is the unique deviator, and by the same reasoning used in

sub-case 2.1 we have that x ∈ F (�). Otherwise, let x ∈ F
(
�′). Then m is m−(i+1)

consistent with x and �′. It follows from the sub-case 2.2 that x ∈ F (�).

Suppose that m falls into Rule 3. Then m is m−i quasi-consistent with x and � ∈ Rn ,

where x ∈ F (�), and L
(
�i−1

i , x
)

�= X . We proceed according to the following

steps: (1) η (m) = x , (2) x ∈ max�j X for all j ∈ N\ {i}, and (3) x ∈ F (�).

Step 1. η (m) = x

It is obvious that η (m) = x if #X = 2. Otherwise, let us consider the case that #X > 2.
To show that η (m) = x under the supposition that #X > 2, assume, to the contrary,

that η (m) �= x . Then, η (m) = x ⊕ xi and xi ∈ L
(
�i−1

i , x
)

\ {x}, otherwise an

immediate contradiction is obtained. Suppose that for some y ∈ X\ {
x, xi

}
it holds

that y �∗
j η (m) for some j ∈ N\ {i}. Then, agent j can induce the modulo game by

changing m j into m◦
j =

(
� j

j ,�
j
j+1, y, k◦ j

)
. To attain y agent j has only to adjust

k◦ j by which he becomes the winner of the modulo game, which contradicts that
m ∈ N (M, η, R (�∗)). Otherwise, suppose that, for each j ∈ N\ {i} , η (m) �∗

j y

for all y ∈ X\ {
x, xi

}
. Suppose that xi � j x for some j ∈ N\ {i}. As �∗

j is a
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monotonic extension of � j it follows that xi �∗
j x i ⊕ x . By our supposition that

#X > 2, agent j can induce the modulo game by choosing any y ∈ X\ {
x, xi

}
and

changing his message announcement m j into m◦
j =

(
� j

j ,�
j
j+1, y, k◦ j

)
. To attain

xi agent j has only to adjust k◦ j by which agent i becomes the winner of the mod-
ulo game, contradicting that m ∈ N (M, η, R (�∗)). Then, it holds that x � j x i for
all j ∈ N\ {i}. Suppose that x � j x i for some j ∈ N\ {i}. Then, agent j can
induce the modulo game by choosing any y ∈ X\ {

x, xi
}

and changing his message

announcement m j into m◦
j =

(
� j

j ,�
j
j+1, y, k◦ j

)
. To attain x agent j has only to

adjust k◦ j by which agent � ∈ N\ {i, j} becomes the winner of the modulo game,
contradicting that m ∈ N (M, η, R (�∗)). Therefore, as �� is a complete preorder for
each participant � ∈ N , it follows that x ∼ j x i for all j ∈ N\ {i}. It follows that
x, xi ∈ ⋂

j∈N\{i} max�j X which contradicts the top-coincidence condition. This
concludes step 1, that is, η (m) = x .

Step 2. x ∈ max�j X for all j ∈ N\ {i}

Suppose that #X > 2. Since m ∈ N (M, η, R (�∗)) it follows that x ∈ max�j X
for all j ∈ N\ {i} as any agent j can trigger the modulo game and obtain any other
outcome in X . Otherwise, let #X = 2. We proceed according to whether n > 3 or
n = 3. In each of the following sub-cases we show that x, xi ∈ η

(
M j , m− j

)
for each

j ∈ N\ {i}. Since η (m) = x , by Step 1, it suffices to show that each agent j �= i can
attain the outcome xi .

Sub-case 3.1. #X = 2 and n > 3

Then, agent j �= i can induce the modulo game by changing his outcome announce-
ment into xi so as to make #{� ∈ N |x� = xi } ≥ 2 and #{� ∈ N |x� = x} ≥ 2. To
attain xi agent j has only to adjust the integer index k◦ j by which agent i becomes
the winner of the modulo game.

Sub-case 3.2. #X = 2 and n = 3

Then, agent j �= i can change m j into m◦
j =

(
� j

j ,�
j
j+1, xi , k◦ j

)
= (

� j ,� j+1, xi ,

k◦ j
)
. We proceed according to whether j + 1 = i or not.

Sub-sub-case 3.2.1. j + 1 = i

Suppose that � j
j+1 �=�i

i . Then, the modulo game is triggered. To attain the outcome

xi agent j has only to adjust k◦ j so that he becomes the winner of the modulo game.

Otherwise, let � j
j+1=�i

i . Suppose that xi /∈ F
(
� j

j ,�i
i ,�i

i+1

)
. Thus, the message

profile
(

m− j , m◦
j

)
falls into Rule 4. To attain the outcome xi agent j has only to

adjust k◦ j so that he becomes the winner of the modulo game. Otherwise, let xi ∈
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F
(
� j

j ,�i
i ,�i

i+1

)
. Suppose that

(
m− j , m◦

j

)
falls into Rule 3. Then, η

(
m− j , m◦

j

)
=

xi , as sought. Otherwise,
(

m− j , m◦
j

)
falls into Rule 4. Again, to attain xi agent j has

only to adjust k◦ j so that he becomes the winner of the modulo game.

Sub-sub-case 3.2.2. j + 1 �= i

Then, j − 1 = i . Suppose that �i
i+1 �=� j

j . Thus, the message profile
(

m− j , m◦
j

)
falls

into Rule 4. To attain xi agent j has only to adjust k◦ j so that he becomes the winner

of the modulo game. Otherwise, let �i
i+1=� j

j . Suppose that xi /∈ F
(
�i

i ,�
j
j ,�

j
j+1

)
.

Again, the message profile
(

m− j , m◦
j

)
falls into Rule 4. To attain the outcome xi agent

j has only to adjust k◦ j so that he becomes the winner of the modulo game. Otherwise,

let xi ∈ F
(
�i

i ,�
j
j ,�

j
j+1

)
. Suppose that L

(
� j

j+1, xi
)

�= X . Then,
(

m− j , m◦
j

)
falls

into Rule 3, and so η
(

m− j , m◦
j

)
= xi , as sought. Otherwise,

(
m− j , m◦

j

)
falls into

Rule 4. To attain xi agent j has only to adjust k◦ j so that he becomes the winner of
the modulo game.

Since the above arguments hold for any j ∈ N\ {i}, we have that x, xi ∈ η
(
M j , m− j

)

for each j ∈ N\ {i}. Since m ∈ N (M, η, R (�∗)) it follows that x ∈ max�j X for all
j ∈ N\ {i}, otherwise we fall into a contradiction.

Step 3. x ∈ F (�)

By steps 1 and 2, we have that η (m) = x and x ∈ max�j X for all j ∈ N\ {i}. The
top-coincidence condition implies that {x} = ⋂

j∈N\{i} max�j X . Then, it is also an
equilibrium for all agents to send the message m∗, where m∗

j = m j for all j ∈ N\ {i}
and m∗

i = (
�i

i ,�i
i+1, xi ,�) =

(
�i−1

i ,�i+1
i+1, x,�

)
, so that m∗ falls into Rule 1. The

same reasoning used above for m ∈ N (M, η, R (�∗)) falling into Rule 1 carries over
into m∗ so that we obtain x ∈ F (�), as sought.

Suppose that m falls into Rule 4. Then, η (m) = x�(m) where agent � (m) is the
winner of the modulo game. Every agent i can alter the current choice to any other
outcome in X by unilateral deviation. Since m is a Nash equilibrium message pro-
file, it follows that η (m) ∈ max�i X for all i ∈ N . Top-coincidence implies that
{η (m)} = ⋂

i∈N max�i X . Weak unanimity implies η (m) ∈ F (�), as sought. �

4 Concluding remarks

In this paper, we deal with the informational efficiency issue pertaining to Benoît-Ok’s
Theorem (Benoît and Ok 2008). We focus on mechanisms in which each agent reports
to the planner her own preference and her neighbor’s preference solely, in addition
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to a feasible social outcome and an agent index (Saijo 1988). We show that the class
of weakly unanimous SCCs that are Nash-implementable by simple stochastic mech-
anisms endowed with Saijo’s message space reduction is fully identified by Maskin
monotonicity when the condition of top-coincidence is imposed on environments.

With regard to Nash implementation theory, the main implication of the reported
analysis is the following. The class of weakly unanimous SCC s that are Nash-imple-
mentable via simple stochastic mechanisms is equivalent to the class of weakly unani-
mous SCCs that are Nash-implementable by a simple stochastic mechanism endowed
with Saijo’s strategy space reduction. Note that this result is in line with other well
known results of Nash implementation. In particular, the reported equivalence result is
analogous to the equivalence relationship between Nash implementation by s-mech-
anisms and Nash implementation in general social choice environments (Lombardi
and Yoshihara 2010).

Before closing the paper, we should make one last comment about the result pre-
sented here. Our result is built on the implicit assumption that agents involved into
a mechanism are selfish and perfectly rational. Dissatisfaction with this classical
assumption is mounting. Attempts to replace it with alternative decision models as
engines of inquiry into basic economic questions are flourishing. In the light of this
recent trend, the reported equivalence relationship may not necessarily hold when a
small departure from the “perfect rational man” paradigm is considered.

With regard to Nash implementation, a notion of partial honesty has been introduced
and Nash implementation problems with partially honest agents have been studied.
A partially honest agent is an agent who has preferences over message profiles and dis-
plays concerns for two dimensions in lexicographic order: (1) her outcome and (2) her
truth-telling behavior. In the presence of partially honest agents, the equivalence rela-
tionship between Nash implementation and Nash implementation by s-mechanisms
no longer holds, as Lombardi and Yoshihara (2011) show. This suggests that the equiv-
alence relationship indispensably relies on the assumption that agents act purely to
advance their own self-interest and are not inclined to attach (moral) rights and duties
to their acts. We conjecture that this break-down extends to Nash implementation via
simple stochastic mechanisms.
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