Skip to main content
Log in

Dynamical study and control of drift waves in a magnetized laboratory plasma

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The various dynamical regimes of collisional drift waves in a magnetized plasma column are experimentally studied. These unstable low-frequency electrostatic waves are related with strong modulations of the ion and electron density. The angular velocity of the rotating plasma column is the control parameter of the dynamics: regular, chaotic and turbulent regimes are obtained. The spatial extension of the system allows for the occurrence of spatiotemporal chaos. The time-delay auto-synchronization method of controlling chaos [K. Pyragas, Phys. Lett. A 170, 421 (1992)] though purely temporal is successfully applied. A numerical study using coupled nonlinear oscillators exhibiting chaos is compared to the experimental results. The control method is tested on this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Munkel, F. Kaiser, O. Hess, Phys. Rev. E 56, 3868 (1997).

    Article  ADS  Google Scholar 

  2. E.M. Marshall, R.F. Ellis, J.E. Walsh, Plasma Phys. Control. Fusion 28, 1461 (1986).

    Article  ADS  Google Scholar 

  3. R.F. Ellis, E. Marden-Marshall, R. Majeski, Plasma Phys. 22, 113 (1980).

    Article  ADS  Google Scholar 

  4. E. Ott, C. Grebogy, J.A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. K. Pyragas, Phys. Lett. A 170, 421 (1992).

    Article  ADS  Google Scholar 

  6. Th. Pierre, G. Bonhomme, A. Atipo, Phys. Rev. Lett. 76, 2290 (1996).

    Article  ADS  Google Scholar 

  7. M.E. Bleich, J.E.S. Socolar, Phys. Rev. E 54, R17 (1996).

    Article  ADS  Google Scholar 

  8. R.O. Grigoriev, M.C. Cross, H.G. Schuster, Phys. Rev. Lett. 79, 2795 (1996).

    Article  ADS  Google Scholar 

  9. K. He, G. Hu, Phys. Rev. E 53, 2271 (1996).

    Article  ADS  Google Scholar 

  10. S. Boccaletti, D. Maza, H. Mancini, R. Genesio, F.T. Arecchi, Phys. Rev. Lett. 79, 5246 (1997).

    Article  ADS  Google Scholar 

  11. H.G. Schuster, M.B. Stemmler, Phys. Rev. E 56, 6410 (1997).

    Article  ADS  Google Scholar 

  12. Th. Pierre, G. Leclert, F. Braun, Rev. Sci. Instrum. 58, 6 (1987).

    Article  ADS  Google Scholar 

  13. F.F. Chen, Introduction to plasma physics and controlled fusion (Plenum Press, New-York, 1984).

    Google Scholar 

  14. A. Latten, T. Klinger, A. Piel, T. Pierre, Rev. Sci. Instrum. 66, 3254 (1995).

    Article  ADS  Google Scholar 

  15. T. Klinger, A. Latten, A. Piel, G. Bonhomme, Th. Pierre, Plasma Phys. Control. Fusion 39, B145 (1997).

    Article  ADS  Google Scholar 

  16. T. Klinger, A. Latten, A. Piel, G. Bonhomme, Th. Pierre, T. Dudok de Wit, Phys. Rev. Lett. 79, 3913 (1997).

    Article  ADS  Google Scholar 

  17. H.D.I. Abarbanel, Analysis of observed chaotic data (Springer, 1996).

  18. T.M. Kruel, M. Eiswirth, F.W. Schneider, Physica D 63, 117 (1993).

    Article  MATH  ADS  Google Scholar 

  19. F. Takens, Dynamical systems and turbulence, Springer Lecture Notes in Mathematics 868 (New-york, Springer Verlag, 1981), p. 366.

    Book  Google Scholar 

  20. E. Gravier, X. Caron, G. Bonhomme, Th. Pierre, Phys. Plasmas (to be published, 1999).

  21. W. Just, T. Bernard, M. Ostheimer, E. Reibold, H. Benner, Phys. Rev. Lett. 78, 203 (1997).

    Article  ADS  Google Scholar 

  22. G. Hu, Z. Qu, Phys. Rev. Lett. 72, 68 (1994).

    Article  ADS  Google Scholar 

  23. D. Auerbach, Phys. Rev. Lett. 72, 1184 (1994).

    Article  ADS  Google Scholar 

  24. G.A. Johnson, M. Locher, E.R. Hunt, Phys. Rev. E 51, R1625 (1995).

    Article  ADS  Google Scholar 

  25. J. Jiang, A. Antillon, P. Parmananda, J. Escalona, Phys. Rev. E 56, 2568 (1997).

    Article  ADS  Google Scholar 

  26. N. Parekh, V. Ravi Kumar, B.D. Kulkami, Chaos 8, 300 (1998).

    Article  MATH  ADS  Google Scholar 

  27. A. Amengual, E. Hernandez-Garcia, R. Montagne, M. San Miguel, Phys. Rev. Lett. 78, 4379 (1997).

    Article  ADS  Google Scholar 

  28. L. Kocarev, U. Parlitz, Phys. Rev. Lett. 77, 2206 (1996).

    Article  ADS  Google Scholar 

  29. J. Yang, G. Hu, J. Xiao, Phys. Rev. Lett. 80, 496 (1998).

    Article  ADS  Google Scholar 

  30. N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D.I. Abarbanel, Phys. Rev. E 51, 980 (1995).

    Article  ADS  Google Scholar 

  31. G. Hu, J. Xiao, J. Yang, F. Xie, Z. Qu, Phys. Rev. E 56, 2738 1997.

    Article  ADS  Google Scholar 

  32. K. Murali, M. Lakshmanan, Phys. Rev. E 49, 4882 (1994).

    Article  ADS  Google Scholar 

  33. T. Kapitaniak, Phys. Rev. E 50, 1642 (1994).

    Article  ADS  Google Scholar 

  34. H. Chaté, P. Manneville, Physica D 32, 409 (1988).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. P. Bergé, Y. Pomeau, C. Vidal, L’espace chaotique (Hermann, 1988).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bonhomme.

Additional information

ESA 7040 du CNRS

UMR 6633 du CNRS

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gravier, E., Caron, X., Bonhomme, G. et al. Dynamical study and control of drift waves in a magnetized laboratory plasma. Eur. Phys. J. D 8, 451–457 (2000). https://doi.org/10.1007/s100530050055

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100530050055

PACS

Navigation