Skip to main content
Log in

Exact analytic relation between quantum defects and scattering phases with applications to Green’s functions in quantum defect theory

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The relation between the quantum defects, µ λ , and scattering phases, δ λ , in the single-channel Quantum Defect Theory (QDT) is discussed with an emphasis on their analyticity properties for both integer and noninteger values of the orbital angular momentum parameter λ. To derive an accurate relation between µ λ and δ λ for asymptotically-Coulomb potentials, the QDT is formally developed for the Whittaker equation in its general form “perturbed” by an additional short-range potential. The derived relations demonstrate that µ λ is a complex function for above-threshold energies, which is analogous to the fact that δ λ is complex for below-threshold energies. The QDT Green’s function, G λ , of the “perturbed” Whittaker equation is parameterized by the functions δ λ and µ λ for the continuous and discrete spectrum domains respectively, and a number of representations for G λ are presented for the general case of noninteger λ. Our derivations and analyses provide a more general justification of known results for nonrelativistic and relativistic cases involving Coulomb potentials and for a Coulomb plus point dipole potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bates, A. Damgaard, Phil. Trans. Roy. Soc. A 242, 101 (1949).

    Article  MATH  ADS  Google Scholar 

  2. M.J. Seaton, Compt. Rend. 240, 1317 (1955).

    Google Scholar 

  3. M.J. Seaton, Mont. Not. Roy. Astr. Soc. 118, 504 (1958).

    MATH  MathSciNet  ADS  Google Scholar 

  4. F.S. Ham, in Solid State Physics, edited by F. Seitz, D. Turnbull (Academic Press, New York, 1955), Vol. 1.

    Google Scholar 

  5. A. Burgess, M.J. Seaton, Mont. Not. Roy. Astr. Soc. 120, 121 (1960).

    MATH  MathSciNet  ADS  Google Scholar 

  6. M.J. Seaton, Rep. Prog. Phys. 70, 167 (1982).

    Google Scholar 

  7. M.J. Seaton, Proc. Phys. Soc. 88, 801 (1966).

    Article  Google Scholar 

  8. B.L. Moiseiwitsch, Proc. Phys. Soc. Lond. 79, 1166 (1962).

    Article  MATH  Google Scholar 

  9. G.E. Norman, Opt. Spektrosk. 12, 333 (1962) [Opt. Spectrosc. (USSR) 12, 183 (1962)].

    MathSciNet  Google Scholar 

  10. L.D. Landau, Ya.A. Smorodinskii, J. Phys. USSR 8, 154 (1944).

    Google Scholar 

  11. B.A. Zon, N.L. Manakov, L.P. Rapoport, Doklady Akad. Nauk USSR 188, 560 (1969) [Sov. Phys.-Dokl. 14, 904 (1970)].

    Google Scholar 

  12. V.A. Davidkin, B.A. Zon, N.L. Manakov, L.P. Rapoport, Zh. Eksp. Teor. Fiz. 60, 124 (1971) [JETP 33, 70 (1971)].

    Google Scholar 

  13. N.L. Manakov, V.D. Ovsiannikov, L.P. Rapoport, Phys. Rep. 141, 319 (1986).

    Article  Google Scholar 

  14. I. Fabrikant, D. Khrebtukov, Phys. Rev. A 54, 2906 (1996).

    Article  ADS  Google Scholar 

  15. C. Greene, U. Fano, G. Strinati, Phys. Rev. A 19, 1485 (1979).

    Article  ADS  Google Scholar 

  16. C. Greene, A.R.P. Rau, U. Fano, Phys. Rev. A 26, 2441 (1982).

    Article  ADS  Google Scholar 

  17. A.R.P. Rau, Phys. Rev. A 38, 2255 (1988).

    Article  ADS  Google Scholar 

  18. U. Fano, Phys. Rev. A 17, 93 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  19. L.P. Presnyakov, A.M. Urnov, Zh. Eksp. Theor. Phys. 68, 61 (1975) [JETP 41, 31 (1975)].

    Google Scholar 

  20. T.L. Goforth, D.K. Watson, Phys. Rev. A 46, 1239 (1992).

    Article  ADS  Google Scholar 

  21. W.A. Henle, H. Ritsch, P. Zoller, Phys. Rev. A 36, 683 (1987).

    Article  ADS  Google Scholar 

  22. J.A. Stephens, V. McKoy, J. Chem. Phys. 97, 8060 (1992).

    Article  ADS  Google Scholar 

  23. V.A. Zilitis, Opt. Spektrosk. 43, 1017 (1977) [Opt. Spectrosc. (USSR) 43, 603 (1977)].

    Google Scholar 

  24. W.R. Johnson, K.T. Cheng, J. Phys. B 12, 863 (1979).

    Article  ADS  Google Scholar 

  25. V.A. Zilitis, Opt. Spektrosk. 50, 419 (1981) [Opt. Spectrosc. (USSR) 50, 227 (1981)].

    Google Scholar 

  26. I.B. Goldberg, R.H. Pratt, J. Math. Phys. 28, 1352 (1987).

    Google Scholar 

  27. J.J. Chang, Phys. Rev. A 48, 1769 (1993).

    Article  ADS  Google Scholar 

  28. S.A. Zapryagaev, N.L. Manakov, A.V. Mogilev, Izv. Akad. Nauk SSSR: Ser. Fiz. 50, 1367 (1986) [Bull. Acad. Sci. USSR: Phys. Ser. 50, 120 (1986)].

    Google Scholar 

  29. V.E. Chernov, B.A. Zon, J. Phys. B 29, 4161 (1996).

    Article  ADS  Google Scholar 

  30. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Vol. I, pp. 348–349.

    MATH  Google Scholar 

  31. L.J. Slater, Confluent Hypergeometric Functions (Cambridge University Press, Cambridge, England, 1960).

    MATH  Google Scholar 

  32. E.T. Whittaker, G.N. Watson, Modern Analysis (Cambriddge University Press, Cambridge, England, 1973).

    Google Scholar 

  33. U. Fano, A.R.P. Rau, Atomic Collisions and Spectra (Academic Press, New York, 1986).

    Google Scholar 

  34. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965), p. 256.

    Google Scholar 

  35. V. De Alfaro, T. Regge, Potential scattering (North-Holland, Amsterdam, 1965).

    MATH  Google Scholar 

  36. M.J. Seaton, Proc. Phys. Soc. A 70, 620 (1957).

    Article  ADS  Google Scholar 

  37. L.H. Hostler, J. Math. Phys. 5, 591 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  38. I.S. Gradshtein, I.M. Ryzhik, Tables of Integrals, Series and Products (Academic Press, New York, 1967), Eq. 6.669(3).

    Google Scholar 

  39. U. Fano, Phys. Rev. A 2, 353 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  40. C.M. Lee, Phys. Rev. A 10, 584 (1974).

    Article  ADS  Google Scholar 

  41. M. Aymar, C.H. Greene, E. Luc-Koenig, Rev. Mod. Phys. 68, 1015 (1996).

    Article  ADS  Google Scholar 

  42. B.A. Zon, Zh. Eksp. Theor. Phys. 102, 36 (1992) [JETP 75, 19 (1992)].

    Google Scholar 

  43. N.Y. Du, A.F. Starace, N.A. Cherepkov, Phys. Rev. A 48, 4213 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Manakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernov, V.E., Manakov, N.L. & Starace, A.F. Exact analytic relation between quantum defects and scattering phases with applications to Green’s functions in quantum defect theory. Eur. Phys. J. D 8, 347–359 (2000). https://doi.org/10.1007/s100530050044

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100530050044

PACS

Navigation