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Abstract. For a charged particle in a central field of force we discuss the continuity in energy of the cross-
sections for the related processes of ground state photoeffect and radiative capture. This continuity follows
from general arguments, while for a Coulomb potential, where exact analytic expressions are available, the
continuity can also be traced explicitly through the calculation. Our analysis allows us to identify an error
in papers on radiative muon capture in the ground state which claim the existence of a discontinuity in the
cross-section, occurring in hydrogen for muon energies in the neighbourhood of 2.8 keV. As a discontinuity
in radiative capture would imply a discontinuity in atomic photoeffect, we note that in the latter case there
are extensive experimental results in good qualitative agreement with the usual continuous result (Stobbe
formula) for the cross-section.

PACS. 32.80.Fb Photoionization of atoms and ions

1 Introduction

We analyze the continuity in energy of the matrix element
of the momentum operator between the ground state and
a continuum energy eigenstate of in or out type for a par-
ticle in a central field of force. These matrix elements de-
termine, respectively, the cross-section for ground state
atomic photoelectric effect and for radiative capture to
the ground state.

The continuity in energy of the cross-sections for these
two related processes can be asserted on general grounds.
In the particular case of a Coulomb potential, where exact
analytic expressions are available, the continuity can be
traced explicitly through the various versions and stages
of the calculation. Our analysis here leads to the identifica-
tion of an error present in two recent papers of Chatterjee
et al. [1,2], which claim the existence of a discontinuity
in the radiative muon capture cross-section, occurring in
the nuclear Coulomb field of a proton, for muon energies
in the neighbourhood of 2.8 keV. The same effect would
also be present in radiative electron capture. As the au-
thors have noted, this would also imply a discontinuity
for the inverse process, i.e. in the electron case for atomic
photoeffect. Chatterjee et al. assert that these disconti-
nuities are confirmed in an examination of the relevant
point Coulomb matrix elements, contrary to the generally
accepted results for both photoeffect and radiative cap-
ture.

We begin in Section 2 by defining the relevant matrix
elements and reviewing their properties which follow from
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general principles. In this section we restrict our discus-
sion to the dipole approximation case, which is simpler,
and for which the assertion of discontinuity was already
made [1,2]. From a theorem of Poincaré [3] it follows that
suitably normalized solutions of the Schrödinger equation
are analytic in energy, and hence another well-established
theorem [4,5] guarantees that reduced matrix element in-
tegrals over such a wave function are continuous functions
of continuum energy.

In Section 3 we consider the Coulomb dipole case. An
analytic expression for the non-relativistic Coulomb ma-
trix element of photoeffect, even including retardation, has
been known for a long time. It was obtained by Fischer
and Sauter, who derived it independently [6]. The dipole
approximation result follows directly from the Fischer-
Sauter equation, or it can be obtained separately. The
dipole result is associated with Stobbe [7]. ( We give one
of the possible alternative derivations of Stobbe’s result in
the Appendix.) We examine the derivation of the dipole
result of Chatterjee et al. [1] in some detail, keeping in
mind the continuity in energy and the circumstances in
which various standard formulae are valid. In this way we
demonstrate that the discontinuous expression obtained
by Chatterjee et al. [1] results from a misapplication of
a standard formula without considering its ranges of va-
lidity, and we demonstrate that the correct result is the
Stobbe formula and, as required by the general theory, it
is indeed continuous in energy: it does not have the dis-
continuity Chatterjee et al. [1] claim.

In Section 4 we discuss some further problems in the
work of Chatterjee et al. [1,8], arising in their attempt
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to go beyond dipole approximation, which result from the
use of an incorrect form for the full multipole matrix ele-
ment.

Finally, in Section 5 we discuss to what extent ex-
perimental results for photoeffect show good agreement
with the standard theoretical predictions and disagree-
ment with the alternative of [1]. After some further dis-
cussion we present a summary of our comments and con-
clusions.

We use atomic units through all this paper.

2 The nonrelativistic dipole matrix elements
for radiative capture and photoeffect

In nonrelativistic theory and in dipole approximation
(DA), the matrix element describing the radiative cap-
ture transition of a negatively charged particle of mass M
(for example an electron or a muon) from a continuum
state | p+〉 of energy E = p2/2M > 0 (taking p > 0)
and asymptotic momentum p to the ground state | 1s〉,
in an atomic central potential, neglecting spin, is

Mrc,DA
1s = ε∗ · 〈1s | P | p+〉, (1)

where P is the momentum operator, and ε is the polariza-
tion vector of the radiated photon. The continuum energy
eigenstate | p+〉 of the charged particle in the atomic field
is characterized by its large distance behaviour as a super-
position of a plane wave of momentum p and an outgoing
spherical wave; it is normalized on the momentum scale,
i.e., 〈p+ | p′+〉 = δ(p−p′). Energy conservation requires

E = ω +Eb, (2)

with Eb the ground state energy (negative) and ω the
photon energy.

In the same approximation the matrix element of the
photoeffect, which corresponds to a transition from the
ground state to the continuum, is

Mph,DA
1s (p, ε) = ε · 〈p− | P | 1s〉. (3)

This matrix element involves the continuum energy eigen-
state | p−〉, with the large distance behaviour of a super-
position of a plane wave of momentum p and an incoming
spherical wave, again normalized on the momentum scale.

The relation between the matrix elements of photoef-
fect and radiative capture is

Mrc,DA
1s (p, ε) = −Mph,DA

1s (−p, ε∗). (4)

These matrix elements will be the main subject of our
discussion.

We also note the expressions for the corresponding
cross-sections, since these are the quantities that are to
be considered in the end. In dipole approximation the dif-
ferential cross-section for radiative capture, corresponding
to the emission of a photon of polarization ε in the solid
angle dΩγ , is

dσrc

dΩγ
= 4π2α3 ω

Mp
| 〈1s | ε∗ ·P | p+〉 |2 , (5)

with α the fine structure constant
For photoeffect the differential cross-section corre-

sponding to absorption of photons of polarization ε is

dσph

dΩe
= 4π2α

p

Mω
| 〈p− | ε ·P | 1s〉 |2 . (6)

Here we will give some general arguments about the con-
tinuity in energy of the matrix element Mph,DA

1s in equa-
tion (3). Due to equation (4) these also apply for the ra-
diative capture case.

In the DA case, it is convenient (though not necessary)
to express the dipole matrix element of the momentum op-
erator in terms of the corresponding dipole matrix element
of the position operator. Using the well-known identity

P = iM [H, r] , (7)

one obtains the relation

〈p− | P | 1s〉 = M(E −Eb)〈p− | r | 1s〉. (8)

Except for the Coulomb case, analytic expressions are not
available for the states | p±〉. However, these dipole ma-
trix elements may be reduced to a single radial matrix
element, and as a consequence, it is common practice to
work with their partial wave expansion. We consider a po-
tential which may be described as the superposition of a
short-range potential and a long range Coulomb potential
of ionic charge Zi. Due to the dipole approximation, and
to the s-wave character of the ground state, only the con-
tinuum p partial waves contribute. The matrix element of
r may be written as

〈p− | r | 1s〉 = −
i
√

2π

p

p
R exp i(σ1 + δ1), (9)

where σ1 is the Coulomb l = 1 (p−wave) phase shift,

σ1 ≡ argΓ (2− iξ), ξ ≡ η/p η = MZi, (10)

and δ1 is the p−wave phase shift due to the short-range po-
tential in the presence of the Coulomb potential of charge
Zi [9]. By R we denote the radial matrix element

R =

∫ ∞
0

r3R1(p; r)Rb(r)dr, (11)

with R1(p; r) and Rb(r) the radial wavefunctions (both
real) associated with the continuum p wave of momentum
p, and the ground state, respectively. The continuum p
wave is normalized to have the asymptotic behaviour

R1(p; r) ≈
sin(pr − π/2 + ξln(2pr) + σ1 + δ1)

pr
,

r →∞ . (12)

The radial function Rb is normalized by the condition∫∞
0
r2R2

bdr = 1.
We also write, for its use in the appendix, the matrix

element of the momentum operator, obtained directly
from the partial wave expansion of the vector | p−〉,

〈p− | P | 1s〉 = −
i
√

2π

p

p
S exp i(σ1 + δ1), (13)
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where

S =

∫ ∞
0

r2R1(p; r)
d

dr
Rb(r)dr. (14)

The general relation (8) implies, for the case of an s bound
state, the simple relation

iS = M(Eb −E)R , (15)

with Eb the energy of the bound state.
The matrix element R is directly connected to a ma-

trix element which has simple analytic properties [10,11],
called the reduced dipole matrix element. We are inter-
ested here only in transitions involving a bound state, so
we define

D(Ebl, El
′) ≡

∫ ∞
0

rΦEbl(r)ΦEl′ (r) dr, (16)

where ΦEl′(r) and ΦEbl(r) are radial eigenfunctions

respectively of eigenvalue E =
p2

2M
> 0 and real bound

eigenvalue Eb < 0 of the discrete spectrum. Both eigen-
functions are normalized by the condition

lim
r→0

r−l
′−1ΦEl′(r) = lim

r→0
r−l−1ΦEbl(r) = 1. (17)

From Poincaré’s theorem [3] the solutions of the
Schrödinger equation ΦEl′(r) normalized according to
(17) are analytic functions of E; E and p need not be
taken as real and positive. Similarly the reduced matrix
element D may be defined by (16) whenever the integral
exists, requiring

√
−2MEb > ± Im p.

For real E > 0 and any bound state Enl < 0, the
connection between the two sets of radial wave functions is

rRl′(p; r) = Nl′(p)ΦEl′(r), rRnl = NnlΦEnll(r) , (18)

where Nl′(p) and Nnl are real normalization constants de-
fined for Enl < 0, E > 0, so that (11) becomes

R = N1(p)N10D(Eb0, E1) . (19)

The ground state is labeled by (10), its energy by Eb, as
in equation (2).

We may express the cross-sections (5) and (6) in terms
of this reduced matrix element D(Eb0, E1). For photoef-
fect we have

dσph

dΩγ
= 2α

Mω

p
| ε · p |2 N2

10N1(p)2 | D(Eb0, E1) |2,

(20)

and for radiative capture

dσrc

dΩγ
= (

αω

p
)2 dσ

ph

dΩe
· (21)

The preceding relation can be derived directly from the
time reversal invariance property of the electron-photon
interaction.

The total cross-section for photoeffect, integrated over
electron directions, in the case of unpolarized photons is

σphunpol =
8πα

3
MωpN2

10N1(p)2 | D(Eb0, E1) |2 . (22)

The total cross-section for radiative capture is obtained by
summing over photon polarizations and integrating over
the photon direction. This leads to the relation

σrc = 2 (
αω

p
)2 σphunpol . (23)

Features of the reduced matrix element (16) have been
discussed by Oh and Pratt [12]. For our purposes here the
key fact is that this matrix element is a continuous func-
tion of E. This follows from two mathematical theorems:

i) A theorem due to Poincaré [3] guarantees that for
complex E and p the function ΦEl is an entire function
of the parameter p ≡

√
2ME, in the complex plane of

p, because it satisfies the radial Schrödinger equation, in
which the coefficients are analytic in p (simply E), with
a boundary condition (17) in which the parameter p does
not appear.

ii) Another theorem [4,5] states that if an integrand is
analytic in a parameter, the integral, if uniformly conver-
gent, is an analytic function of the parameter. This may
be used to deduce the analyticity of the reduced matrix
element (16) in p. The integrand is an analytic function of
p in the complex p plane for every value of the integration
variable r. So, whenever it is convergent, the integral is
an analytic function of the parameter p. Thus whenever
(± Im p) −

√
−2MEb < 0, D is a convergent integral, as

can seen from the asymptotic behaviour of the two wave-
functions: ΦEb0(r) goes exponentially to zero and bounds
ΦEl′(r). Hence, for real E the integral is continuous for
E −Eb > 0.

In the case of potentials which are Coulombic at large
distances, Dillon and Inokuti [13] have analyzed in de-
tail the reduced matrix element (16) and have shown that
it is a continuous function of the real transition energy
E − Eb, except for zero transition energy. In our case of
a continuum-bound transition the transition energy does
not vanish, so the reduced matrix element is continuous
for all E > 0 (actually for E > Eb , with Eb < 0).

Coming back to equations (8), (9) and (19), since the
reduced matrix-element is continuous, the matrix element
〈p− | P | 1s〉 will be a continuous function of the en-
ergy E if the normalization constant N1(p) and the phase-
shift σ1 + δ1 are also continuous functions for real E > 0;
the cross-sections (20)-(21) are in fact independent of this
phase shift. The normalization constants are such func-
tions. For justification we refer to Section 6.5 of Gold-
berger and Watson [14], giving the connection between
the normalization constant and the Jost function [Chap-
ter VI, Eq. (237)]. For the behaviour of the phase-shift
we use its relation to the element of the S-matrix [Chap-
ter VI, Eq. (57)] to see that it may be taken as conti-
nouus. The needed analytic properties of the Jost func-
tion and the S-matrix elements have been established for
a class of short-range potentials (see [15]); they may also
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be extended to the Coulomb potential and, presumably,
to potentials with long range Coulomb tails considered
as limits of short range potentials. As already noted, all
the cross-sections considered here are independent of the
phase-shift.

In the next section we will verify the continuity in
energy of the matrix-element 〈p− | P | 1s〉 in the the
Coulomb case, tracing through the analytic expressions
for the different steps of the calculation.

3 The matrix element in the Coulomb case:
Dipole approximation

In the Coulomb case all the conditions required to ensure
the continuity of the continuum-bound matrix elements of
r or p are satisfied, as can also be seen from the explicit
equations written below. The regular solution of the radial
Schrödinger equation is an analytic function of p,

ΦEl(r) = exp(−ipr)rl+1

×1F 1(l + 1 + iξ, 2l+ 2; 2ipr), (24)

where 1F 1 denotes the Kummer series [16], and ξ =
MZi/p as defined in equation (10), even for complex p.
The normalization constant Nl(p), determined from equa-
tions (12) and (18) for real p, and the phase-shift σl of the
l-th partial-wave are given by continuous functions of p,
for real p > 0:

Nl(p) =
(2p)l

(2l + 1)!
eπξ/2 | Γ (iξ + l + 1) |,

(25)

σl = argΓ (−iξ + l+ 1).

As mentioned in the introduction, in the Coulomb case the
photoeffect matrix element can be expressed analytically
(by the Fischer-Sauter equation if retardation is included,
by the Stobbe formula in dipole approximation). Deriva-
tions of these results can be found in the book of Sommer-
feld [6], or in [17]. In this section we continue to consider
the dipole approximation case, for which Chatterjee et al.
have already asserted the existence of a discontinuity. As
we would expect from our previous discussion, Stobbe’s
result is a continuous function of energy. We will there-
fore examine the derivation which Chatterjee et al. [1,2]
present, in obtaining an analytic expression of the momen-
tum operator matrix element (3) between a continuum
“in” state and the ground state, in dipole approximation.

The correct result for this matrix element is (for real
p ≥ 0)

〈p− | P | 1s〉 = 2
√

2(η)5/2 p

(p2 + η2)2
Γ (2− iξ)

× exp(πξ/2)

(
iξ − 1

iξ + 1

)iξ
, (26)

where the argument of
iξ − 1

iξ + 1
is to be taken in the range

(−π, π), as follows from the corresponding choice of argu-
ment in the integral representation of Φ in equation (24).

This will be make clear in the following, and also in a sim-
pler version of the derivation of (26) which is presented in
the Appendix.

Then in equation (26) one can write

iξ − 1

iξ + 1
= exp(−iτ) , (27)

with the angle τ defined by

sin τ = −
2ξ

1 + ξ2
, cos τ =

ξ2 − 1

1 + ξ2
, (28)

and τ in the range (−π, π). But since ξ ≥ 0 , sin τ ≤ 0
and therefore the range of τ is (−π, 0). Then from the
expression for cos τ we see that

−
π

2
< τ < 0 for p < η (ξ > 1) , (29)

−π < τ < −
π

2
for p > η (ξ < 1) . (30)

At p = 0 the angle τ is zero, at p = η it is equal to −π/2,
and for very large values of p the angle τ approaches −π.
We note that the error of Chatterjee et al. results from an
incorrect assignment of the ranges of τ . We mention that
τ is the notation used by Sommerfeld in the calculation
including retardation [18]; it reduces in dipole approxima-
tion to the angle described here.

Inserting the expression (26) for the matrix element
in equation (5), we get the final expression for the total
radiative capture cross-section,

σrc =
256π2

3
α3 ξ6

(1 + ξ2)4

exp(2ξτ)

1− exp(−2πξ)
· (31)

We also write the corresponding expression for the total
K-shell photoeffect cross-section (integrated over the elec-
tron direction), for unpolarized photons [17],

σph =
1024π2

3
α

1

p2

ξ6

(1 + ξ2)4

exp(2ξτ)

1− exp(−2πξ)
· (32)

Before proceeding, we mention the more common way [17,
19] of writing the expression (27),(

iξ − 1

iξ + 1

)iξ
= exp(−2ξ cot−1 ξ) , (33)

which emphasises the negative value of the exponent, and
implies that the angle φ (we use the notation in [1]) defined
by

φ/2 ≡ cot−1 ξ = tan−1 p/η ≡ −τ/2 (34)

is in the range (0, π). This angle takes the value 0 for p = 0,
the value π/2 for p = η, and approaches the value π for
very large values of p. There is nothing ambiguous in the
expression (26), if written in terms of this angle φ, once
its range is defined, for which equation (34) is not enough.
The matrix element (26) is a continuous function of the
real electron momentum p. The result, however, reported
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in [1] is the same as that in equation (31) for p < η, but
larger by a factor of e2πξ for p > η. This comes from a
different range which is attributed to the angle φ.

Let us analyze now the calculation in Sections 4 to 6
of [1]. The calculation is based on the expression of an in-
tegral I, defined in their equation (3), which for κ = 0 is,
up to a factor, the matrix element (1). The authors eval-
uate this matrix element, directly, utilizing the analytic
expression of the full three dimensional Coulomb contin-
uum energy eigenstate,

〈r | p−〉 =
exp(πξ/2)

(2π)3/2
Γ (1 + iξ) exp(ip · r)

×1F1(−iξ, 1;−i(pr + p · r), (35)

and using explicitly a result for integration over such func-
tions derived by Nordsieck [Ref. [20], Eq. (1)]. The deriva-
tion of Nordsieck is based on the use of an integral rep-
resentation for the hypergeometric function in the full-
continuum state, equation (35). There is no ambiguity in
the definition of the complex power of complex argument,
appearing first in the integral representation, which enters
the integrand, and then in the final result. Equation (4)
of [1] would be correct (only a factor π is missing), if the
principal value for the argument of the complex power in

f ≡ 2iξe−πξ(p2 − η2 + 2iηp)−iξ (36)

was used. With the notation (28) used previously, one
finds this way

f = (
p2 + η2

2
)−iξeτξ, (37)

which leads to the relation

θ = τ + π, (38)

between the angle τ in equation (28) and the angle θ, used
in [1]. The range of θ should therefore be (0, π). However
the authors of [1] write an expression for θ in terms of its
tangent, assuming the range is (−π/2, π/2), rather than
considering the full definition of θ which follows from the
calculation.

We mention that the correct result for their integral
I can also be found in reference [19]. The expression for
| I |2 given in equation (6) of [1] (from which a factor 16 is
missing) is based on the assumption that the range of θ is
(−π/2, π/2), and so it is not correct. If the proper range
(0, π) is used for θ, the equation becomes correct.

The important quantity for the discussion in [1] is the
function defined after their equation (6):

F =| f |2= exp[ 2ξ(θ − π)] = exp(−2ξφ). (39)

(In fact they write F = f2 , presumably a misprint, since
f is not real). With this expression, Chatterjee et al. in-
troduce the angle φ = π − θ, which we defined before
in (34), but specifying that φ is in the range (0, π); one
has, as already noted, φ = −τ . However, instead of giving

values to φ in the range (0, π), they assign to it values be-
tween −π/2 and π/2. For p < η this is correctly given as
φ ∈ (0, π/2), but for p > η instead of continuing from π/2
to π, they give for φ the range (−π/2, 0). This causes the
incorrect jump at p = η of the matrix element. The correct
value of F at p = η is F = exp(−π). In fact, the correct
angle φ here is identical with the angle which Chatterjee
et al. denoted by φ′ in [1]. If they had used their φ′ in the
analytic equations, everything would have been correct,
and no jump would have been predicted.

The argument of the authors, based on the values of
the tangent function for the angles they manipulate, is not
justified: the proper branch of the tangent function is de-
termined by the original integral. A numerical evaluation
of F , using the correct phases in the integrand coming
from the representation of the hypergeometric function,
confirms the dotted curve in Figure 4 of [1], not the erro-
neous discontinuity of the full curve.

4 The matrix element with retardation

The retarded matrix element for radiative capture in an
atomic field is

Mrc
1s(κ,p, ε) = ε∗ · 〈1s | exp(−iκ · r)P | p+〉, (40)

where we have used the same notations as in Section 2.
The retardation effects are due to the factor exp(−iκ · r),
where κ is the photon momentum. In the usual dipole
approximation this exponential is simply replaced by 1,
which is equivalent to taking κ = 0 , but equation (2)
remains unchanged. The matrix element (1) is obtained
in this way.

Chatterjee et al. [1] have also presented results for the
pure Coulomb case, including retardation. At the end of
Section 6 of [1], we find a complicated result for the nonrel-
ativistic total cross-section of radiative capture with retar-
dation included. This is surprising, since the well-known
Fischer-Sauter equation [17] is completely different. Look-
ing back at the paper [8], which gives more details, we no-
tice that the quantity presented as the differential cross-
section is already very different. Instead of the rather sim-
ple Fischer-Sauter result,

| Mrc
1s |

2=
16

π
η5 ξ2(1 + ξ2)

1− exp(−2πξ)

| ε · p |2

A4
exp(2ξτ), (41)

where

A = (p− κ)2 + η2, (42)

and

tan τ =
−2ηp

κ2 − p2 + η2
, (43)

with the condition −π < τ < 0, which results from consid-
erations very similar to those presented in Section 3, a very
complicated expression is given. Note that equation (41)
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is identical with the dipole result except for setting κ = 0
in (42) and (43).

We can see that equation (9) of [8] is so different be-
cause the integral evaluated there, defined in equation (6)
of [8], is not the right quantity. An error is made in the
beginning: the simple replacement of the momentum op-
erator by the position operator (with a factor) is possible
only in the dipole approximation, which is not the case
now under consideration. The replacement of the opera-
tor P, using the identity (7), leads to additional terms in
comparison to the DA case, due to the presence of the fac-
tor exp(−iκ·r) in the matrix element equation (40). These
terms are ignored in [8]. Note that although Akhiezer and
Beresteskii [19] are cited for this form of matrix element,
in fact they are only obtaining this form when they make
the dipole approximation.

5 Further discussion and conclusions

Finally, we refer to photoeffect, and we invoke experi-
mental data in favor of the theoretical result contained
in equation (32). We consider K shell photoionization
cross-sections at high energies, where screening effects are
not important and the Coulomb cross-section is measured
directly. Generally excellent agreement is found between
theory and experiment. For example, one may consider
the exhaustive comparisons for all elements of experimen-
tal and theoretical X-ray attenuation coefficients between
0.1–100 keV due to Saloman and Hubbell [21]. The alleged
discontinuity in the photoeffect cross-section would occur
at twice the K shell threshold energy. At this energy to-
tal attenuation is dominated by K shell photoeffect. This
region is shown in Salomon and Hubbell’s tabulation for
Z < 60, and for most elements there is substantial ex-
perimental data. There is no evidence of a discontinuity,
and there is generally very good agreement between ex-
periment and standard theory.

We mention the existence of a paper on radiative muon
capture in light atoms [22], which makes use of Stobbe’s
result (32) in the correct way. In fact, Stobbe’s result
was used in many calculations of electron capture in ion-
atom collisions, whenever the impulse approximation was
adopted [23]. Good agreement is found with experiments,
and there is no evidence for a discontinuity. For a recent
review, see McCann et al. [24]. See also the papers of Ichi-
maru et al. [25] and references therein.

In conclusion, in this paper we have argued that there
is no discontinuity in the energy dependence of continuum-
bound transitions in an atomic field. In Section 2 we have
used general arguments based on the continuity in energy
of the reduced matrix element, a property which can be
rigorously proven [3,5,12], based on theorems of Poincaré
and Titchmarsh. In the Coulomb case, discussed in Sec-
tion 3, we have identified the error in [1], coming from
a misapplication of Nordsieck’s result [20]. The retarded
results of [8] further suffer from an incorrect treatment of
the matrix element of the momentum operator P in the
presence of retardation.

This work is a continuation of cooperative work of the authors
in the framework of a National Research Council Romanian
Twinning Program, whose support is warmly acknowledged. It
has also been partly supported under NSF Grant PHY9601752.

Appendix

We present here a very direct derivation of equation (26).
This allows us to verify once more the correctness of the
value assigned to τ in equations (28) and (27). The deriva-
tion starts from equation (13), and it is based on the eval-
uation of the integral S in (14). With the explicit expres-
sions for the continuum p wave [Eq. (24) with l = 1] and
for the ground state radial wavefunction, one has

S = −2(η)5/2N1(p)S0, (44)

with

S0 ≡

∫ ∞
0

r3 exp(−ipr − ηr)1F 1(2 + iξ, 4; 2ipr)dr . (45)

The quantities p and ξ are real. Up to a factor the integral
is a function of the parameter ξ only, as it can be rewritten
as

S0 =
1

16p4

∫ ∞
0

ρ3 exp[−
1

2
(ξ + i)ρ]1F 1(2 + iξ, 4; iρ)dρ .

(46)

The integral is convergent for ξ > 0, which is the case
here, and it is given by the simple elementary expression
[see Appendix f of [26], Eq. (f.3)]

S0 =
6

p4(1 + ξ2)2

(
iξ − 1

iξ + 1

)iξ
, (47)

where again, as stated in [26], the phase of the term in
parenthesis is to be taken in the range (−π, π). Using the
angle τ (47) becomes

S0 =
6

p4(1 + ξ2)2
exp(ξτ). (48)

The correct choice for the complex power follows from
the calculation and can be seen by tracing it through the
Landau and Lifschitz [26] derivation. The expression one
gets in this way for the matrix element (3) is identical with
equation (26). The result (26) is, in agreement with our
general discussion, a continuous function of the electron
energy.
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