Skip to main content
Log in

Cold rubidium molecule formation through photoassociation: A spectroscopic study of the 0 g - long-range state of 87Rb 2

  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract:

We report the detailed analysis of translationally cold rubidium molecule formation through photoassociation. Cold molecules are formed after spontaneous decay of photoexcited molecules from a laser cooled atomic sample, and are detected by selective mass spectroscopy after two-photon ionization into Rb 2 + ions. A spectroscopic study of the 0 g - (5 S + 5 P 3/2 ) pure long-range state of 87Rb2 is performed by detecting the ion yield as a function of the photoassociation laser frequency; the spectral data are theoretically analyzed within the semiclassical RKR approach. Molecular ionization is resonantly enhanced through either the 2 3 Π g or the 2 3 Σ + g intermediate molecular states. Some vibrational levels of the latter electronic state are observed and assigned here for the first time. Finally, cold molecules formation rates are calculated and compared to the experimentally measured ones, and the vibrational distribution of the formed molecules in the a 3 Σ + u ground triplet state is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received 18 January 2001 and Received in final form 10 April 2001

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fioretti, A., Amiot, C., Dion, C. et al. Cold rubidium molecule formation through photoassociation: A spectroscopic study of the 0 g - long-range state of 87Rb 2 . Eur. Phys. J. D 15, 189–198 (2001). https://doi.org/10.1007/s100530170165

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100530170165

Navigation